首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ability of the gregarious larval endoparasitoid Cotesia glomerata L. (Hymenoptera: Braconidae) to adjust progeny sex ratio and clutch size was investigated. The sex ratios (proportion of males) of field clusters were diverse, but many (70%) were female-biased. Nearly 10% yielded males only, suggesting a low percentage of unmated females in the field. In over half of the clusters containing females, the sex ratio was below 0.3. Superparasitism was common in the field, and females were believed to increase progeny sex ratio when attacking previously-parasitized hosts. However, in a single oviposition bout, sex allocation was not precisely controlled both in the field and laboratory. In the laboratory, the number of eggs laid in a day tended to decrease with increasing female age. For females which were offered two hosts per day and for those offered three hosts per day, this value became nearly the same several days after the start of oviposition. The total number of hosts which a female could parasitize during her lifetime was often less than 40. Some of the old females which attacked more than 40 hosts produced male-biased clutches; this was due to sperm depletion, because sperm remained viable throughout a female's lifetime. The amount of sperm used in a single oviposition bout seemed fixed and was not dependent on the number of eggs laid. Females with much oviposition experience did not produce new eggs to compensate for deposited eggs, and the efficiency of egg use (deposited eggs/total eggs) was more than 80%.  相似文献   

2.
夏诗洋  孟玲  李保平 《昆虫学报》2012,55(9):1069-1074
在寄生蜂行为生态学研究中, 通常将寄主体型大小作为寄主品质的主要性状来探究寄生蜂的搜寻行为机理, 而忽略寄生蜂体型大小的意义。为揭示聚寄生蜂雌蜂体型大小对其产卵决策的影响, 在严格控制寄主菜粉蝶Pieris rapae蛹体型大小(体重)的情况下, 于室内观察了不同体型大小的蝶蛹金小蜂Pteromalus puparum雌蜂的产卵行为, 并调查了子代蜂数量(窝卵数)、 性比和体型大小的变化。结果表明: 雌蜂在寄主上的驻留时间随其自身体型增大而缩短, 但随寄主体重增大而延长。窝卵数和余卵量受到雌蜂体型大小的显著影响, 均随雌蜂体型增大而显著增加(P<0.05); 但子代蜂性比不受雌蜂体型大小的显著影响 (P>0.05)。子代雌、 雄性体型大小均与雌蜂体型大小无关, 但子代雌蜂体型随寄主体重增大而增大。结果证实, 雌性蝶蛹金小蜂体型大小影响其部分产卵决策。因此, 在建立聚寄生蜂产卵决策模型中应考虑雌蜂体型大小这一重要变量因素。  相似文献   

3.
Fig‐pollinating wasps (Agaonidae) only reproduce within fig tree inflorescences (figs). Agaonid offspring sex ratios are usually female‐biased and often concur with local mate competition theory (LMC). LMC predicts less female‐bias when several foundresses reproduce in a fig due to reduced relatedness among intra‐sexually competing male offspring. Clutch size, the offspring produced by each foundress, is a strong predictor of agaonid sex ratios and correlates negatively with foundress number. However, clutch size variation can result from several processes including egg load (eggs within a foundress), competition among foundresses and oviposition site limitation, each of which can be used as a sex allocation cue. We introduced into individual Ficus racemosa figs single Ceratosolen fusciceps foundresses and allowed each to oviposit from zero to five hours thus variably reducing their eggs‐loads and then introduced each wasp individually into a second fig. Offspring sex ratio (proportion males) in second figs correlated negatively with clutch size, with males produced even in very small clutches. Ceratosolen fusciceps lay mainly male eggs first and then female eggs. Our results demonstrate that foundresses do not generally lay or attempt to lay a ‘fixed’ number of males, but do ‘reset to zero’ their sex allocation strategy on entering a second fig. With decreasing clutch size, gall failure increased, probably due to reduced pollen. We conclude that C. fusciceps foundresses can use their own egg loads as a cue to facultatively adjust their offspring sex ratios and that foundresses may also produce more ‘insurance’ males when they can predict increasing rates of offspring mortality.  相似文献   

4.
The role of sex-controlling behaviour at oviposition in generating primary sex ratios, and the effect of larval competition on secondary sex ratios, were studied in the gregarious endoparasitoid, Trichogramma chilonis. The production of a fertilized (female) egg is indicated by the incorporation of a pause in abdominal movements during oviposition, while the absence of it indicates the production of an unfertilized (male) egg. During each ovipositional bout, the first male egg is deposited at the second oviposition, and thereafter at intervals of about eight eggs. This simple pattern enables the wasps to adjust their progeny sex ratios under local male competition to a wide range of host size. Inexperienced wasps do not distinguish between parasitized and healthy hosts. Immature mortality is not significantly different between the sexes when a host is attacked by a single wasp, while females suffer higher immature mortality than males when superparasitism occurs.  相似文献   

5.
Oviposition behavior was used to determine the primary clutch size and sex ratio of the polyembryonic wasp Copidosoma floridanumAshmead (Hymenoptera: Encyrtidae) parasitizing Pseudoplusia includens(Walker) (Lepidoptera: Noctuidae). The laying of a female egg was associated with a pause in abdominal contractions during oviposition, while the laying of a male egg was associated with uninterrupted abdominal contractions. Although unmated females produced only male broods, they also displayed male and female egg oviposition movements. Wasps always laid a primary clutch of one or two eggs. For mated females if only one egg was laid, the emerging secondary clutch was all male or female, but if two eggs were laid a mixed brood of males and females was almost always produced. The secondary clutch of single sex broods was usually between 1000 and 1200 individuals, but the secondary clutch of mixed broods averaged 1143 females and 49 males. Thus, the primary sex ratio for mixed broods was 0.5 (frequency males), but the secondary sex ratio was 0.042. Manipulation of the sequence of male and female egg oviposition or of the primary clutch did not produce major alterations in the secondary clutch size or sex ratio.  相似文献   

6.
The impact of host age on the number of hosts killed, survival of progeny, progeny allocation, and sex allocation was examined for several Trichogrammatidae (Hymenoptera) species in laboratory choice tests. Individual female parasitoids were provided with young, medium-aged and old eggs of one of three lepidopterous host species: Trichoplusia ni (Hübner) (Noctuidae), Pieris rapae (L.) (Pieridae), or Plutella xylostella (L.) (Plutellidae). Trichogrammatid species behaved as gregarious parasitoids with the first two host species, and as solitary parasitoids with eggs of the smaller latter one. They mostly preferred young eggs of T. ni, but did not discriminate among P. rapae eggs of different ages, and often preferred young or medium-aged P. xylostella eggs over old eggs. Survival of progeny did not vary constantly with host age, although it was often very low in P. rapae eggs of any age. Clutch size frequently decreased with host age in both T. ni and P. rapae. Offspring sex ratio did not change with age of T. ni and P. rapae eggs, and rarely did so in P. xylostella eggs. In regard to host age, the results with T. ni are the ones which are the most in agreement with optimal foraging theoretical predictions, as clutch size was the highest in preferred younger eggs.  相似文献   

7.
Pollinator fig wasps (Agaonidae) are a model system for studies of sex ratio evolution. They lay their eggs in galled ovules within figs. Only one adult emerges from each gall, suggesting that only one egg is always laid per ovule, but if double oviposition occurs then the assumption that adult (realised) sex ratios of fig wasps are representative of primary sex ratios may be violated. Many galls also fail to produce any wasps. If they initially contained eggs then differential mortality rates may also modify realized sex ratios. We investigated whether Kradibia (= Liporrhopalum) tentacularis foundresses in Ficus montana figs avoid laying in ovules that already contain eggs. Comparisons of oviposition frequencies and wasp emergence frequencies showed that most galls that failed to produce wasps will have had eggs laid in them, but few occupied ovules contained two eggs. Realised sex ratios therefore do not necessarily reflect primary sex ratios in this species, but double oviposition is not responsible.  相似文献   

8.
Sex allocation theory predicts that females should produce more sons when the reproductive success of sons is expected to be high, whereas they should produce more daughters, not daughters when the reproductive success of sons is expected to be low. The guppy (Poecilia reticulata) is a live‐bearing fish, and female guppies are known to produce broods with biased sex ratios. In this study, we examined the relationship between brood sex ratio and reproductive success of sons and daughters, to determine whether female guppies benefit from producing broods with biased sex ratios. We found that sons in male‐biased broods had greater mating success at maturity than sons in female‐biased broods when brood sizes were larger. On the other hand, the reproductive output of daughters was not significantly affected by brood sizes and sex ratios. Our results suggest that female guppies benefit from producing large, male‐biased brood when the reproductive success of sons is expected to be high.  相似文献   

9.
Superparasitism in solitary parasitoids results in fatal competition between the immature parasitoids, and consequently only one individual can emerge. In the semisoli- tary ovicidal parasitoid Echthrodelphaxfairchildii (Hymenoptera: Dryinidae), 2 adults can emerge under superparasitism with a short interval (〈24 h) between the first and second ovipositions. We determined the female parasitoid's behavioral responses under self- and conspecific superparasitism bouts with first-to-second oviposition intervals of 〈2 h. The self- and conspecific superparasitizing frequencies increased up to an oviposition interval of 0.75 h, with the former remaining lower than the latter, particularly for oviposition intervals of _〈0.25 h, suggesting the existence of self-/conspecific discrimination. The superparasitizing frequency plateaued for oviposition intervals of _〉0.75 h, with no dif- ference between self- and conspecific superparasitism. The ovicidal-probing frequency did not differ under self- and conspecific superparasitism, and was usually 〈20%. The females exhibited no preference for the oviposition side (i.e., ovipositing on the side with or without the first progeny) and almost always laid female eggs for any oviposition in- terval under self- and conspecific superparasitism. The sex ratio was not affected by the type of superparasitism, oviposition sides, or the occurrence of ovicidal probing. These observed results about the oviposition side, ovicidal probing, and sex ratios differed from the predictions obtained assuming that the females behave optimally. Possible reasons for the discrepancies are discussed: likely candidates include the high cost of selecting oviposition sides and ovicidal probing, and, for the sex ratio, the low frequency of encountering suitable hosts before superparasitism bouts.  相似文献   

10.
Kinship among interacting individuals is often associated with sociality and also with sex ratio effects. Parasitoids in the bethylid genus Goniozus are sub‐social, with single foundress females exhibiting post‐ovipositional maternal care via short‐term aggressive host and brood defence against conspecific females. Due to local mate competition (LMC) and broods normally being produced by a single foundress, sex ratios are female‐biased. Contests between adult females are, however, not normally fatal, and aggression is reduced when competing females are kin, raising the possibility of multi‐foundress reproduction on some hosts. Here, we screen for further life‐history effects of kinship by varying the numbers and relatedness of foundresses confined together with a host resource and also by varying the size of host. We confined groups of 1–8 Goniozus nephantidis females together with a host for 5+ days. Multi‐foundress groups were either all siblings or all nonsiblings. Our chief expectations included that competition for resources would be more intense among larger foundress groups but diminished by both larger host size and closer foundress relatedness, affecting both foundress mortality and reproductive output. From classical LMC theory, we expected that offspring group sex ratios would be less female‐biased when there were more foundresses, and from extended LMC theory, we expected that sex ratios would be more female‐biased when foundresses were close kin. We found that confinement led to the death of some females (11% overall) but only when host resources were most limiting. Mortality of foundresses was less common when foundresses were siblings. Developmental mortality among offspring was considerably higher in multi‐foundress clutches but was unaffected by foundress relatedness. Groups of sibling foundresses collectively produced similar numbers of offspring to nonsibling groups. There was little advantage for individual females to reproduce in multi‐foundress groups: single foundresses suppressed even the largest hosts presented and had the highest per capita production of adult offspring. Despite single foundress reproduction being the norm, G. nephantidis females in multi‐foundress groups appear to attune sex allocation according to both foundress number and foundress relatedness: broods produced by sibling foundresses had sex ratios similar to broods produced by single foundresses (ca. 11% males), whereas the sex ratios of broods produced by nonsibling females were approximately 20% higher and broadly increased with foundress number. We conclude that relatedness and host size may combine to reduce selection against communal reproduction on hosts and that, unlike other studied parasitoids, G. nephantidis sex ratios conform to predictions of both classical and extended LMC theories.  相似文献   

11.
Various aspects were studied of the brood size and sex allocation strategies, and of size-fitness relationships in Parallorhogas pyralophagus (Marsh), a gregarious ectoparasitoid of Eoreuma loftini Dyar. Brood size was significantly correlated with host size; larger hosts were allocated larger broods. Brood sex ratios were fixed precisely at 1 male per 4 females, and eggs were likely to be deposited in that order; differential mortality did not contribute to this precise sex ratio. The sex allocation strategy of P. pyralophagus is likely to conform to strict, i.e. single foundress, local mate competition. Adoption of this strategy is probably influenced by a limited insemination capacity of males; a smaller proportion of females (0.09 vs. 0.21) remained virgin in broods with precise or higher sex ratios (> or = 0.20 males) relative to broods with lower than precise sex ratios (< 0.20 males). Moreover, all females were inseminated in most broods (60%) with precise or higher sex ratios, whereas this did not occur in broods with lower than precise sex ratios. The hypothesized occurrence of strict local mate competition in P. pyralophagus was supported also by observations that: (i) offspring brood sex ratios were independent of maternal brood sex ratios and number of parental females concurrently allocating offspring to a group of hosts, and; (ii) the rate of superparasitism under no-choice conditions was low (approximately 20%), suggesting that rates of outbreeding in the field are low. Other results suggested that fitness in P. pyralophagus was correlated with adult size; longevity and reproductive capacity both increased with adult size in males and females. However, adult size may be more important for females than for males because the differences in reproductive capacity between the largest and smallest individuals was up to 7.3 times greater in females versus < 2 times in males.  相似文献   

12.
Parasitoid females are known to preferentially allocate female eggs to hosts with the higher resource value, usually leading to oviposition of female eggs in larger hosts and male eggs in smaller hosts. For koinobiont parasitoids, if male and female hosts are of equal size at time of oviposition, but differ in size in later developmental stages, the sex of the host could be used to indicate future resource value. Using parasitoids of the braconid genus Asobara, which are larval parasitoids of Drosophila, it is shown that parasitoids emerging from female hosts are larger than those from male hosts. Given this difference in resource value, ovipositing females should preferentially allocate female eggs to female hosts. An alternative strategy would be to decrease the difference in resource value between male and female hosts by castrating male hosts. The primary sex ratio of A. tabida in their two main host species does not differ between male and female hosts. In contrast to A. tabida, A. citri is known to partially castrate male hosts, but this does not decrease the size difference between male and female hosts. As in A. tabida, there is no difference in sex allocation to male and female hosts in A. citri. Despite the clear difference between the resource value of male and female hosts, these parasitoid species do not seem to make optimal use of this difference. They may not be able to discriminate between host sexes or, alternatively, there is a presently unknown fitness disadvantage to ovipositing in female hosts.  相似文献   

13.
Male Mastophora cornigera exit egg sacs as adults, which allowed us to determine spiderling sex ratios and patterns of maternal investment in this species. We collected 15 egg sacs produced by seven mothers, which yielded 1945 emergent spiderlings which were sexed, 1850 of which were weighed. Two emergent broods were significantly male and female biased and were unaffected by pre-emergence mortality. The weights of male and female spiderlings differed in eight broods, with males and females being heavier in four cases each. Five of these broods were derived from multiple egg sac sets produced by one mother, and in each case, the total mean male and female spiderling weights for all broods in a set were biased in the same direction as the biased brood(s) within that set. Mean emergent spiderling weight was independent of brood size and sex ratio for both males and females. Despite such independence, sex allocation in M. cornigera can favor sons, daughters, or both equally, and by numbers, by weight, or both at once. The proximate mechanisms and adaptive significance of such variability is unknown. We also review evidence for gender-biased allocations in arachnid offspring and suggested mechanisms for their applicability to M. cornigera.  相似文献   

14.
1. Fig wasps have proved extremely useful study organisms for testing how reproductive decisions evolve in response to population structure. In particular, they provide textbook examples of how natural selection can favour female‐biased offspring sex ratios, lethal combat for mates and dimorphic mating strategies. 2. However, previous work has been challenged, because supposedly single species have been discovered to be a number of cryptic species. Consequently, new studies are required to determine population structure and reproductive decisions of individuals unambiguously assigned to species. 3. Microsatellites were used to determine species identity and reproductive patterns in three non‐pollinating Sycoscapter species associated with the same fig species. Foundress number was typically one to five and most figs contained more than one Sycoscapter species. Foundresses produced very small clutches of about one to four offspring, but one foundress may lay eggs in several figs. 4. Overall, the data were a poor match to theoretical predictions of solitary male clutches and gregarious clutches with n ? 1 females. However, sex ratios were male‐biased in solitary clutches and female‐biased in gregarious ones. 5. At the brood level (all wasps in a fig), a decrease in sex ratio with increasing brood size was only significant in one species, and sex ratio was unrelated to foundress number. In addition, figs with more foundresses contain more wasp offspring. 6. Finally, 10–22% of females developed in patches without males. As males are wingless, these females disperse unmated and are constrained to produce only sons from unfertilised eggs.  相似文献   

15.
Despite extensive research on mechanisms generating biases in sex ratios, the capacity of natural enemies to shift or further skew operational sex ratios following sex allocation and parental care remains largely unstudied in natural populations. Male cocoons of the sawfly Neodiprion abietis (Hymenoptera: Diprionidae) are consistently smaller than those of females, with very little overlap, and thus, we were able to use cocoon size to sex cocoons. We studied three consecutive cohorts of N. abietis in six forest stands to detect cocoon volume‐associated biases in the attack of predators, pathogens, and parasitoids and examine how the combined effect of natural enemies shapes the realized operational sex ratio. Neodiprion abietis mortality during the cocoon stage was sex‐biased, being 1.6 times greater for males than females. Greater net mortality in males occurred because male‐biased mortality caused by a pteromalid parasitic wasp and a baculovirus was greater and more skewed than female‐biased mortality caused by ichneumonid parasitic wasps. Variation in the susceptibility of each sex to each family of parasitoids was associated with differences in size and life histories of male and female hosts. A simulation based on the data indicated that shifts in the nature of differential mortality have different effects on the sex ratio and fitness of survivors. Because previous work has indicated that reduced host plant foliage quality induces female‐biased mortality in this species, bottom‐up and top‐down factors acting on populations can affect operational sex ratios in similar or opposite ways. Shifts in ecological conditions therefore have the potential to alter progeny fitness and produce extreme sex ratio skews, even in the absence of unbalanced sex allocation. This would limit the capacity of females to anticipate the operational sex ratio and reliably predict the reproductive success of each gender at sex allocation.  相似文献   

16.
Metaphycus flavus (Howard) and M. stanleyi Compere (Hymenoptera: Encyrtidae) are currently being screened for use as augmentative biological control agents of citrus-infesting soft scales (Homoptera: Coccidae). Two factors were investigated, host quality-dependent sex allocation and local mate competition, which likely influence these parasitoid's sex allocation strategies and are therefore of interest for their mass-rearing. The results of these studies suggested that, under the mass-rearing protocol that is envisioned for these parasitoids, offspring sex ratios in both M. flavus and M. stanleyi are dominated by host quality (= size) influences, but not by interactions with other females. These results indicated that host size strongly influences offspring sex ratios and brood sizes; larger hosts led to more female offspring and larger broods. In contrast, increasing the number of parental females did not lead to fewer female offspring as expected under local mate competition. Additionally, within-brood sex ratios did not vary with brood size; this result is inconsistent with expected sex ratios due to local mate competition. Other results also indicated that host quality was a dominant influence on M. flavus' and M. stanleyi's sex ratios. Larger hosts led to a larger size in the emerging wasps, and larger wasps had greater egg loads and lived longer than smaller wasps. However, wasp longevity, and the influence of wasp size on longevity were mediated by a wasp's diet. Metaphycus flavus females lived the longest when they had access to hosts, honey, and water, followed by honey and water, and shortest when they had access to water alone; M. stanleyi females lived longest with honey and water, followed by hosts, honey, and water, and shortest with water alone. Greater wasp size led to greater longevity in females only when they had access to food (honey, or hosts and honey). Finally, other results suggested that both M. flavus and M. stanleyi are facultatively gregarious. Wasp size did not decrease with brood size as expected under superparasitism. Overall, the results of these studies suggested that holding newly emerged females of both M. flavus and M. stanleyi for several days in the presence of an appropriate food source before field release could enhance a female's performance as an augmentative biological control agent. It increases their initial life expectancy following release, and maximizes the females' egg load (both Metaphycus species) and resources for replacing oviposited eggs (M. flavus only).  相似文献   

17.
Female parasitoids are expected to avoid superparasitism (ovipositing in and/or on parasitized hosts) when unparasitized hosts are available. However, when the supply of unparasitized hosts is restricted, they are expected to self‐ as well as conspecifically superparasitize. One of the cues of a reduced availability of unparasitized hosts is the presence of a conspecific. Moreover, if the focal species can perform infanticide, after encountering a conspecific female, the females are expected to kill eggs existing in and/or on hosts when superparasitizing, because the eggs are more likely to be laid by others. In this study we investigated whether females of an infanticidal semisolitary parasitoid, Echthrodelphax fairchildii, increase their frequencies of superparasitism and infanticide after encountering a conspecific female. Echthrodelphax fairchildii females are capable of discriminating between self‐ and conspecific superparasitism until up to 0.75 h after the first egg was laid (self‐superparasitism frequency < conspecific superparasitism frequency). As expected, the female parasitoids were more likely to perform self‐ and conspecific superparasitism after they had encountered a conspecific. In particular, the self‐superparasitism frequency increased highly within a short period after the first oviposition, so that no difference between the self‐ and conspecific superparasitism frequencies was found. In contrast, the infanticidal‐probing frequency remained extremely low, irrespective of whether or not the female parasitoids had encountered a conspecific. Moreover, when superparasitizing, females usually laid female eggs. Possible causes for the low frequency of infanticidal probing and the female‐biased sex ratio are discussed.  相似文献   

18.
Anaphes victus Huber andAnaphes listronoti Huber (Hymenoptera: Mymaridae) are respectively solitary and gregarious egg parasitoids of the carrot weevil,Listronotus oregonensis (LeConte) (Coleoptera: Curculionidae). We made detailed ethograms of the oviposition behavior on unparasitized and parasitized hosts for the two species. We then compared the behavior of virgin and mated females for the oviposition of male and female progenies. The two species did not always oviposit after insertion of the ovipositor, but these punctures without oviposition could be readily differentiated from oviposition.A. victus oviposited only once by puncture, whileA. listronoti deposited one to three eggs during the same sequence. The variability of the duration of the various components was generally lower for a given female than between females. Two components, the abdominal vibrations and the pause, were significantly shorter in ovipositions that resulted in male progency for the two species. However, an important overlap in duration prevents using these differences to sex the progeny at oviposition. Virgin females of both species, although capable of producing only males, exhibited both behaviors. Parasitized hosts were recognized through internal and external markings that were used in host discrimination.  相似文献   

19.
Among univoltine insects that experience diapause, differences in emergence timing between adult males and females are expected to be dictated by sex‐specific developmental factors. In multivoltine insects without a diapause, there is often an additional relationship between the date of oviposition and the date of adult emergence. Differences between male and female emergence timing in the latter case can therefore be influenced by female sex‐allocation decisions. In the present study, it is shown that eggs of a univoltine parasitoid wasp Diachasma alloeum Muesebeck (Hymenoptera: Braconidae) that are laid earlier also eclose earlier during the subsequent year, independent of (although complementary to) sex‐related differences in development time. The implications of this pattern for sex allocation decisions by female univoltine parasitoids are discussed.  相似文献   

20.
Abstract. 1. The ovipositional and egg allocation behaviour of individual females of Aphytis melinus DeBach and A.lingnunensis Compere were compared.
2. Both Aphytis species exhibit the same behavioural sequence during oviposition.
3. Aphytis melinus laid most of its female eggs on the dorsum of a scale-insect beneath its cover, and most of its male eggs under the scale-insect's body. Aphytis lingnanensis also oviposited both dorsally and ventrally on scale-insect hosts, but female and male progeny arose with equal frequency from eggs laid in both locations.
4. Both A.melinus and A. lingnanensis are facultatively gregarious parasitoids. The degree of gregariousness depends on host size, i.e. the larger the host, the more the Iikelihood that several eggs will be deposited at each visit by the parasitoid.
5. When two eggs were laid during the same host visit, both A.melinus and A.lingnanensis laid one female and one male egg more often than would be expected under an assumption of random allocation of sexes.
6. Because A.melinus successfulIy utilize smaller hosts than A.lingnanensis to produce progeny, these parasitoids should not be considered ecological homo-logues, as suggested by DeBach & Sundby (1963).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号