首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 821 毫秒
1.
Effects of twelve flavonoids and five catechins as well as gallic acid on two kinds of glutathione-related enzymes were investigated. Glutathione 5-transferase (EC 2.5.1.18) activity was measured by S-2,4-dinitrophenyl glutathione formation from 1-chloro-2,4-dinitrobenzene and reduced glutathione. Glutathione reductase (EC 1.6.4.2) activity was followed by NADPH dehydrogenation. Fisetin and myricetin were potent inhibitors of glutathione S-transferase, while kaempferol, quercetin, baicalein, and quercitrin were medium inhibitors. Epicatechin gallate and epigallocatechin gallate also showed medium inhibition. Kinetic analyses indicated that fisetin was a mixed type inhibitor of glutathione S-transferase with respect to both substrates, while myricetin was a competitive inhibitor of the same enzyme with both substrates. Fisetin and myricetin were noncompetive inhibitors of glutathione reductase with both NADPH and oxidized glutathione. The inhibition patterns of GT and GR as well as the results of kinetic analyses indicated a possibility that inhibitory flavonoids might have some influence on the glutathione recognition sites of the two enzymes.  相似文献   

2.
Inhibition studies on rat liver microsomal glutathione transferase   总被引:2,自引:0,他引:2  
A set of inhibitors for rat liver microsomal glutathione transferase have been characterized. These inhibitors (rose bengal, tributyltin acetate, S-hexylglutathione, indomethacin, cibacron blue and bromosulphophtalein) all have I50 values in the 1-100 microM range. Their effects on the unactivated enzyme were compared to those on the N-ethylmaleimide- and trypsin-activated microsomal glutathione transferase. It was found that the I50 values were decreased upon activation of the enzyme (5-20-fold), except for S-hexylglutathione, where a slight increase was noted. Thus, the activated microsomal glutathione transferase is generally more sensitive to the effect of inhibitors than the unactivated enzyme. It was also noted that inhibitor potency can vary dramatically depending on the substrate used. The I50 values for the N-ethylmaleimide- and trypsin-activated enzyme preparations are altered in a similar fashion compared to the unactivated enzyme. This finding indicates that these two alternative mechanisms of activation induce a similar type of change in the microsomal glutathione transferase.  相似文献   

3.
4.
H Chung  J Fried  J Jarabak 《Prostaglandins》1987,33(3):391-402
Oxidation of glutathione disulfide by a mixture of performic and hydrochloric acids leads to the formation of several compounds that are stronger inhibitors than glutathione disulfide of the placental enzyme that possess both NADP-linked 15-hydroxyprostaglandin dehydrogenase and 9-ketoprostaglandin reductase activities. The only one of these inhibitors that has been identified is glutathione thiosulfonate. The others are unstable and may include glutathione sulfinyl sulfone and glutathione disulfone. Since the enzyme appears to have a glutathione binding site in close proximity to its active site and glutathione thiosulfonate reacts with free sulfhydryl groups, the effects of this thiosulfonate on the enzyme were examined in more detail. Glutathione thiosulfonate and methyl methanethiosulfonate cause a time-dependent irreversible inhibition of both the hydroxyprostaglandin dehydrogenase and the ketoprostaglandin reductase activities, presumably by reacting with a free sulfhydryl at the prostaglandin binding site. Experiments with PGA1-glutathione show that this sulfhydryl is not necessary for the catalytic activity of the enzyme as long as the substrate can bind at the glutathione site.  相似文献   

5.
Oxidation of glutathione disulfide by a mixture of performic and hydrochloric acids leads to the formation of several compounds that are stronger inhibitors than glutathione disulfide of the placental enzyme that posses both NADP-linked 15-hydroxypyrostaglandin dehydrogenase and 9-ketoprostaglandin reductase activities. The only one of these inhibitors that has been identified is glutathione thiosulfonate. The others are unstble and may include glutathione sulfinyl sulfone and glutathione disulfone. Since the enzyme appears to have a glutathione binding site in close proximity to its active site and glutathione thiosulfonate reacts with free sulfhydryl groups, the effects of this thiosulfonate on the enzyme were examined in more detail. Glutahione thiosulfonate and methyl methanethiosulfonate cause a time-dependent irreversible inhibition of both the hydroxyprostaglandin dehydrogenase and the ketoprostaglandin reductase activities, presumably by reacting with a free sulfhydryl at the prostaglandin binding site. Experiments with PGA-glutathione show that this sulfhydryl is not necessary for the catalytic activity of the enzyme as long as the substrate can bind at the glutahione site.  相似文献   

6.
Six glutathione-containing inhibitors of the human NADP-linked 15-hydroxyprostaglandin dehydrogenase have been isolated from placental homogenates. Glutathione disulfide is one of these inhibitors. Although the structures of the other five have not been fully elucidated, all are disulfides. Studies with these compounds and with other mixed disulfides have shown that the glutathione mixed disulfides of beta-mercaptopyruvate, mercaptoacetate, and beta-mercaptolactate are more effective inhibitors of the enzyme than are the glutathione-containing mixed disulfides isolated from placental homogenates. beta-Mercaptolactate is particularly noteworthy because of its low Ki (0.13 microM). The results reported here suggest that the activity of the prostaglandin dehydrogenase may be influenced in vivo by various glutathione mixed disulfides.  相似文献   

7.
The proteasome inhibitors lactacystin, clastro lactacystin beta-lactone, or tri-leucine vinyl sulfone (NLVS), in the presence of [(35)S]cysteine/methionine, caused increased incorporation of (35)S into cellular proteins, even when protein synthesis was inhibited by cycloheximide. This effect was blocked by incubation with the glutathione synthesis inhibitor buthionine sulfoximine. Proteasome inhibitors also enhanced total glutathione levels, increased reduced/oxidized glutathione ratio (GSH/GSSG) and upregulated gamma-glutamylcysteine synthetase (rate-limiting in glutathione synthesis). Micromolar concentrations of GSH, GSSG, or cysteine stimulated the chymotrypsin-like activity of purified 20S proteasome, but millimolar GSH or GSSG was inhibitory. Interestingly, GSH did not affect 20S proteasome's trypsin-like activity. Enhanced proteasome glutathiolation was verified when purified preparations of the 20S core enzyme complex were incubated with [(35)S]GSH after pre-incubation with any of the inhibitors. NLVS, lactacystin or clastro lactacystin beta-lactone may promote structural modification of the 20S core proteasome, with increased exposure of cysteine residues, which are prone to S-thiolation. Three main conclusions can be drawn from the present work. First, proteasome inhibitors alter cellular glutathione metabolism. Second, proteasome glutathiolation is enhanced by inhibitors but still occurs in their absence, at physiological GSH and GSSG levels. Third, proteasome glutathiolation seems to be a previously unknown mechanism of proteasome regulation in vivo.  相似文献   

8.
Chemical inhibitors of the different antioxidant enzymes were systematically testet either on purified enzymes of after incubation with human fibroblasts in culture. Inhibition values were obtained for catalase with aminotriazole, for superoxide dismutase with diethyldithiocarbamate, for glutathione peroxidase with mercaptosuccinate, for glutathione reductase with bischloroethylnitrosourea and for glutathione synthesis with buthionine sulfoximine. Viability of cells incubated with these inhibitors was then tested under normal conditions and under high oxygen pressure; the data were correlated with the above-mentioned inhibitory values. Cell viability was particularly affected when the glutathione-related enzymes, especially glutathione peroxidase, were inhibited.  相似文献   

9.
Studies on glutathione S-alkyltransferase of the rat   总被引:18,自引:16,他引:2  
1. A rat-liver enzyme catalysing the S-alkylation of glutathione by iodomethane and various other alkyl compounds has been identified and partially purified; its stability, specificity and response to inhibitors and activators and to changes in reaction pH have been studied. 2. The enzyme is distinct from glutathione S-aryltransferase, but both enzymes respond similarly to various inhibitors. 3. A similar enzyme has been found in the kidney and adrenal of rat and in the liver and kidney of numerous species. 4. The identity and the physiological role of the enzyme are discussed.  相似文献   

10.
The oxygen analogue, gamma-L-Glu-L-SerGly (GOH) and desthio analogue, gamma-L-Glu-L-AlaGly (GH) have been synthesized by a simple three step procedure involving active ester coupling of N-t-BOC-alpha-(4-nitrophenyl)-L-glutamate to L-SerGly and L-AlaGly, respectively. The two peptides are excellent dead-end inhibitors of isozymes 3-3 and 4-4 of rat liver glutathione S-transferase. At low fixed concentrations of 1-chloro-2,4-dinitrobenzene (CDNB) GOH and GH are linear competitive inhibitors of isozyme 3-3 vs glutathione with KI values of 13.0 and 116 microM, respectively. Both peptides are non-competitive (mixed-type) inhibitors vs CDNB when glutathione is the fixed substrate. Similar results are obtained with both peptides and isozyme 4-4. The results rule out ordered or ping-pong kinetic mechanisms where the electrophile adds first.  相似文献   

11.
Glutathione derivatives inhibit glutathione S-transferase A [cf. Biochem. J. (1975) 147, 513--522]. The steady-state kinetics of this inhibition have been investigated in detail by using S-octyglutathione, glutathione disulphide and S-(2-chloro-4-nitrophenyl)glutathione: the last compound is a product of the enzyme-catalused reaction. Interpreted in terms of generalized denotations of inhibition patterns, the compounds were found to be competitive with the substrate glutathione. Double-inhibition experiments involving simultaneous use of two inhibitors indicated exclusive binding of the inhibitors to the enzyme. The discrimination between alternative rate equations has been based on the results of weighted non-linear regression analysis. The experimental error was determined by replicate measurements and was found to increase with velocity. The established error structure was used as a basis for weighting in the regression and to construct confidence levels for the judgement of goodness-of-fit of rate equations fitted to experimental data. The results obtained support a steady-state random model for the mechanism of action of glutathione S-transferase A and exclude a number of simple kinetic models.  相似文献   

12.
Six glutathione-containing inhibitors of the human NADP-linked 15-hydroxyprostaglandin dehydrogenase have been isolated from placental homogenates. Glutathione disulfide is one of these inhibitors. Although the structures of the other five have not been fully elucidated, all are disulfides. Studies with these compounds and with other mixed disulfides have shown that the glutathione mixed disulfides of β-mercaptopyruvate, mercaptoacetate, and β-mercaptolactate are more effective inhibitors of the enzyme than are the glutathione-containing mixed disulfides isolated from placental homogenates. β-Mercaptolactate is particularly noteworthy because of its low Kj (0.13 μM). The results reported here suggest that the activity of the prostaglandin dehydrogenase may be influenced by various glutathione mixed disulfides.  相似文献   

13.
A number of S-substituted glutathiones and the corresponding N-substituted S-substituted analogues have been found to be linear competitive inhibitors of yeast glyoxalase I at 26 degrees C over the pH range 4.6-8.5. N-Acetylation of S-(p-bromobenzyl)glutathione weakens binding by 13.7-fold. N-benzoylation by 25.6-fold, N-trimethylacetylation by 53.3-fold and N-carbobenzoxylation by 7.8-fold, indicating a minor steric component in the binding at the N-site. The Ki-weakening effect of N-substitution of glutathione depends on the chemical nature of the S-substituent, indicating flexibility in the glutathione and/or glyoxalase I contributions to the binding site for glutathione derivatives. The effect of N-acylation on Ki is in accord with a charge interaction of the free enzyme with S-blocked glutathione in a region of reasonably high dielectric constant. There is a slight pH effect on Ki for S-(m-trifluoromethylbenzyl)glutathione but not for S-(p-bromobenzyl)glutathione.  相似文献   

14.
Potential inhibitors of the enzyme glyoxalase I from Escherichia coli have been evaluated using a combination of electrospray mass spectrometry and conventional kinetic analysis. An 11-membered library of potential inhibitors included a glutathione analogue resembling the transition-state intermediate in the glyoxalase I catalysis, several alkyl-glutathione, and one flavonoid. The E. coli glyoxalase I quaternary structure was found to be predominantly dimeric, as is the homologous human glyoxalase I. Binding studies by electrospray revealed that inhibitors bind exclusively to the dimeric form of glyoxalase I. Two specific binding sites were observed per dimer. The transition-state analogue was found to have the highest binding affinity, followed by a newly identified inhibitor; S-{2-[3-hexyloxybenzoyl]-vinyl}glutathione. Kinetic analysis confirmed that the order of affinity established by mass spectrometry could be correlated to inhibitory effects on the enzymatic reaction. This study shows that selective inhibitors may exist for the E. coli homologue of the glyoxalase I enzyme.  相似文献   

15.
Potential inhibitors of the enzyme glyoxalase I from Escherichia coli have been evaluated using a combination of electrospray mass spectrometry and conventional kinetic analysis. An 11-membered library of potential inhibitors included a glutathione analogue resembling the transition-state intermediate in the glyoxalase I catalysis, several alkyl-glutathione, and one flavonoid. The E. coli glyoxalase I quaternary structure was found to be predominantly dimeric, as is the homologous human glyoxalase I. Binding studies by electrospray revealed that inhibitors bind exclusively to the dimeric form of glyoxalase I. Two specific binding sites were observed per dimer. The transition-state analogue was found to have the highest binding affinity, followed by a newly identified inhibitor; S-{2-[3-hexyloxybenzoyl]-vinyl}glutathione. Kinetic analysis confirmed that the order of affinity established by mass spectrometry could be correlated to inhibitory effects on the enzymatic reaction. This study shows that selective inhibitors may exist for the E. coli homologue of the glyoxalase I enzyme.  相似文献   

16.
Rat liver microsomal glutathione transferase displays glutathione peroxidase activity with linoleic acid hydroperoxide, linoleic acid ethyl ester hydroperoxide, and dilinoleoyl phosphatidylcholine hydroperoxide, with rates of 0.2, 0.3, and 0.3 mumol/min/mg, respectively. The activities are increased between three- and fourfold when the enzyme is activated with N-ethylmaleimide. Microsomal glutathione transferase can also conjugate 4-hydroxynon-2-enal with a specific activity of 0.5 mumol/min/mg. These findings show that the enzyme can remove harmful products of lipid peroxidation and thereby possibly protect intracellular membranes against oxidative stress. A set of glutathione transferase inhibitors (rose bengal, tributyltin acetate, S-hexylglutathione, indomethacin, cibacron blue, and bromosulfophtalein) which abolish the glutathione-dependent protection against lipid peroxidation in liver microsomes have been characterized. These inhibitors were found to be effective in the micromolar range and could prove valuable in studying the factor responsible for glutathione-dependent protection against lipid peroxidation.  相似文献   

17.
We have used protein phosphatase (PP) inhibitors and rat cerebellar glial cells in primary culture to investigate the role of PP activity in the ability of glial cells to detoxify exogenously applied hydrogen peroxide (H2O2). The marine toxin okadaic acid (OKA), a potent PP1 and PP2A inhibitor, caused a concentration-dependent degeneration of astrocytes and increased the formation of hydroperoxide radicals significantly. Subtoxic exposures to OKA significantly potentiated toxicity by exogenous H2O2. The concentration of H2O2 that reduced by 50% the survival of astrocytes after 3 h was estimated at 720+/-40 microM in the absence and 85+/-30 microM in the presence of the toxin. The PP inhibitors calyculin A and endothall also potentiated H2O2 toxicity in cerebellar astrocytes. OKA caused a time-dependent inhibition of both glial catalase and glutathione peroxidase, reducing by approximately 50% the activity of these enzymes after 3 h, whereas other enzymatic activities remained unaffected. Also, OKA reduced the cellular content of total glutathione and elevated oxidized glutathione to about 25% of total glutathione. OKA-treated astrocytes cleared H2O2 from the incubation medium approximately two times more slowly than control cultures. Our results suggest a prominent role for PP activity in the antioxidant mechanisms protecting astrocytes against damage by H2O2.  相似文献   

18.
The inhibition of DDT [1,1,1-trichloro-2,2-bis-(p-chlorophenyl)ethane] dehydrochlorinase and glutathione S-aryltransferase by diphenylmethane and triphenylmethane derivatives was examined. Bis-(3,5-dibromo-4-hydroxyphenyl)methane and similar compounds were excellent inhibitors of both enzymes, but only DDT dehydrochlorinase was inhibited by compounds similar to bis-(N-dimethylaminophenyl)methane. Colour salts of the basic triphenylmethyl dyes were excellent inhibitors of both enzymes. All the inhibitors examined appeared to act by competition with glutathione for its binding site on the two enzymes.  相似文献   

19.
4'-Phenylchalcones, chalcone oxides, and related compounds were synthesized and tested as inhibitors of cytosolic epoxide hydrolase, microsomal epoxide hydrolase, and glutathione S-transferases from mouse and rat liver. Several compounds were more potent inhibitors of the cytosolic epoxide hydrolase than the parent 4'-phenylchalcone oxide while large substituents in the 4- and especially the 2-position caused a reduction in inhibition. The chalcone oxides showed selectivity as inhibitors of the cytosolic epoxide hydrolase acting on trans-stilbene oxide, while chalcones were inhibitors of cytosolic glutathione S-transferase acting on cis-stilbene oxide. Data are consistent with the hypothesis that much of the inhibition of the glutathione S-transferase is caused by the glutathione conjugate of the chalcone.  相似文献   

20.
Transport of gamma-glutamyl amino acids, a step in the proposed glutathione-gamma-glutamyl transpeptidase-mediated amino acid transport pathway, was examined in mouse kidney. The transport of gamma-glutamyl amino acids was demonstrated in vitro in studies on kidney slices. Transport was followed by measuring uptake of 35S after incubation of the slices in media containing gamma-glutamyl methionine [35S]sulfone. The experimental complication associated with extracellular conversion of the gamma-glutamyl amino acid to amino acid and uptake of the latter by slices was overcome by using 5-oxoproline formation (catalyzed by intracellular gamma-glutamyl-cyclotransferase) as an indicator of gamma-glutamyl amino acid transport. This method was also successfully applied to studies on transport of gamma-glutamyl amino acids in vivo. Transport of gamma-glutamyl amino acids in vitro and in vivo is inhibited by several inhibitors of gamma-glutamyl transpeptidase and also by high extracellular levels of glutathione. This seems to explain urinary excretion of gamma-glutamylcystine by humans with gamma-glutamyl transpeptidase deficiency and by mice treated with inhibitors of this enzyme. Mice depleted of glutathione by treatment with buthionine sulfoximine (which inhibits glutathione synthesis) or by treatment with 2,6-dimethyl-2,5-heptadiene-4-one (which effectively interacts with tissue glutathione) exhibited significantly less transport of gamma-glutamyl amino acids than did untreated controls. The findings suggest that intracellular glutathione functions in transport of gamma-glutamyl amino acids. Evidence was also obtained for transport of gamma-glutamyl gamma-glutamylphenylalanine into kidney slices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号