首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
2.
Immunoaffinity-purified insulin receptors were used to analyse and compare the serine/threonine sites phosphorylated on the insulin receptor in vitro (isolated receptor) with the insulin-stimulated phosphorylation in vivo (intact cells in culture). In vivo, insulin-stimulation resulted in the appearance of three phosphoserine-containing phosphopeptides and a distinct phosphothreonine peptide (threonine 1348). In vitro, similar phosphoserine peptides were observed but the phosphothreonine peptide was absent. These results indicate that multiple serine sites are phosphorylated in vivo and in vitro and that an additional protein kinase mediates insulin-stimulated insulin receptor threonine phosphorylation in vivo.  相似文献   

3.
The Kaposi sarcoma associated herpesvirus (KSHV) latency associated nuclear antigen (LANA) is expressed in all KSHV associated malignancies and is essential for maintenance of KSHV genomes in infected cells. To identify kinases that are potentially capable of modifying LANA, in vitro phosphorylation assays were performed using an Epstein Barr virus plus LANA protein microarray and 268 human kinases purified in active form from yeast. Interestingly, of the Epstein-Barr virus proteins on the array, the EBNA1 protein had the most similar kinase profile to LANA. We focused on nuclear kinases and on the N-terminus of LANA (amino acids 1–329) that contains the LANA chromatin binding domain. Sixty-three nuclear kinases phosphorylated the LANA N-terminus. Twenty-four nuclear kinases phosphorylated a peptide covering the LANA chromatin binding domain (amino acids 3–21). Alanine mutations of serine 10 and threonine 14 abolish or severely diminish chromatin and histone binding by LANA. However, conversion of these residues to the phosphomimetic glutamic acid restored histone binding suggesting that phosphorylation of serine 10 and threonine 14 may modulate LANA function. Serine 10 and threonine 14 were validated as substrates of casein kinase 1, PIM1, GSK-3 and RSK3 kinases. Short-term treatment of transfected cells with inhibitors of these kinases found that only RSK inhibition reduced LANA interaction with endogenous histone H2B. Extended treatment of PEL cell cultures with RSK inhibitor caused a decrease in LANA protein levels associated with p21 induction and a loss of PEL cell viability. The data indicate that RSK phosphorylation affects both LANA accumulation and function.  相似文献   

4.
Smooth muscle heavy meromyosin (HMM) is phosphorylated by the Ca2+-activated phospholipid-dependent protein kinase, i.e. protein kinase C, at three sites on each 20,000-dalton light chain. Phosphorylation of three sites also is observed with isolated 20,000-dalton light chain and HMM subfragment 1. The phosphorylation sites are serine 1, serine 2, and threonine 9. Threonine is phosphorylated most rapidly followed by either serine 1 or 2. Phosphorylation of the third site occurs only on prolonged incubation. Phosphorylation is a random process. HMM phosphorylated at two sites per light chain by protein kinase C can be dephosphorylated, as shown using two phosphatase preparations. Increasing levels of phosphorylation of HMM by protein kinase C causes a progressive inhibition of the subsequent rate of phosphorylation of serine 19 by myosin light chain kinase and causes a progressive inhibition of actin-activated ATPase activity of HMM, prephosphorylated by myosin light chain kinase. Inhibition of ATPase activity is due to a decreased affinity of HMM for actin rather than a change in Vmax. Previous results with HMM and protein kinase C (Nishikawa, M., Sellers, J. R., Adelstein, R. S., and Hidaka, H. (1984) J. Biol. Chem. 259, 8808-8814) examined effects induced by phosphorylation of the threonine residues. Our results confirm these and consider also the influence of higher levels of phosphorylation by protein kinase C.  相似文献   

5.
These studies describe a cytoskeletal-associated protein kinase activity in astrocytes that phosphorylated the intermediate filament proteins glial fibrillary acidic protein (GFAP) and vimentin and that appeared to be distinct from protein kinase C (PK-C) and the cyclic AMP-dependent protein kinase (PK-A). The cytoskeletal-associated kinase activity phosphorylated intermediate filament proteins in the presence of 10 mM MgCl2 and produced an even greater increase in 32P incorporation into these proteins in the presence of calcium/calmodulin. Tryptic peptide mapping of phosphorylated intermediate filament proteins showed that the intermediate filament protein kinase activity produced unique phosphopeptide maps, in both the presence and the absence of calcium/calmodulin, as compared to that of PK-C and PK-A, although there were some common sites of phosphorylation among the kinases. In addition, it was determined that the intermediate filament protein kinase activity phosphorylated both serine and threonine residues of the intermediate filament proteins, vimentin and GFAP. However, the relative proportion of serine and threonine residues phosphorylated varied depending on the presence or absence of calcium/calmodulin. The magnesium-dependent activity produced the highest proportion of threonine phosphorylation, suggesting that the calcium/calmodulin-dependent kinase activity acts mainly at serine residues. PK-A and PK-C phosphorylated mainly serine residues. Also, the intermediate filament protein kinase activity phosphorylated both the N-and the C-terminal domains of vimentin and the N-terminal domain of GFAP. In contrast, both PK-C and PK-A are known to phosphorylate the N-terminal domains of both proteins.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The inhibitory killer cell Ig-like receptors (KIR) negatively regulate NK cell cytotoxicity by activating the Src homology 2 domain-containing protein tyrosine phosphatases 1 and 2 following ligation with MHC class I molecules expressed on normal cells. This requires tyrosine phosphorylation of KIR on ITIMs in the cytoplasmic domain. Surprisingly, we have found that KIR3DL1 is strongly and constitutively phosphorylated on serine and weakly on threonine residues. In this study, we have mapped constitutive phosphorylation sites for casein kinases, protein kinase C, and an unidentified kinase on the KIR cytoplasmic domain. Three of these phosphorylation sites are highly conserved in human inhibitory KIR. Functional studies of the wild-type receptor and serine/threonine mutants indicated that phosphorylation of Ser(394) by protein kinase C slightly suppresses KIR3DL1 inhibitory function, and reduces receptor internalization and turnover. Our results provide evidence that serine/threonine phosphorylation is an important regulatory mechanism of KIR function.  相似文献   

7.
Mitogen-activated protein kinase kinase 1 (MKK1), a dual-specificity tyrosine/threonine protein kinase, has been shown to be phosphorylated and activated by the raf oncogene product as part of the mitogen-activated protein kinase cascade. Here we report the phosphorylation and inactivation of MKK1 by phosphorylation on threonine 286 and threonine 292. MKK1 contains a consensus phosphorylation site for p34cdc2, a serine/threonine protein kinase that regulates the cell division cycle, at Thr-286 and a related site at Thr-292. p34cdc2 catalyzes the in vitro phosphorylation of MKK1 on both of these threonine residues and inactivates MKK1 enzymatic activity. Both sites are phosphorylated in vivo as well. The data presented in this report provide evidence that MKK1 is negatively regulated by threonine phosphorylation.  相似文献   

8.
The Ku70/80 heterodimer is a major player in non-homologous end joining and the repair of DNA double-strand breaks. Studies suggest that once bound to a DNA double-strand break, Ku recruits the catalytic subunit of the DNA-dependent protein kinase (DNA-PKcs) to form the DNA-dependent protein kinase holoenzyme complex (DNA-PK). We previously identified four DNA-PK phosphorylation sites on the Ku70/80 heterodimer: serine 6 of Ku70, serine 577 and 580 and threonine 715 of Ku80. This raised the interesting possibility that DNA-PK-dependent phosphorylation of Ku could provide a mechanism for the regulation of non-homologous end joining. Here, using mass spectrometry and phosphospecific antibodies we confirm that these sites are phosphorylated in vitro by purified DNA-PK. However, we show that neither DNA-PK nor the related protein kinase ataxia-telangiectasia mutated (ATM) is required for phosphorylation of Ku at these sites in vivo. Furthermore, Ku containing serine/threonine to alanine mutations at these sites was fully able to complement the radiation sensitivity of Ku negative mammalian cells indicating that phosphorylation at these sites is not required for non-homologous end joining. Interestingly, both Ku70 and Ku80 were phosphorylated in cells treated with the protein phosphatase inhibitor okadaic acid under conditions known to inactivate protein phosphatase 2A-like protein phosphatases. Moreover, okadaic acid-induced phosphorylation of Ku80 was inhibited by nanomolar concentrations of the protein kinase inhibitor staurosporine. These results suggest that the phosphorylation of Ku70 and Ku80 is regulated by a protein phosphatase 2A-like protein phosphatase and a staurosporine sensitive protein kinase in vivo, but that DNA-PK-mediated phosphorylation of Ku is not required for DNA double-strand break repair.  相似文献   

9.
Purified phospholamban isolated from canine cardiac sarcoplasmic reticulum vesicles was subjected to proteolysis and peptide mapping to localize the different sites of phosphorylation on the protein and to gain further information on its subunit structure. Five different proteases (trypsin, papain, chymotrypsin, elastase, and Pronase) degraded the oligomeric 27-kDa phosphoprotein into a major 21-22-kDa protease-resistant fragment. No 32P was retained by this protease-resistant fragment, regardless of whether phospholamban had been phosphorylated by cAMP-dependent protein kinase, Ca2+/calmodulin-dependent protein kinase, or protein kinase C. Phosphoamino acid analysis and thin-layer electrophoresis of liberated phosphopeptides revealed that 1 threonine and 2 serine residues were phosphorylated in phospholamban and that 1 of these serine residues and the threonine residue were in close proximity. Only serine was phosphorylated by cAMP-dependent protein kinase, whereas Ca2+-calmodulin-dependent protein kinase phosphorylated exclusively threonine. The results demonstrate that phospholamban has a large protease-resistant domain and a smaller protease-sensitive domain, the latter of which contains all of the sites of phosphorylation. The 21-22-kDa protease-resistant domain, although devoid of incorporated 32P, was completely dissociated into identical lower molecular weight subunits by boiling in sodium dodecyl sulfate, suggesting that this region of the molecule promotes the relatively strong interactions that hold the subunits together. The data presented lend further support for a model of phospholamban structure in which several identical low molecular weight subunits are noncovalently bound to one another, each containing one site of phosphorylation for cAMP-dependent protein kinase and another site of phosphorylation for Ca2+/calmodulin-dependent protein kinase.  相似文献   

10.
11.
Rho-associated kinase (Rho-kinase/ROCK/ROK) is a serine/threonine kinase and plays an important role in various cellular functions. The cAMP-dependent protein kinase (protein kinase A/PKA) and protein kinase C (PKC) are also serine/threonine kinases, and directly and/or indirectly take part in the signal transduction pathways of Rho-kinase. They have similar phosphorylation site motifs, RXXS/T and RXS/T. The purpose of this study was to identify whether sites phosphorylated by Rho-kinase could be targets for PKA and PKC and to find peptide substrates that are specific to Rho-kinase, i.e., with no phosphorylation by PKA and PKC. A total of 18 substrates for Rho-kinase were tested for phosphorylation by PKA and PKC. Twelve of these sites were easily phosphorylated. These results mean that Rho-kinase substrates can be good substrates for PKA and/or PKC. On the other hand, six Rho-kinase substrates showing no or very low phosphorylation efficiency (<20%) for PKA and PKC were identified. Kinetic parameters (K(m) and k(cat)) showed that two of these peptides could be useful as substrates specific to Rho-kinase phosphorylation.  相似文献   

12.
The rice disease resistance gene, Xa21, encodes a receptor kinase-like protein consisting of leucine-rich repeats in the putative extracellular domain and a serine/threonine kinase in the putative intracellular domain. The putative XA21 kinase domain was expressed as maltose-binding and glutathione S-transferase fusion proteins in Escherichia coli. The fusion proteins are capable of autophosphorylation. Phosphoamino acid analysis of the glutathione S-transferase fusion protein indicates that only serine and threonine residues are phosphorylated. The relative phosphorylation rate of the XA21 kinase against increasing enzyme concentrations follows a first-order rather than second-order kinetics, indicating an intramolecular phosphorylation mechanism. Moreover, the active XA21 kinase cannot phosphorylate a kinase-deficient mutant of XA21 kinase. The enzymatic activity of the XA21 kinase in a buffer containing Mn(2+) is at least 15 times higher than that with Mg(2+). The K(m) and V(max) of XA21 kinase for ATP are 0.3 microm and 8.4 nmol/mg/min, respectively. Tryptic phosphopeptide mapping reveals that multiple sites on the XA21 kinase are phosphorylated. Finally, our data suggest that the region of XA21 kinase corresponding to the RD kinase activation domain is not phosphorylated, revealing a distinct mode of action compared with the tomato Pto serine/threonine kinase conferring disease resistance.  相似文献   

13.
Rat liver pyruvate kinase is phosphorylated by calcium/calmodulin-dependent protein kinase II at serine and threonine residues in a 3-4 kDa CNBr fragment located near the amino terminus. The two sites of phosphorylation were separated by reverse-phase HPLC of a thermolysin digest. Sequence analysis established the sites of phosphorylation as follows: Leu-Arg-Arg-Ala-Ser(PO4)-Val-Ala-Gln-Leu-Thr(PO4)-Gln-Glu.  相似文献   

14.
Casein Kinase II Phosphorylates the Neural Cell Adhesion Molecule L1   总被引:7,自引:1,他引:6  
Abstract: L1 is an axonal cell adhesion molecule found primarily on projection axons of both the CNS and PNS. It is a phosphorylated membrane-spanning glycoprotein that can be immunoprecipitated from rat brain membranes in association with protein kinase activities. Western blot analysis demonstrates that casein kinase II (CKII), a ubiquitous serine/threonine kinase enriched in brain, is present in these immunoprecipitates. CKII preparations partially purified from PC12 cells are able to phosphorylate recombinant L1 cytoplasmic domain (L1CD), which consists of residues 1,144–1,257. Using these as well as more highly purified kinase preparations, phosphorylation assays of small peptides derived from the L1CD were performed. CKII was able to phosphorylate a peptide encompassing amino acids (aa) 1,173–1,185, as well as a related peptide representing an alternatively spliced nonneuronal L1 isoform that lacks aa 1,177–1,180. Both peptides were phosphorylated with similar kinetic profiles. Serine to alanine substitutions in these peptides indicate that the CKII phosphorylation site is at Ser1,181. This is consistent with experiments in which L1CD was phosphorylated by these kinase preparations, digested, and the radiolabeled fragments sequenced. Furthermore, when L1 immunoprecipitates were used to phosphorylate L1CD, one of the residues phosphorylated is the same residue phosphorylated by CKII. Finally, in vivo radiolabeling indicates that Ser1,181 is phosphorylated in newborn rat brain. These data show that CKII is associated with and able to phosphorylate L1. This phosphorylation may be important in regulating certain aspects of L1 function, such as adhesivity or signal transduction.  相似文献   

15.
The decrease in phosphorylation of the 20 kDa myosin light chain during prolonged K(+)-stimulation of arterial smooth muscle was counteracted by treating this muscle with phorbol dibutyrate. Quantitative phosphopeptide analysis revealed that phorbol dibutyrate induced phosphorylation of serine and threonine residues in the light chain by protein kinase C and phosphorylation of a threonine residue by myosin light chain kinase. The same residues of light chain were also phosphorylated when phorbol dibutyrate was added to muscles pretreated either with the Ca2(+)-channel-blocking agents nifedipine and verapamil, or with the Ca2(+)-chelating agent ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid. The results indicate an interrelationship between protein kinase C and myosin light chain kinase phosphorylated sites of light chain in intact arterial smooth muscle.  相似文献   

16.
Phospholamban is the major membrane protein of the heart phosphorylated in response to beta-adrenergic stimulation. In cell-free systems, cAMP-dependent protein kinase catalyzes exclusive phosphorylation of serine 16 of phospholamban, whereas Ca2+/calmodulin-dependent protein kinase gives exclusive phosphorylation of threonine 17 (Simmerman, H. K. B., Collins, J. H., Theibert, J. L., Wegener, A. D., and Jones, L. R. (1986) J. Biol. Chem. 261, 13333-13341). In this work we have localized the sites of phospholamban phosphorylation in intact ventricles treated with the beta-adrenergic agonist isoproterenol. Isolation of phosphorylated phospholamban from 32P-perfused guinea pig ventricles, followed by partial acid hydrolysis and phosphoamino acid analysis, revealed phosphorylation of both serine and threonine residues. At steady state after isoproterenol exposure, phospholamban contained approximately equimolar amounts of these two phosphoamino acids. Two major tryptic phosphopeptides containing greater than 90% of the incorporated radioactivity were obtained from phospholamban labeled in intact ventricles. The amino acid sequences of these two tryptic peptides corresponded exactly to residues 14-25 and 15-25 of canine cardiac phospholamban, thus localizing the sites of in situ phosphorylation to serine 16 and threonine 17. Phosphorylation of phospholamban at two sites in heart perfused with isoproterenol was supported by detection of 11 distinct mobility forms of the pentameric protein by use of the Western blotting method, consistent with each phospholamban monomer containing two phosphorylation sites, and with each pentamer containing from 0 to 10 incorporated phosphates. Our results localize the sites of in situ phospholamban phosphorylation to serine 16 and threonine 17 and, furthermore, are consistent with the phosphorylations of these 2 residues being catalyzed by cAMP- and Ca2+/calmodulin-dependent protein kinases, respectively.  相似文献   

17.
The focal adhesion protein VASP, a possible link between signal transduction pathways and the microfilament system, is phosphorylated by both cAMP- and cGMP-dependent protein kinases in vitro and in intact cells. Here, the analysis of VASP dephosphorylation by the serine/threonine protein phosphatases (PP) PP1, PP2A, PP2B and PP2C in vitro is reported. The phosphatases differed in their selectivity with respect to the dephosphorylation of individual VASP phosphorylation sites. Incubation of human platelets with okadaic acid, a potent inhibitor of PP1 and PP2A, caused the accumulation of phosphorylated VASP indicating that the phosphorylation status of VASP in intact cells is regulated to a major extent by serine/ threonine protein phosphatases. Furthermore, the accumulation of phosphorylated cAMP-dependent protein kinase substrate(s) appears to account for inhibitory effects of okadaic acid on platelet function.  相似文献   

18.
19.
At relatively high concentrations of myosin light chain kinase, a second site on the 20,000-dalton light chain of smooth muscle myosin is phosphorylated (Ikebe, M., and Hartshorne, D. J. (1985) J. Biol. Chem. 260, 10027-10031). In this communication the site is identified and kinetics associated with its phosphorylation and dephosphorylation are described. The doubly phosphorylated 20,000-dalton light chain from turkey gizzard myosin was hydrolyzed with alpha-chymotrypsin and the phosphorylated peptide was isolated by reverse phase chromatography. Following amino acid analyses and partial sequence determinations the second site of phosphorylation is shown to be threonine 18. This site is distinct from the threonine residue phosphorylated by protein kinase C. The time courses of phosphorylation of serine 19 and threonine 18 in isolated light chains follow a single exponential indicating a random process, although the phosphorylation rates differ considerably. The values of kcat/Km for serine 19 and threonine 18 for isolated light chains are 550 and 0.2 min-1 microM-1, respectively. With intact myosin, phosphorylation of serine 19 is biphasic; kcat/Km values are 22.5 and 7.5 min-1 microM-1 for the fast and slow phases, respectively. In contrast, phosphorylation of threonine 18 in intact myosin is a random, but markedly slower process, kcat/Km = 0.44 min-1 microM-1. Dephosphorylation of doubly phosphorylated myosin (approximately 4 mol of phosphate/mol of myosin) and isolated light chains (approximately 2 mol of phosphate/mol of light chain) follows a random process and dephosphorylation of the serine 19 and threonine 18 sites occurs at similar rates.  相似文献   

20.
Gamma-aminobutyric acid Type A (GABAA) receptors are the major sites of synaptic inhibition in the central nervous system. These receptors are thought to be pentameric complexes of homologous transmembrane glycoproteins. Molecular cloning has revealed a multiplicity of different GABAA receptor subunits divided into five classes, alpha, beta, gamma, delta, and rho, based on sequence homology. Within the proposed major intracellular domain of these subunits, there are numerous potential consensus sites for protein phosphorylation by a variety of protein kinases. We have used purified fusion proteins of the major intracellular domain of GABAA receptor subunits produced in Escherichia coli to examine the phosphorylation of these subunits by cAMP-dependent protein kinase (PKA) and protein kinase C (PKC). The purified fusion protein of the intracellular domain of the beta 1 subunit was an excellent substrate for both PKA and PKC. PKA and PKC phosphorylated the beta 1 subunit fusion protein on serine residues on a single tryptic phosphopeptide. Site-directed mutagenesis of serine 409 in the intracellular domain of the beta 1 subunit to an alanine residue eliminated the phosphorylation of the beta 1 subunit fusion protein by both protein kinases. The purified fusion proteins of the major intracellular domain of the gamma 2S and gamma 2L subunits of the GABAA receptor were rapidly and stoichiometrically phosphorylated by PKC but not by PKA. The phosphorylation of the gamma 2S subunit occurred on serine residues on a single tryptic phosphopeptide. Site-directed mutagenesis of serine 327 of the gamma 2S subunit fusion protein to an alanine residue eliminated the phosphorylation of the gamma 2S fusion protein by PKC. The gamma 2L subunit is an alternatively spliced form of the gamma 2S subunit that differs by the insertion of 8 amino acids (LLRMFSFK) within the major intracellular domain of the gamma 2S subunit. The PKC phosphorylation of the gamma 2L subunit occurred on serine residues on two tryptic phosphopeptides. Site-specific mutagenesis of serine 343 within the 8-amino acid insert to an alanine residue eliminated the PKC phosphorylation of the novel site in the gamma 2L subunit. No phosphorylation of a purified fusion protein of the major intracellular loop of the alpha 1 subunit was observed with either PKA or PKC. These results identify the specific amino acid residues within GABAA receptor subunits that are phosphorylated by PKA and PKC and suggest that protein phosphorylation of these sites may be important in regulating GABAA receptor function.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号