首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Admixture between differentiated populations is considered to be a powerful mechanism stimulating the invasive success of some introduced species. It is generally facilitated through multiple introductions; however, the importance of admixture prior to introduction has rarely been considered. We assess the likelihood that the invasive Ambrosia artemisiifolia populations of Europe and Australia developed through multiple introductions or were sourced from a historical admixture zone within native North America. To do this, we combine large genomic and sampling data sets analysed with approximate Bayesian computation and random forest scenario evaluation to compare single and multiple invasion scenarios with pre‐ and postintroduction admixture simultaneously. We show the historical admixture zone within native North America originated before global invasion of this weed and could act as a potential source of introduced populations. We provide evidence supporting the hypothesis that the invasive populations established through multiple introductions from the native range into Europe and subsequent bridgehead invasion into Australia. We discuss the evolutionary mechanisms that could promote invasiveness and evolutionary potential of alien species from bridgehead invasions and admixed source populations.  相似文献   

2.
Admixture, the mixing of historically isolated gene pools, can have immediate consequences for the genetic architecture of fitness traits. Admixture may be especially important for newly colonized populations, such as during range expansion and species invasions, by generating heterozygosity that can boost fitness through heterosis. Despite widespread evidence for admixture during species invasions, few studies have examined the demographic history leading to admixture, how admixture affects the heterozygosity and fitness of invasive genotypes, and whether such fitness effects are maintained through time. We address these questions using the invasive plant Silene vulgaris, which shows evidence of admixture in both its native Europe and in North America where it has invaded. Using multilocus genotype data in conjunction with approximate Bayesian computation analysis of demographic history, we showed that admixture during the invasion of North America was independent from and much younger than admixture in the native range of Europe. We tested for fitness consequences of admixture in each range and detected a significant positive heterozygosity–fitness correlation (HFC) in North America; in contrast, no HFC was present in Europe. The lack of HFC in Europe may reflect the longer time since admixture in the native range, dissipating associations between heterozygosity at markers and fitness loci. Our results support a key short‐term role for admixture during the early stages of invasion by generating HFCs that carry populations past the threat of extinction from inbreeding and demographic stochasticity.  相似文献   

3.
Self-fertilization and admixture of genotypes from different populations can have major fitness consequences in native species. However, few studies have addressed their potential roles in invasive species. Here, we used plants of Mimulus guttatus from seven native North American, three invasive Scottish and four invasive New Zealand populations to address this. We created seeds from self-fertilization, within-population outcrossing, between-population outcrossing within the same range, and outcrossing between the native and invasive ranges. A greenhouse experiment showed that native and invasive plants of M. guttatus suffered to similar degrees from inbreeding depression, in terms of asexual reproduction and biomass production. After outcrossing with plants from other populations, M. guttatus benefited from heterosis, in terms of asexual and sexual reproduction, and biomass production, particularly when plants from native and invasive populations were crossed. This suggests that, when novel genotypes of M. guttatus from the native North American range will be introduced to the invasive ranges, subsequent outcrossing with M. guttatus plants that are already there might further boost invasiveness of this species.  相似文献   

4.
Introduction events can lead to admixture between genetically differentiated populations and bottlenecks in population size. These processes can alter the adaptive potential of invasive species by shaping genetic variation, but more importantly, they can also directly affect mean population fitness either increasing it or decreasing it. Which outcome is observed depends on the structure of the genetic load of the species. The ladybird Harmonia axyridis is a good example of invasive species where introduced populations have gone through admixture and bottleneck events. We used laboratory experiments to manipulate the relatedness among H. axyridis parental individuals to assess the possibility for heterosis or outbreeding depression in F1 generation offspring for two traits related to fitness (lifetime performance and generation time). We found that inter‐populations crosses had no major impact on the lifetime performance of the offspring produced by individuals from either native or invasive populations. Significant outbreeding depression was observed only for crosses between native populations for generation time. The absence of observed heterosis is indicative of a low occurrence of fixed deleterious mutations within both the native and invasive populations of H. axyridis. The observed deterioration of fitness in native inter‐population crosses most likely results from genetic incompatibilities between native genomic backgrounds. We discuss the implications of these results for the structure of genetic load in H. axyridis in the light of the available information regarding the introduction history of this species.  相似文献   

5.
Abstract During biological invasions, multiple introductions can provide opportunities for admixture among genetically distinct lineages. Admixture is predicted to contribute to invasion success by directly increasing fitness through hybrid vigour or by enhancing evolutionary potential within populations . Here, we demonstrate genome‐wide admixture during an invasion that substantially boosted fitness in the cosmopolitan weed, Silene vulgaris. We identified three divergent demes in the native European range that expanded from glacial refugia and experienced historical admixture in a well‐known suture zone. During recent invasion of North America, multiple introductions created additional opportunities for admixture. In common garden experiments, recombinant genotypes from North America experienced a two‐fold increase in fitness relative to nonrecombinants, whereas recombinant genotypes from Europe showed no lasting fitness benefits. This contrast implicates hybrid vigour behind the boost in fitness and supports the hypothesis that admixture can lead to fitness increases that may catapult invasion into a new range.  相似文献   

6.
Kang M  Buckley YM  Lowe AJ 《Molecular ecology》2007,16(22):4662-4673
Knowledge of the introduction history of invasive plants informs on theories of invasiveness and assists in the invasives management. For the highly successful invasive shrub Scotch broom, Cytisus scoparius, we analysed a combination of nuclear and chloroplast microsatellites for eight native source regions and eight independent invasion events in four countries across three continents. We found that two exotic Australian populations came from different sources, one of which was derived from multiple native populations, as was an invasive sample from California. An invasive population from New Zealand appeared to be predominantly sourced from a single population, either from the native or exotic ranges. Four invasive populations from Chile were genetically differentiated from the native range samples analysed here and so their source of introduction could not be confirmed, but high levels of differentiation between the Chilean populations suggested a combination of different sources. This extensive global data set of replicated introductions also enabled tests of key theories of invasiveness in relation to genetic diversity. We conclude that invasive populations have similar levels of high genetic diversity to native ranges; levels of admixture may vary across invasive populations so admixture does not appear to have been an essential requirement for invasion; invasive and native populations exhibit similar level of genetic structure indicating similar gene flow dynamics for both types of populations. High levels of diversity and multiple source populations for invasive populations observed here discount founder effects or drift as likely explanations for previously observed seed size differences between ranges. The high levels of genetic diversity, differential and source admixture identified for most exotic populations are likely to limit the ability to source biocontrol agents from the native region of origin of invasive populations.  相似文献   

7.
Retracing introduction routes is crucial for understanding the evolutionary processes involved in an invasion, as well as for highlighting the invasion history of a species at the global scale. The Asian long‐horned beetle (ALB) Anoplophora glabripennis is a xylophagous pest native to Asia and invasive in North America and Europe. It is responsible for severe losses of urban trees, in both its native and invaded ranges. Based on historical and genetic data, several hypotheses have been formulated concerning its invasion history, including the possibility of multiple introductions from the native zone and secondary dispersal within the invaded areas, but none have been formally tested. In this study, we characterized the genetic structure of ALB in both its native and invaded ranges using microsatellites. In order to test different invasion scenarios, we used an approximate Bayesian “random forest” algorithm together with traditional population genetics approaches. The strong population differentiation observed in the native area was not geographically structured, suggesting complex migration events that were probably human‐mediated. Both native and invasive populations had low genetic diversity, but this characteristic did not prevent the success of the ALB invasions. Our results highlight the complexity of invasion pathways for insect pests. Specifically, our findings indicate that invasive species might be repeatedly introduced from their native range, and they emphasize the importance of multiple, human‐mediated introductions in successful invasions. Finally, our results demonstrate that invasive species can spread across continents following a bridgehead path, in which an invasive population may have acted as a source for another invasion.  相似文献   

8.
Multiple introductions can play a prominent role in explaining the success of biological invasions. One often cited mechanism is that multiple introductions of invasive species prevent genetic bottlenecks by parallel introductions of several distinct genotypes that, in turn, provide heritable variation necessary for local adaptation. Here, we show that the invasion of Aegilops triuncialis into California, USA, involved multiple introductions that may have facilitated invasion into serpentine habitats. Using microsatellite markers, we compared the polymorphism and genetic structure of populations of Ae. triuncialis invading serpentine soils in California to that of accessions from its native range. In a glasshouse study, we also compared phenotypic variation in phenological and fitness traits between invasive and native populations grown on loam soil and under serpentine edaphic conditions. Molecular analysis of invasive populations revealed that Californian populations cluster into three independent introductions (i.e. invasive lineages). Our glasshouse common garden experiment found that all Californian populations exhibited higher fitness under serpentine conditions. However, the three invasive lineages appear to represent independent pathways of adaptation to serpentine soil. Our results suggest that the rapid invasion of serpentine habitats in California may have been facilitated by the existence of colonizing Eurasian genotypes pre‐adapted to serpentine soils.  相似文献   

9.
Hybridization can fuel evolutionary processes during biological invasions. The harlequin ladybird Harmonia axyridis has long been used as a biocontrol agent before the species became invasive worldwide. Previous analysis based on microsatellite data has shown that European invasive populations bear traces of admixture between an eastern North American source, which is at the origin of the worldwide invasion, and biocontrol strains used in Europe. In this study, we tested the hypothesis that this early admixture event may have fostered the European invasion by impacting on the phenotypes of wild European populations. Mean life history traits of experimental F(1) hybrids are compared with pure parental sources and wild European crosses. Our results reveal a biased impact whereby North American beetles benefitted from being admixed with European biocontrol strains. Resemblance between experimental hybrids and wild European invasive crosses further suggests a long-lasting effect of admixture that may still be at work and fostering invasiveness.  相似文献   

10.
Biological invasions offer excellent systems to study the evolutionary processes involved in introductions of species to new ranges. Molecular markers can reveal invasion histories and the effects of introductions on amounts and structuring of genetic variation. We used five polymorphic microsatellite loci to elucidate genetic diversity and population structure between native range and introduced range populations of a prominent North American rangeland weed, Centaurea diffusa (Asteraceae). We found that the total number of alleles and the number of private alleles was slightly higher in the native Eurasian range, and that allelic richness did not differ between the ranges, indicating overall levels of diversity were similar in Eurasia and North America. It therefore seems unlikely that this invasion has been affected by genetic bottlenecks or founder effects. Indeed, results of assignment tests suggest that multiple introductions have contributed to North America’s C. diffusa invasion. Additionally, assignment tests show that both Eurasian and North American sites had a strong pattern of mixed genetic ancestry. This mixed assignment corresponded to a lack of geographic population structure among Eurasian samples. The lack of population structure in the native range conflicts with general expectations and findings to date for invasion genetics, and cautions that even species’ native ranges may show signs of recent ecological upheaval. Despite the mixed assignments, North American samples showed strong population structure, suggesting that the invasion has been characterized by long-range dispersal of genetically distinct propagules across the introduced range.  相似文献   

11.
Species introductions often bring together genetically divergent source populations, resulting in genetic admixture. This geographic reshuffling of diversity has the potential to generate favourable new genetic combinations, facilitating the establishment and invasive spread of introduced populations. Observational support for the superior performance of admixed introductions has been mixed, however, and the broad importance of admixture to invasion questioned. Under most underlying mechanisms, admixture's benefits should be expected to increase with greater divergence among and lower genetic diversity within source populations, though these effects have not been quantified in invaders. We experimentally crossed source populations differing in divergence in the invasive plant Centaurea solstitialis. Crosses resulted in many positive (heterotic) interactions, but fitness benefits declined and were ultimately negative at high source divergence, with patterns suggesting cytonuclear epistasis. We explored the literature to assess whether such negative epistatic interactions might be impeding admixture at high source population divergence. Admixed introductions reported for plants came from sources with a wide range of genetic variation, but were disproportionately absent where there was high genetic divergence among native populations. We conclude that while admixture is common in species introductions and often happens under conditions expected to be beneficial to invaders, these conditions may be constrained by predictable negative genetic interactions, potentially explaining conflicting evidence for admixture's benefits to invasion.  相似文献   

12.
小蓬草入侵地和原产地种群的遗传多样性和种群结构 外来入侵植物对全球生物多样性造成了危害。小蓬草(Erigeron canadensis L.)是危害最为严重的外来农业杂草之一,代表了洲际入侵的典型例子。本研究利用10个多态性SSR位点,分别对采自中国江苏和浙江省的入侵地和采自美国阿拉巴马州的原产地各5个种群、共计312个植株的基因型进行了遗传多样性和遗传结构分析。结果表明,江苏省和浙江省的入侵种群显示出与阿拉巴马州原产地种群相似的遗传多样性,表明入侵期间没有严重的遗传瓶颈。利用STRUCTURE对种群结构的分析结果显示,种群之间分化较低,在原产地和入侵范围内均只仅检测到两个基因群。在入侵种群中观察到的遗传多样性较高,表明在入侵初期可能存在多次引入或引入了遗传背景不同的繁殖体。上述研究为阐明小蓬草这一全球有害杂草在中国东部的入侵动态提供了新的证据。在防除实践中,应注意防范小蓬草入侵种群和本地种群之间的种子基因流传播,阻止除草剂抗性植株的引入和扩散。  相似文献   

13.
Although ecological differences between native and introduced ranges have been considered to drive rapid expansion of invasive species, recent studies suggest that rapid evolutionary responses of invasive species to local environments may also be common. Such expansion across heterogeneous environments by adaptation to local habitats requires genetic variation. In this study, we investigated the source and role of standing variation in successful invasion of heterogeneous abiotic environments in a self-incompatible species, Lotus corniculatus. We compared phenotypic and genetic variation among cultivars, natives, and introduced genotypes, and found substantial genetic variation within both native and introduced populations. Introduced populations possessed genotypes derived from both cultivars and native populations, and had lower population differentiation, indicating multiple sources of introduction and population admixture among the sources in the introduced range. Both cultivars and introduced populations had similarly outperforming phenotypes on average, with increased biomass and earlier flowering compared with native populations, but those phenotypes were within the range of the variation in phenotypes of the native populations. In addition, clinal variation within introduced populations was detected along a climatic gradient. Multiple introductions from different sources, including cultivars, may have contributed to pre-adaptive standing variation in the current introduced populations. We conclude that both introduction of cultivar genotypes and natural selection in local environments contributed to current patterns of genetic and phenotypic variation observed in the introduced populations.  相似文献   

14.
Species invading new ranges are subject to a series of demographic events that can strongly shape genetic diversity. Describing this demographic history is important for understanding where invasive species come from and how they spread, and is critical to testing hypotheses of postinvasion adaptation. Here, we analyse nuclear and chloroplast genetic diversity to study the invasion history of the widespread colonizing weed, Silene latifolia (Caryophyllaceae). Bayesian clustering and PCA revealed strong population structure in the native range of Europe, and although genotypes from multiple native sources were present in the introduced range of North America, the spatial distribution of genetic variance was dramatically reorganized. Using approximate Bayesian computation (ABC), we compared support for different invasion scenarios, including the number and size of independent introduction events and the amount of admixture occurring between sources of introduced genotypes. Our results supported independent introductions into eastern and western North America, with the latter forming a bridgehead for a secondary invasion into the Great Lakes region of central North America. Despite small estimated founder population sizes, the duration of the demographic bottleneck after the initial introduction appeared extremely short‐lived. This pattern of repeated colonization and rapid expansion has effectively eroded the strong population structure and cytonuclear associations present in Europe, but has retained overall high genetic diversity since invasion. Our results highlight the flexibility of the ABC approach for constructing a narrative of the demographic history of species invasions and provide baseline for future studies of evolutionary changes in introduced S. latifolia populations.  相似文献   

15.
Jacobaea vulgaris (Asteraceae) is a species of Eurasian origin that has become a serious non-indigenous weed in Australia, New Zealand, and North America. We used neutral molecular markers to (1) test for genetic bottlenecks in invasive populations and (2) to investigate the invasion pathways. It is for the first time that molecular markers were used to unravel the process of introduction in this species.The genetic variation of 15 native populations from Europe and 16 invasive populations from Australia, New Zealand and North America were compared using the amplified fragment length polymorphisms (AFLP's). An analysis of molecular variance showed that a significant part (10%) of the total genetic variations between all individuals could be explained by native or invasive origin.Significant among-population differentiation was detected only in the native range, whereas populations from the invasive areas did not significantly differ from each other; nor did the Australian, New Zealand and North American regions differ within the invasive range. The result that native populations differed significantly from each other and that the amount of genetic variation, measured as the number of polymorphic bands, did not differ between the native and invasive area, strongly suggests that introductions from multiple source populations have occurred. The lack of differentiation between invasive regions suggests that either introductions may have occurred from the same native sources in all invasive regions or subsequent introductions took place from one into another invasive region and the same mix of genotypes was subsequently introduced into all invasive regions.An assignment test showed that European populations from Ireland, the Netherlands and the United Kingdom most resembled the invasive populations.  相似文献   

16.
The advent of simple and affordable tools for molecular identification of novel insect invaders and assessment of population diversity has changed the face of invasion biology in recent years. The widespread application of these tools has brought with it an emerging understanding that patterns in biogeography, introduction history and subsequent movement and spread of many invasive alien insects are far more complex than previously thought. We reviewed the literature and found that for a number of invasive insects, there is strong and growing evidence that multiple introductions, complex global movement, and population admixture in the invaded range are commonplace. Additionally, historical paradigms related to species and strain identities and origins of common invaders are in many cases being challenged. This has major consequences for our understanding of basic biology and ecology of invasive insects and impacts quarantine, management and biocontrol programs. In addition, we found that founder effects rarely limit fitness in invasive insects and may benefit populations (by purging harmful alleles or increasing additive genetic variance). Also, while phenotypic plasticity appears important post-establishment, genetic diversity in invasive insects is often higher than expected and increases over time via multiple introductions. Further, connectivity among disjunct regions of global invasive ranges is generally far higher than expected and is often asymmetric, with some populations contributing disproportionately to global spread. We argue that the role of connectivity in driving the ecology and evolution of introduced species with multiple invasive ranges has been historically underestimated and that such species are often best understood in a global context.  相似文献   

17.
The common ragweed (Ambrosia artemisiifolia L.; Asteraceae) is a North American native that is invading Eurasia. Besides its economic impact on crop yield, it presents a major health problem because of its highly allergenic pollen. The plant was imported inadvertently to Europe in the eighteenth century and has become invasive in several countries. By analyzing French and North American populations, it was previously shown that French populations were best described as a mixture of native sources and that range expansion in France probably involved sequential bottlenecks. Here, our aim was to determine whether Eastern European populations of A. artemisiifolia originated from the previously established French populations or from independent trans-Atlantic colonization events. We used nuclear microsatellite markers to elucidate the relationships among populations from Eastern and Western Europe in relation to populations from a broad survey across the native North American range. We found that A. artemisiifolia from Eastern Europe did not originate from the earlier established French populations but rather represents multiple independent introductions from other sources, or introductions from a not yet identified highly diverse native population. Eastern European populations show comparable amounts of genetic variability as do previously characterized French and North American populations, but analyses of population structure clearly distinguish the two European groups. This suggests separate introductions in Eastern and Western Europe as well as divergent sources for these two invasions, possibly as a result of distinct rules for trade and exchange for Eastern Europe during most of the twentieth century.  相似文献   

18.

Background and Aims

Black cherry (Prunus serotina) is a North American tree that is rapidly invading European forests. This species was introduced first as an ornamental plant then it was massively planted by foresters in many countries but its origins and the process of invasion remain poorly documented. Based on a genetic survey of both native and invasive ranges, the invasion history of black cherry was investigated by identifying putative source populations and then assessing the importance of multiple introductions on the maintenance of gene diversity.

Methods

Genetic variability and structure of 23 populations from the invasive range and 22 populations from the native range were analysed using eight nuclear microsatellite loci and five chloroplast DNA regions.

Key Results

Chloroplast DNA diversity suggests there were multiple introductions from a single geographic region (the north-eastern United States). A low reduction of genetic diversity was observed in the invasive range for both nuclear and plastid genomes. High propagule pressure including both the size and number of introductions shaped the genetic structure in Europe and boosted genetic diversity. Populations from Denmark, The Netherlands, Belgium and Germany showed high genetic diversity and low differentiation among populations, supporting the hypothesis that numerous introduction events, including multiple individuals and exchanges between sites, have taken place during two centuries of plantation.

Conclusions

This study postulates that the invasive black cherry has originated from east of the Appalachian Mountains (mainly the Allegheny plateau) and its invasiveness in north-western Europe is mainly due to multiple introductions containing high numbers of individuals.  相似文献   

19.
Li XM  Liao WJ  Wolfe LM  Zhang DY 《PloS one》2012,7(2):e31935
The mating system plays a key role during the process of plant invasion. Contemporary evolution of uniparental reproduction (selfing or asexuality) can relieve the challenges of mate limitation in colonizing populations by providing reproductive assurance. Here we examined aspects of the genetics of colonization in Ambrosia artemisiifolia, a North American native that is invasive in China. This species has been found to possess a strong self-incompatibility system and have high outcrossing rates in North America and we examined whether there has been an evolutionary shift towards the dependence on selfing in the introduced range. Specifically, we estimated outcrossing rates in one native and five invasive populations and compared levels of genetic diversity between North America and China. Based on six microsatellite loci we found that, like the native North American population, all five Chinese populations possessed a completely outcrossing mating system. The estimates of paternity correlations were low, ranging from 0.028-0.122, which suggests that populations possessed ~8-36 pollen donor parents contributing to each maternal plant in the invasive populations. High levels of genetic diversity for both native and invasive populations were found with the unbiased estimate of gene diversity ranging from 0.262-0.289 for both geographic ranges based on AFLP markers. Our results demonstrate that there has been no evolutionary shift from outcrossing to selfing during A. artemisiifolia's invasion of China. Furthermore, high levels of genetic variation in North America and China indicate that there has been no erosion of genetic variance due to a bottleneck during the introduction process. We suggest that the successful invasion of A. artemisiifolia into Asia was facilitated by repeated introductions from multiple source populations in the native range creating a diverse gene pool within Chinese populations.  相似文献   

20.
Though rapid phenotypic evolution has been observed in many invasive plant species, less is known about the associated genetic mechanisms. Some hypotheses invoke the evolution of trade-offs in resource allocation to explain phenotypic differences between the native and invaded ranges of a species. Alternately, invasive species may benefit from a generalist strategy and perform well in many environments. Identification of the molecular changes associated with successful invasions can offer clues regarding the mechanistic basis of such hypotheses, even in non-model organisms. To complement studies of phenotypic variation, we investigate gene expression during drought response that might underlie variation in drought tolerance between native and introduced populations of diffuse knapweed (Centaurea diffusa), and possibly contribute to invasion success. Using species-specific microarrays and tissue sampled under drought and control conditions at three time points, we identified genes whose expression either varied constitutively or responded to drought stress differently between ranges. Further, we functionally investigate these genes. Based on these data, invasive populations have constitutively higher levels of expression relating to energy production and lower levels of signal transduction expression relative to native populations. Under drought conditions, invasive populations may maintain energy production and react less strongly to drought than native populations, which may allow them to maintain fitness across moderate environmental variation. This supports the expectation of invasive populations consisting of generalist genotypes capable of fitness homeostasis, which may have facilitated the successful invasion of many environments in North America.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号