首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 624 毫秒
1.
The sensitivity and specificity of eDNA-based monitoring, coupled with its potential utility to estimate population density or biomass, makes it a useful tool in invasive species management. In this study, we investigated the potential of the eDNA method to improve the detection of the elusive invasive fish, oriental weatherloach (Misgurnus anguillicaudatus), in a river system where a density gradient of the species occurs. We compared detection rates between eDNA and conventional monitoring methods and examined the relationship between eDNA and abundance in a flowing environment. The eDNA method had a higher site detection rate than conventional methods (63 vs. 38%). Weatherloach eDNA was detected at all sites where the fish has been previously caught and none of the sites where the species has not been caught for the past 7 years. There was an increasing density trend going downstream based on long-term conventional monitoring, but the eDNA concentration in water samples reflected this trend only in a continuous section of the river where impoundments were absent. We did not find a positive relationship between eDNA concentration and contemporary abundance estimates in our study area. A high eDNA concentration was recorded at a site (DVC) which was designated a low density site based on long-term catch data. This discrepancy was a likely result of physical habitat characteristics which influenced the efficiency of the conventional methods used. This study highlighted the challenges of inferring density from eDNA data in flowing water because habitat features may confound results, necessitating careful consideration for results to be useful to management.  相似文献   

2.
徐梦珍  杨瑶  张家豪  傅旭东 《生态学报》2023,43(11):4423-4433
沼蛤(Limnoperna fortunei)和斑马贻贝(Dreissena polymorpha)是淡水系统中常见的入侵贻贝物种,对其种群规模的持续监测是入侵贻贝防治管控中的关键环节。随着分子生物学技术的发展,入侵物种监测中逐渐尝试利用环境DNA(eDNA)技术实现快速、灵敏检测。然而,在入侵物种引入-定植-扩散过程的监测中,eDNA技术的灵敏度及定量效果受到诸多因素的影响,给实际应用带来挑战。系统梳理了国内外学者利用eDNA技术监测沼蛤、斑马贻贝等入侵物种的研究进展;分析了eDNA技术的采样方案、引物设计、定量分析、质量保证、原位便携仪器设计等影响监测效率与准确率的关键环节;进一步探讨了eDNA技术在贻贝入侵监测中的优势和局限性,以及未来的改进方向。  相似文献   

3.
Showy invasive alien plants are often integrated in the diet of generalist pollinators and because of the lack of co-evolvement with the native plant community, a high amount of interspecific pollen transfer (IPT) can be expected. We investigated pollinator switching and magnitude plus distance of IPT between the alien aquatic Ludwigia grandiflora and the native Lythrum salicaria in both directions in uninvaded and invaded sites with a different relative abundance of L. grandiflora (% cover of the alien plant: no cover; low cover: <5%; high cover: 50–75%). A field experiment was conducted to include both pollinator interspecific movements and tracking of IPT, using fluorescent dye as a pollen analogue. Despite a substantial overlap in pollinators between L. grandiflora and the native L. salicaria, less than 10% of the observed flights were interspecific. Similar results were found in dye transfer patterns. The proportions of stigmas with conspecific dye were always higher than the proportions of stigmas with heterospecific dye for L grandiflora and L. salicaria. There were no differences in conspecific dye loads for L. salicaria between uninvaded and invaded sites. Conspecific pollen loss (native CPL) and heterospecific pollen deposition (alien HPD) were in general low and species-specific. The distance of HPD ranged respectively from 1.7 to 39 m and from 0.3 to 54.8 m in the low cover and high cover sites while CPL ranged respectively from 6.40 to 68.02 m and from 0.60 to 40.18 m in the low cover and high cover sites. We can conclude that, in this system, CPL and HPD will play a minor role in pollinator-mediated interaction. Furthermore, interspecific competition for pollinators will cover a larger distance than just neighboring individuals. Our results suggest the necessity to consider the combined effect of insect visitation, pollen deposition, relative alien abundance, distance and seed set when investigating pollinator-mediated interactions of invasive plants.  相似文献   

4.
Raoultella terrigena ATCC 33257, a representative of the coliform group, is commonly used as a challenge organism in water purifier efficacy testing. In addition to being time consuming, traditional culturing techniques and metabolic identification systems (including automated systems) also fail to accurately differentiate this organism from its closely related neighbors belonging to the Enterobacteriaceae group. Molecular-based techniques, such as real-time quantitative polymerase chain reaction (qPCR) and enterobacterial repetitive intergenic consensus (ERIC)-PCR fingerprinting, are preferred methods of detection because of their accuracy, reproducibility, specificity, and sensitivity, along with shorter turnaround time. ERIC-PCR performed with the 1R primer set demonstrated stable unique banding patterns (~800, ~300 bp) for R. terrigena ATCC 33257 different from patterns observed for R. planticola and R. ornithinolytica. The primer pair developed from gyraseA (gyrA) sequence of R. terrigena for the SYBR Green qPCR assay using the AlleleID® 7.0 primer probe design software was highly specific and sensitive for the target organism. The sensitivity of the assay was 101 colony forming units (CFU)/ml for whole cells and 4.7 fg with genomic DNA. The primer pair was successful in determining the concentration (5.5 ± 0.3 × 106 CFU/ml) of R. terrigena from water samples spiked with equal concentration of Escherichia coli and R. terrigena. Based on these results from the ERIC-PCR and the SYBR Green qPCR assay, these molecular techniques can be efficiently used for rapid identification and quantification of R. terrigena during water purifier testing.  相似文献   

5.
Aquatic invasive plant species cause negative impacts to economies and ecosystems worldwide. Traditional survey methods, while necessary, often do not result in timely detections of aquatic invaders, which can be cryptic, difficult to identify, and exhibit very rapid growth and reproduction rates. Environmental DNA (eDNA) is a relatively new method that has been used to detect multiple types of animals in freshwater and marine ecosystems through tissues naturally shed from the organism into the water column or sediment. While eDNA detection has proven highly effective in the detection of aquatic animals, we know less about the efficacy of eDNA as an effective surveillance tool for aquatic plants. To address this disparity, we designed mesocosm experiments with Elodea species to determine the ability to detect accumulation and degradation of the DNA signal for aquatic plants, followed by field surveillance of the highly invasive Hydrilla verticillata in freshwaters across several U.S. geographic regions. In both lab and field experiments, we designed a high sensitivity quantitative PCR assay to detect the aquatic plant species. In both experiments, plant eDNA detection was successful; we saw accumulation of DNA when plants were introduced to tanks and a decrease in DNA over time after plants were removed. We detected eDNA in the field in areas of known Hydrilla distribution. Employing eDNA detection for aquatic plants will strengthen efforts for early detection and rapid response of invaders in global freshwater ecosystems.  相似文献   

6.
Environmental DNA (eDNA) is a powerful method for assessing the presence and distribution of invasive aquatic species. We used this tool to detect and monitor several invasive crayfishes Procambarus clarkii, Orconectes limosus and Pacifastacus leniusculus present in, or likely to invade, the ponds of the Brenne Regional Natural Park. A previous study showed that the eDNA method was not very efficient in detecting P. clarkii. In the present study, we explored new improvements in the detection of invasive crayfish. We designed specific primers for each crayfish species, and set up an experimental mesocosm approach to confirm the specificity of the primers and the sampling protocol. We analysed samples taken from ponds in 2014 and 2015. We compared two qPCR protocols involving either SybrGreen or TaqMan assays. Using these same primers, we were able to detect crayfish eDNA with both assays during the mesocosm experiment. However, crayfish from field samples could only be detected by performing qPCR with a SybrGreen assay. We successfully monitored the presence of three invasive species of crayfish using eDNA. This method is a powerful tool for establishing the presence or absence of invasive species in various freshwater environments.  相似文献   

7.
Knowledge of genetic diversity, population structure, and degree of linkage disequilibrium (LD) in target association mapping populations is of great importance and is a prerequisite for LD-based mapping. In the present study, 96 genotypes comprising 92 accessions of the US peanut minicore collection, a component line of the tetraploid variety Florunner, diploid progenitors A. duranensis (AA) and A. ipaënsis (BB), and synthetic amphidiploid accession TxAG-6 were investigated with 392 simple sequence repeat (SSR) marker bands amplified using 32 highly-polymorphic SSR primer pairs. Both distance- and model-based (Bayesian) cluster analysis revealed the presence of structured diversity. In general, the wild-species accessions and the synthetic amphidiploid grouped separately from most minicore accessions except for COC155, and were eliminated from most subsequent analyses. UPGMA analysis divided the population into four subgroups, two major subgroups representing subspecies fastigiata and hypogaea, a third group containing individuals from each subspecies or possibly of mixed ancestry, and a fourth group, either consisting of COC155 alone if wild species were excluded, or of COC155, the diploid species, and the synthetic amphidiploid. Model-based clustering identified four subgroups- one each for fastigiata and hypogaea subspecies, a third consisting of individuals of both subspecies or of mixed ancestry predominantly from Africa or Asia, and a fourth group, consisting of individuals predominantly of var fastigiata, peruviana, and aequatoriana accessions from South America, including COC155. Analysis of molecular variance (AMOVA) revealed statistically-significant (P < 0.0001) genetic variance of 16.87% among subgroups. A total of 4.85% of SSR marker pairs revealed significant LD (at r2 ≥ 0.1). Of the syntenic marker pairs separated by distances < 10 cM, 11–20 cM, 21–50 cM, and > 50 cM, 19.33, 5.19, 6.25 and 5.29% of marker pairs were found in strong LD (P ≤ 0.01), in accord with LD extending to great distances in self pollinated crops. A threshold value of r2 > 0.035 was found to distinguish mean r2 values of linkage distance groups statistically from the mean r2 values of unlinked markers; LD was found to extend to 10 cM over the entire minicore collection by this criterion. However, there were large differences in r2 values among marker pairs even among tightly-linked markers. The implications of these findings with regard to the possibility of using association mapping for detection of genome-wide SSR marker-phenotype association are discussed.  相似文献   

8.
The Chinese pond mussel (Sinanodonta woodiana Lea, 1834) is a benthic filter-feeder that prefers soft-bottomed freshwater habitats and has successfully spread into both tropical and temperate water bodies outside its natural Southeast Asian range. Due to its preference for nutrient-rich waters with high levels of suspended food particles, the capacity of S. woodiana to influence natural seston concentrations is thought to be relatively low in comparison to that of other invasive bivalves. The experimental quantification of seston removal efficiency reported here demonstrates that S. woodiana is able to reduce seston loads to levels comparable to those by the control native freshwater mussel species Unio tumidus Philipsson, 1788. Moreover, increasing food depletion did not cause detectable changes in the filtration regime of S. woodiana, although the activity of native U. tumidus was significantly reduced. The seston clearance rate (volume of water cleared of particles per unit time) of S. woodiana averaged 9.3 ± 4.0 mL g?1 wet mass h?1, which corresponds to the total daily volume of water filtered being up to several hundreds to thousands L m?2 at the maximal S. woodiana population densities reported in the literature. The observed filtration capacity of S. woodiana and its current invasional spread into areas inhabited by endangered freshwater mussels call for more careful consideration of filter-feeding interactions with native mussels. The potential impacts of S. woodiana should be studied in more detail with respect to available food resources and long-term nutritional needs of native species and reflected in management strategies in the invaded range.  相似文献   

9.
Analysis of aquatic environmental DNA (eDNA) is a promising tool to determine species distribution, abundance, and biomass. Understanding how the amount of eDNA collected is affected by spatial and temporal processes needs to become better understood before eDNA quantification can be used in species management. In this study, we analyzed how the amount of eDNA changed across space and time in a high mountain basin where nonnative fish were being removed. We sampled from restoration (sites with fish removal activities; n?=?6) and control sites (sites with no fish removal activities where fish were present; n?=?3) and found the number and biomass of fish removed were related to the quantities of DNA collected and not related to site position within the drainage. Our results indicate that the amount of eDNA collected in an open system can provide an index of population size despite inherent complications of analyzing a spatially connected and temporally dynamic watershed. However, there are complications when applying these methods in species management: (1) small increases in eDNA density corresponded to large increases in trout density; (2) eDNA and traditional field techniques disproportionately target certain life stages, complicating comparisons between techniques; and (3) eDNA index values may need to be calibrated when sampling different species, life stages, environments, and habitats. We call for further research before this process can be used in a management context.  相似文献   

10.
In the period from 2012 to 2014, twenty localities with a varying density level of the invasive bryozoan Pectinatella magnifica were investigated in the T?eboň region. These localities included water bodies ranging from eutrophic-hypertrophic fishponds to mesotrophic-oligotrophic flooded sandpits. The aim of the study was to investigate and compare the water bodies’ physical, hydrochemical and hydrobiological parameters. Control localities (localities with absence of P. magnifica) were found to be significantly different from localities with occurrence of P. magnifica in most of the measured parameters. Also shown was that P. magnifica tends to form colonies in localities showing above-average qualitative parameters within the T?eboň region: balanced oxygen and pH regime, low concentration of suspended solids (Secchi depth over 1 m) and nitrogen forms (mean TN 1.5 mg L?1), chlorophyll-a mean concentration 54 µg L?1, and zooplankton mean density 117 ind L?1 and biomass 2 mg of wet weight L?1. Furthermore, P. magnifica was also found in brown humic waters. While the sites with P. magnifica occurrence are often mesotrophic flooded sandpits and fishponds under nature protection, fishponds for recreational use, and those with low intensity of fishery management (without formation of massive cyanobacterial water blooms, oxygen regime fluctuations, etc.), localities unoccupied by invasive bryozoans are mostly strictly eutrophic-hypertrophic, semi-intensified, carp fishponds.  相似文献   

11.
Asterias amurensis is a starfish native to the northern Pacific that was introduced into southern Australia in the 1980s. It is widely viewed as one of Australia’s most serious invasive marine pests, but there are few methods available to control new or established populations. The role of Coscinasterias muricata in controlling the distribution of Asterias in Port Phillip Bay, and its potential to eliminate new infestations of Asterias were investigated. Laboratory feeding trials, where alternative mussel prey were available, showed Coscinasterias consumed Asterias at the rate of ~45/year. Field surveys in Port Phillip Bay showed that most Coscinasterias occurred at depths shallower than 15 m, while most Asterias occurred at depths greater than 15 m, and the ratio of Asterias/Coscinasterias only exceeded 45 at depths greater than 15 m. Consequently, if laboratory and field feeding rates are similar, Coscinasterias would be expected to exert significant control over Asterias populations at depths shallower than 15 m, and augmenting Coscinasterias populations at sites of new Asterias infestations may help eliminate newly-established populations.  相似文献   

12.
All known rivers in Scotland with recent records of freshwater pearl mussels Margaritifera margaritifera were surveyed in 2013–2015 using a standard methodology. Freshwater pearl mussel populations were classed as: (i) apparently extinct in 11 rivers, (ii) not successfully recruiting in 44 rivers, and (iii) evidence of recent successful recruitment in 71 rivers. On a regional basis, a high proportion of extant populations were located in North and West Scotland. In all regions extant populations were characterised by low pearl mussel densities, with 97 of 115 extant Scottish populations defined as ‘rare’ (0.1–0.9 mussels per 1 m 2) or ‘scarce’ (1.0–9.9 mussels per 1 m 2). Only 18 Scottish rivers now hold pearl mussel populations in densities that are considered to be ‘common’ (10–19.9 mussels per 1 m 2) or ‘abundant’ (>20 mussels per 1 m 2). Based on survey evidence, the number of apparently extinct pearl mussel populations in Scottish rivers is now 73. The decline is particularly pronounced in the West Highlands and Western Isles strongholds. The key threats are: (i) pearl fishing, (ii) low host fish densities, (iii) pollution/water quality, (iv) climate change and habitat loss, (v) hydrological management/river engineering and (vi) ‘other factors’, such as non-native invasive species. Over the last 100 years this endangered species has been lost from much of its former Holarctic range. Scotland’s extant M. margaritifera populations continue to be of international importance, but their continued decline since the first national survey in 1998 is of great concern.  相似文献   

13.
Indirect, non-invasive detection of rare aquatic macrofauna using aqueous environmental DNA (eDNA) is a relatively new approach to population and biodiversity monitoring. As such, the sensitivity of monitoring results to different methods of eDNA capture, extraction, and detection is being investigated in many ecosystems and species. One of the first and largest conservation programs with eDNA-based monitoring as a central instrument focuses on Asian bigheaded carp (Hypophthalmichthys spp.), an invasive fish spreading toward the Laurentian Great Lakes. However, the standard eDNA methods of this program have not advanced since their development in 2010. We developed new, quantitative, and more cost-effective methods and tested them against the standard protocols. In laboratory testing, our new quantitative PCR (qPCR) assay for bigheaded carp eDNA was one to two orders of magnitude more sensitive than the existing endpoint PCR assays. When applied to eDNA samples from an experimental pond containing bigheaded carp, the qPCR assay produced a detection probability of 94.8% compared to 4.2% for the endpoint PCR assays. Also, the eDNA capture and extraction method we adapted from aquatic microbiology yielded five times more bigheaded carp eDNA from the experimental pond than the standard method, at a per sample cost over forty times lower. Our new, more sensitive assay provides a quantitative tool for eDNA-based monitoring of bigheaded carp, and the higher-yielding eDNA capture and extraction method we describe can be used for eDNA-based monitoring of any aquatic species.  相似文献   

14.
Knowledge of the presence of an invasive species is critical to monitoring the sustainability of communities and ecosystems. Environmental DNA (eDNA), DNA fragments that are likely to be bound to organic matters in the water or in shed cells, has been used to monitor the presence of aquatic animals. Using an eDNA-based method, we estimated the presence of the invasive bluegill sunfish, Lepomis macrochirus, in 70 ponds located in seven locales on the Japanese mainland and on surrounding islands. We quantified the concentration of DNA copies in a 1 L water sample using quantitative real-time polymerase chain reaction (qPCR) with a primer/probe set. In addition, we visually observed the bluegill presence in the ponds from the shoreline. We detected bluegill eDNA in all the ponds where bluegills were observed visually and some where bluegills were not observed. Bluegills were also less prevalent on the islands than the mainland, likely owing to limited dispersal and introduction by humans. Our eDNA method simply and rapidly detects the presence of this invasive fish species with less disturbance to the environment during field surveys than traditional methods.  相似文献   

15.
Despite the significance of biological invasions in the Antarctic region, understanding of the rates of spread and impact of introduced species is limited. Such information is necessary to develop and to justify management actions. Here we quantify rates of spread and changes in impact of the introduced wasp Aphidius matricariae Haliday, which parasitizes the invasive aphid Rhopalosiphum padi (L.), on sub-Antarctic Marion Island, to which the wasp was introduced in ca. 2001. Between 2006 and 2011, the wasp had colonised all coastal sites, with an estimated rate of spread of 3–5 km year?1. Adult abundance doubled over the period, while impact, measured as mean percentage parasitism of R. padi, had increased from 6.9 to 30.1 %. Adult wasps have thermal tolerances (LT50s) of between ?18 and 33.8 °C, with a crystallization temperature of ?22.9 °C, and little tolerance (ca. 37 h) of low humidity at 10 °C. Desiccation intolerance is probably limiting for the adult wasps, while distribution of their aphid host likely sets ultimate distributional limits, especially towards higher elevations where R. padi is absent, despite the presence of its host grass on the island, Poa cookii (Hook. f.). Rising temperatures are benefitting P. cookii, and will probably do the same for both R. padi and A. matricariae. Our study shows that once established, spread of introduced species on the island may be rapid, emphasizing the importance of initial quarantine.  相似文献   

16.
Invasive plants can influence ecosystem processes such as greenhouse gas (GHG) emissions from wetland systems directly through plant-mediated transfer of GHGs to the atmosphere or through indirect modification of the environment. However, patterns of plant invasion often co-vary with other environmental gradients, so attributing ecosystem effects to invasion can be difficult in observational studies. Here, we assessed the impact of Phragmites australis invasion into native shortgrass communities on methane (CH4) emissions by conducting field measurements of CH4 emissions along transects of invasion by Phragmites in two neighboring brackish marsh sites and compared these findings to those from a field-based mesocosm experiment. We found remarkable differences in CH4 emissions and the influence of Phragmites on CH4 emissions between the two neighboring marsh sites. While Phragmites consistently increased CH4 emissions dramatically by 10.4 ± 3.7 µmol m?2 min?1 (mean ± SE) in our high-porewater CH4 site, increases in CH4 emissions were much smaller (1.4 ± 0.5 µmol m?2 min?1) and rarely significant in our low-porewater CH4 site. While CH4 emissions in Phragmites-invaded zones of both marsh sites increased significantly, the presence of Phragmites did not alter emissions in a complementary mesocosm experiment. Seasonality and changes in temperature and light availability caused contrasting responses of CH4 emissions from Phragmites- versus native zones. Our data suggest that Phragmites-mediated CH4 emissions are particularly profound in soils with innately high rates of CH4 production. We demonstrate that the effects of invasive species on ecosystem processes such as GHG emissions may be predictable qualitatively but highly variable quantitatively. Therefore, generalizations cannot be made with respect to invader-ecosystem processes, as interactions between the invader and local abiotic conditions that vary both spatially and temporally on the order of meters and hours, respectively, can have a stronger impact on GHG emissions than the invader itself.  相似文献   

17.
Environmental DNA (eDNA) analysis is a powerful tool within ecology for the study of the distribution or abundance of aquatic species, although the simplification of water sampling is required for enabling light and fast field sampling to expand further application of eDNA analysis. Here, certain candidate chemicals belonging to the group of cationic surfactants were examined for their effectiveness as preservatives for eDNA water samples by simply adding the chemicals to water samples to suppress the degradation of eDNA. The quaternary ammonium compound benzalkonium chloride (BAC) at a final concentration of 0.01% was effective to retain 92% of eDNA derived from the bluegill sunfish Lepomis macrochirus in an 8-h incubation test at ambient temperature, which assumed a transportation of water samples in 1-day field sampling during the daytime. Meanwhile, eDNA in water samples without BAC retained only 14% of the initial eDNA. Moreover, an additional long-term incubation test (up to 10 days) revealed BAC-treated samples retained ~70 and 50% of bluegill DNA compared to the initial amount after 1- and 10-day incubation at ambient temperature, respectively. Meanwhile, eDNA in naïve samples reduced to 20% after 1-day incubation and reached undetectable levels after 10 days. Up to now, many eDNA studies have adopted on-site filtration followed by filter fixation, which requires many pieces of equipment. Addition of BAC can protect eDNA in water samples with less effort and equipment resulting in an increase of measurement accuracy of the eDNA quantity and detection probability of rare species by preventing the disappearance of rare sequences in water samples.  相似文献   

18.
Phylogeography is an integrative field of science linking micro- and macro-evolutionary processes, contributing to the inference of vicariance, dispersal, speciation, and other population-level processes. Phylogeographic surveys usually require considerable effort and time to obtain numerous samples from many geographical sites covering the distribution range of target species; this associated high cost limits their application. Recently, environmental DNA (eDNA) analysis has been useful not only for detecting species but also for assessing genetic diversity; hence, there has been growing interest in its application to phylogeography. As the first step of eDNA-based phylogeography, we examined (1) data screening procedures suitable for phylogeography and (2) whether the results obtained from eDNA analysis accurately reflect known phylogeographic patterns. For these purposes, we performed quantitative eDNA metabarcoding using group-specific primer sets in five freshwater fish species belonging to two taxonomic groups from a total of 94 water samples collected from western Japan. As a result, three-step data screening based on the DNA copy number of each haplotype detected successfully eliminated suspected false positive haplotypes. Furthermore, eDNA analysis could almost perfectly reconstruct the phylogenetic and phylogeographic patterns obtained for all target species with the conventional method. Despite existing limitations and future challenges, eDNA-based phylogeography can significantly reduce survey time and effort and is applicable for simultaneous analysis of multiple species in single water samples. eDNA-based phylogeography has the potential to revolutionize phylogeography.  相似文献   

19.
Bombacoideae is one out of nine subfamilies of Malvaceae and encompasses 160 tree species. The subfamily is karyotypically characterized by small and numerous chromosomes and is traditionally known by a remarkable inter- and intraspecific chromosome number variation. We conducted a comparative cytogenetic analysis to investigate karyotype diversity and chromosome evolution within Bombacoideae. To achieve this, we performed new chromosome counts, CMA/DAPI double staining, genome size estimations, and localization of 5S and 45S rDNA by fluorescence in situ hybridization for 21 species distributed across the Bombacoideae phylogeny. We performed ancestral states reconstruction analyses to elucidate chromosome evolution and provide insights into the systematics and evolution of Bombacoideae in comparison with other Malvaceae species. Newly generated data on chromosome number on Bombacoideae revealed diploids (Ochroma (2n = 84), Cavanillesia, Pochota, Pseudobombax (2n = 88), and Pachira (2n = 92)) and polyploids (Adansonia digitata (2n = 160) and Eriotheca species (2n = ca. 194 and 2n = 276)). For most species, in situ hybridization revealed karyotype, with two pairs of 45S rDNA sites co-located with CMA+ bands, and 5S rDNA sites in only one chromosome pair. Taken together, our results provide support to the hypothesis of karyotypic stability in Bombacoideae. Only the Pachira s.l. clade displayed some variability in ploidy level, number of CMA+ bands and 45S rDNA sites, and genome size compared to other Bombacoideae clades. The Striated bark clade was characterized by comparatively small genomes and low cytomolecular variability. Karyotypic data were related to biogeographic and species richness patterns of Bombacoideae.  相似文献   

20.
In this study, embryos and early larval stages of two invasive bivalves, the Mediterranean mussel (Mytilus galloprovincialis) and zebra mussel (Dreissena polymorpha), were assayed for physiological apoptosis and stress-induced apoptosis post-exposure to a molluscicide, Bayluscide®. Physiological apoptosis was measured at 4-h intervals and Bayluscide® exposures were 4 h and 24 h beginning at both 30 min post-fertilization and at 24 h post-fertilization. Apoptosis was detected by the TUNEL assay, and apoptotic values were compared for the different stages present. The two bivalves tested for apoptotic cells displayed variations in physiological and stress-induced apoptotic values despite having the same life stage transitions. However, in the majority of exposures, we found that as pesticide concentrations increased, the apoptotic values decreased in the highest concentrations. We suggest that this change to apoptotic inhibition indicates that there is a threshold at which apoptosis can no longer be used as a protective measure against damaged cells. These concentrations that cause changes in apoptotic pattern should be further tested for long-term effects on reproduction and survival. By detecting sub-lethal concentrations that may impair recruitment to the population and the continuation of the life cycle, chemical control of invasive bivalves could be targeted to early life stages and to reduce potential environmental impacts resulting from the higher concentrations required to control adults.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号