首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The organogenic competence of leaf explants of eleven Carthamus species including C. tinctorius on Murashige and Skoog (MS) medium supplemented with different concentrations of thidiazuron (TDZ) + α-naphthaleneacetic acid (NAA) and 6-benzyladenine (BA) + NAA was investigated. Highly prolific adventitious shoot regeneration was observed in C. tinctorius and C. arborescens on both growth regulator combinations and the shoot regeneration frequency was higher on medium supplemented with TDZ + NAA. Nodal culture of nine Carthamus species on media supplemented with BA and kinetin (KIN) individually revealed the superiority of media supplemented with BA over that of KIN in facilitating a higher shoot proliferation index. Proliferating shoots from axillary buds and leaf explants were transferred to medium supplemented with 1.0 mg dm−3 KIN or 0.5 mg dm−3 BA for shoot elongation. Elongated shoots were rooted on half-strength MS medium supplemented with 1.0 mg dm−3 each of indole-butyric acid (IBA) and phloroglucinol. The plantlets thus obtained were hardened and transferred to soil.  相似文献   

2.
A rapid and efficient plant regeneration protocol for a wide range of alfalfa genotypes was developed via direct organogenesis. Through a successive excision of the newly developed apical and axillary shoots, a lot of adventitious buds were directly induced from the cotyledonary nodes when hypocotyl of explants were vertically inserted into modified Murashige and Skoog (MS) medium supplemented with 0.025 mg dm−3 thidiazuron (TDZ) and 3 mg dm−3 AgNO3. When the lower part of shoots excised from explants were immersed into the liquid medium with 1.0 mg dm−3 α-naphthaleneacetic acid (NAA) for 2 min, and then transferred to hormone free half-strength MS medium, over 83.3 % of the shoots developed roots, and all plantlets could acclimatize and establish in soil. The protocol has been successfully applied to eight genotypes, with regeneration frequencies ranging from 63.8 to 82.5 %.  相似文献   

3.
The effect of various hormonal combinations on regeneration of shoots and roots from meristem-derived callus of Crocus sativus L. and activities of antioxidant enzymes have been studied. The most efficient regeneration occurred with 1.0 mg dm−3 1-naphthaleneacetic acid (NAA) + 1.0 mg dm−3 thidiazuron and 1.0 mg dm−3 NAA + 2.0 mg dm−3 kinetin. For sprouting, regenerated shoot were subcultured on Murashige and Skoog medium containing 1.0 mg dm−3 NAA + 1.0 mg dm−3 benzylaminopurine (BAP). Protein content and superoxide dismutase activity decreased in regenerated shoots and roots and increased in sprouting shoots, while catalase (CAT), peroxidase (POX) and polyphenol oxidase (PPO) activities increased during organogenesis and decreased in sprouting shoots. High CAT and PPO activities were detected in regenerated roots, whereas high POX activity was observed in regenerated shoot.  相似文献   

4.
In vitro propagation of northern red oak (Quercus rubra) shoots was successful from cotyledonary node explants excised from 8-wk-old in vitro grown seedlings. Initially, four shoots per explant were obtained on Murashige and Skoog (MS) medium supplemented with 4.4 μM 6-benzylaminopurine (BA), 0.45 μM thidiazuron (TDZ), and 500 mg l−1 casein hydrolysate (CH) with a regeneration frequency of 64.7% after 3 wk. Subculturing explants (after harvesting shoots) to fresh treatment medium significantly increased shoot bud regeneration (16.6 buds per explant), but the buds failed to develop into shoots. A higher percentage (73.3%) of the explants regenerated four shoots per explant on woody plant medium (WPM) supplemented with 4.4 μM BA, 0.29 μM gibberellic acid (GA3), and 500 mg l−1 CH after 3 wk. Explants subcultured to fresh treatment medium after harvesting shoots significantly increased shoot regeneration (16 shoots per explant). Shoot elongation was achieved (4 cm) when shoots were excised and cultured on WPM supplemented with 0.44 μM BA and 0.29 μM GA3. In vitro regenerated shoots were rooted on WPM supplemented with 4.9 μM indole-3-butyric acid. A higher percentage regeneration response and shoot numbers per explant were recorded on WPM supplemented with BA and GA3, than on MS medium containing BA and TDZ. Lower concentrations of BA and GA3 were required for shoot elongation and prevention of shoot tip necrosis. Each cotyledonary node yielded approximately 20 shoots within 12 wk. Rooted plantlets were successfully acclimatized.  相似文献   

5.
A high frequency adventitious shoot regeneration protocol was developed for henbane (Hyoscyamus niger L.) using thidiazuron (TDZ). Hypocotyl, cotyledon and stem explants were cultured on Murashige and Skoog (MS) medium supplemented with different concentrations of N6-benzylaminopurine and TDZ. MS medium supplemented with 16 μM TDZ was the most effective for providing 100 % regeneration frequency associated with a 19.53 shoots per hypocotyl explant. Plantlets were rooted on MS medium supplemented with different concentrations of indole-3-butyric acid (IBA) and α-naphthaleneacetic acid. High rooting and survival was achieved using half strength MS medium supplemented with 8 μM IBA.This study was supported by The State Planning Commission of Turkey (DPT) and University of Ankara (Project Nos.: 98K120640 and 2001K120240).  相似文献   

6.
Epicotyl segments of kumquat (Fortunella crassifolia Swingle cv. Jindan) were transformed with Agrobacterium tumefaciens GV3101 harboring neomycin phosphotransferase gene (npt II) containing plant expression vectors. Firstly, the explants were cultured in darkness at 25 °C on kanamycin free shoot regeneration medium (SRM) for 3 d, and then on SRM supplemented with 25 mg dm−3 kanamycin and 300 mg dm−3 cefotaxime for 20 d. Finally, they were subcultured to fresh SRM containing 50 mg dm−3 kanamycin monthly and grown under 16-h photoperiod. Sixty five kanamycin resistant shoots were regenerated from 500 epicotyl explants after four-month selection. Shoot tips of 20 strong shoots were grafted to 50-day-old kumquat seedlings and survival rate was 55 %. Among the 11 whole plants, 3 were transgenic as confirmed by Southern blotting. This is the first report on transgenic kumquat plants, and a transformation efficiency of 3.6 % was achieved.  相似文献   

7.
A micropropagation protocol through multiple shoot formation was developed for Thlaspi caerulescens L., one of the most important heavy metals hyperaccumulator plants. In vitro seed-derived young seedlings were used for the initiation of multiple shoots on Murashige and Skoog (MS) medium with combinations of benzylaminopurine (BA; 0.5–1.0 mg dm−3), naphthaleneacetic acid (NAA; 0–0.2 mg dm−3), gibberellic acid (GA3; 0–1.0 mg dm−3) and riboflavin (0–3.0 mg dm−3). The maximum number of shoots was developed on medium containing 1.0 mg dm−3 BA and 0.2 mg dm−3 NAA. GA3 (0.5 mg dm−3) in combination with BA significantly increased shoot length. In view of shoot numbers, shoot length and further rooting rate, the best combination was 1.0 mg dm−3 BA + 0.5 mg dm−3 GA3 + 1.0 mg dm−3 riboflavin. Well-developed shoots (35–50 mm) were successfully rooted at approximately 95 % on MS medium containing 20 g dm−3 sucrose, 8 g dm−3 agar and 1.0 mg dm−3 indolebutyric acid. Almost all in vitro plantlets survived when transferred to pots.  相似文献   

8.
Prolific shoot regeneration via organogenesis was induced from leaf and leaf petiole explants of the endemic Astragalus cariensis species on Murashige and Skoog (MS) medium with α-naphthaleneacetic acid (NAA) and benzyladenine (BA) within 8 week. The highest number of shoots (23/explants) was obtained from leaf explants cultured on MS with 0.5 mg/l NAA and 4 mg/l BA. Elongated shoots were successfully rooted in MS medium with 0.5 mg/l indole-3-butyric acid. Rooted plantlets were acclimatized in pots containing 1:1 mixture of peat and perlite.  相似文献   

9.
Tobacco leaf disc explants were inoculated with Agrobacterum tumefaciens strain GV2260 carrying p35S GUS-INT to determine the influence of different co-cultivation temperatures (18 – 26 °C), periods (24 – 96 h) and media (solid and liquid) on transformation efficiency. Kanamycin-resistant shoots developed on leaf discs inoculated with Agrobacterium after 4 weeks of culture initiation. Regenerated shoots were excised and rooted in the basal medium supplemented with 100 mg dm –3 kanamycin and 250 mg dm –3 augmentin. The rooted plantlets were finally transferred to compost and confirmed by GUS assay and PCR analysis. The highest transformation frequency was achieved from the explants co-cultivated with A. tumefaciens in liquid medium for 48 h at 22 or 24 °C.  相似文献   

10.
This paper describes multiple shoot regeneration from leaf and nodal segments of a medicinally important herb Centella asiatica L. on Murashige and Skoog’s (MS) medium supplemented with a range of growth regulators. The highest number of multiple shoots was observed on MS augmented with 3.0 mg dm−3 N6-benzylaminopurine (BAP) and 0.05 mg dm−3 α-naphthaleneacetic acid (NAA). Leaf explant showed maximum percentage of cultures regenerating shoots (81.6 %), with the highest shoot number (8.3 shoots per explant) and the shoot length (2.1 cm) whereas, nodal explant showed less number of shoots with callus formation at the base cut end. Successive shoot cultures were established by repeatedly sub-culturing the original explant on a fresh medium. Rooting of in vitro raised shoots was best induced on half strength MS supplemented with 0.5 mg dm−3 indole-3-butyric acid (IBA) with highest percentage of shoot regenerating roots (76.8 %) with 3–4 roots per shoot. Plantlets were acclimated in Vermi-compost and eventually established in soil. Contents of chlorophyll, total sugars, reducing sugars and proteins were estimated in leaf tissue from both in vivo and in vitro raised plants. Chlorophyll content was higher in in vivo plants, whereas other three components were higher in in vitro plants.  相似文献   

11.
Multiple shoots of Spilanthes acmella Murr. were induced from nodal buds of in vivo and in vitro seedlings on Murashige and Skoog (MS) medium containing 1.0 mg dm−3 6-benzyladenine (BA) and 0.1 mg dm−3 α-naphthalene-acetic acid (NAA). Adventitious shoots were successfully regenerated from the leaf explants derived from the above mentioned multiple shoots. The efficiency of shoot regeneration was tested in the MS medium containing BA, kinetin, or 2-isopentenyl adenine in combination with NAA, indole-3-acetic acid (IAA), or indole-3-butyric acid (IBA) and gibberellic acid. Maximum number of shoots per explant (20 ± 0.47) was recorded with 3.0 mg dm−3 BA and 1.0 mg dm−3 IAA. An anatomical study confirmed shoot regeneration via direct organogenesis. About 95 % of the in vitro shoots developed roots after transfer to half strength MS medium containing 1.0 mg dm−3 IBA. 95 % of the plantlets were successfully acclimatized and established in soil. The transplanted plantlets showed normal flowering without any morphological variation.  相似文献   

12.
The effect of various hormonal combinations on callus formation and regeneration of shoot and root from leaf derived callus of Acanthophyllum sordidum Bunge ex Boiss. has been studied. Proteins and activity of antioxidant enzymes were also evaluated during shoot and root organogenesis from callus. Calli were induced from leaf explants excised from 30-d-old seedlings grown on Murashige and Skoog medium containing 4.52 μM 2,4-dichlorophenoxyacetic acid + 4.65 μM kinetin. Maximum growth of calli and the most efficient regeneration of shoots and roots occurred with 2.69 μM 1-naphthalene acetic acid (NAA), 2.69 μM NAA + 4.54 μM thidiazuron and 2.46 μM indole-3-butyric acid. Protein content decreased in calli and increased significantly during regeneration of shoots from callus. Superoxide dismutase activity decreased in calli comparing to that of seedlings, then increased in regenerated shoots and roots. High catalase activity was detected in seedlings and regenerated shoots, whereas high peroxidase activity was observed in calli and regenerated roots.  相似文献   

13.
An in vitro propagation system was developed for castor-bean (Ricinus communis L. cv. TMV 6) through cotyledon derived callus cultures. The impact of different concentrations of auxins, cytokinins, additives, amino acids and sugars were evaluated for callus induction and shoot proliferation. Green compact nodular organogenic callus was obtained on the medium fortified with Murashige and Skoog (MS) salts, B5 vitamins, 2.0 mg dm−3 6-benzyladenine and 0.8 mg dm−3 α-naphthalene acetic acid (NAA). Multiple shoot proliferation from the callus cultures was achieved on the medium with MS salts, B5 vitamins, 2.5 mg dm−3 thidiazuron (TDZ), 0.4 mg dm−3 NAA and 15 mg dm−3 glutamine. During multiple shoot induction the phenolic secretion was controlled by the addition of 15 mg dm−3 polyvinylpyrolidone. The proliferated shoots were elongated on the medium comprising MS salts, B5 vitamins, 1.5 mg dm−3 TDZ and 0.3 mg dm−3 gibberellic acid. The elongated shoots were rooted on the medium containing MS salts, B5 vitamins, 0.3 mg dm−3 indole-3-butyric acid and 0.6 mg dm−3 silver nitrate. After root induction, the plants were hardened in earthen pots containing sand, soil and vermiculite.  相似文献   

14.
Summary A protocol has been developed for in vitro plant regeneration from cotyledonary nodes of Pterocarpus marsupium Roxb. Multiple shoots were induced from cotyledonary nodes derived from 20-d-old axenic seedlings grown on Murashige and Skoog (MS) medium containing 2.22–13.32 μM benzyladenine (BA) or 2.32–13.93 μM kinetin alone or in combination with 0.26 μM α-naphthaleneacetic acid (NAA). The highest frequency of responding explants (85%) and maximum number of shoots per explant (9.5) were obtained on MS medium supplemented with 4.44 μM BA and 0.26 μM NAA after 15 wk of culture. A proliferating shoot culture was established by repeatedly subculturing the orginal cotyledonary nodal explant on fresh medium after each harvest of the newly formed shoots. Nearly 30% of the shoots formed roots after being transferred to half-strength MS medium containing 9.84 μM indole-3-butyric acid after 25 d of culture. Fifty percent of shoots were also directly rooted as microcuttings on peat moss, soil, and compost mixture (1∶1∶1). About 52% plantlets rooted under ex vitro conditions were successfully acclimatized and established in pots.  相似文献   

15.
An efficient protocol for micropropagation of Harpagophytum procumbens DC., an endangered African medicinal plant, was developed. Maximum shoot multiplication without callus was obtained from nodal explants cultured on Murashige and Skoog (MS) basal salts plus Gamborg’s (B5) vitamins supplemented with 0.1 mg dm−3 indole-3-acetic acid and 5.0 mg dm−3 kinetin. The shoots were subsequently subcultured every 3 weeks on the same medium. Detached axillary shoots were transferred to MS basal salts plus B5 vitamins supplemented with various concentrations of α-naphthalene-acetic acid or indole-3-butyric acid (IBA), ranging from 0.5 to 2.5 mg dm−3 and 100 % rooting and optimal subsequent acclimatization was achieved on 1.0 mg dm−3 IBA. After 4 weeks of culture, the rooted shoots (>5 cm) were planted in pots containing peat, vermiculite and bark (2:1:1), covered with plastic domes and maintained at 25 °C for 2 weeks before being transferred to a glasshouse. Plant survival was about 40 %.  相似文献   

16.
Summary An efficient in vitro propagation system was developed for Arnebia euchroma, an important Chinese traditional medicinal plant. The present study utilized thidiazuron (TDZ) for the induction of shoot organogenesis on cotyledon and hypocotyl explants. The maximal number of shoots was obtained on the modified Linsmaier and Skoog (LS) medium supplemented with 1.0 mgl−1 (4.5 μM) TDZ for 12d on cotyledon explants (8.6 shoots per cotyledon explant). Other cytokinins (kinetin and 6-benzyladenine) and auxin (α-naphthaleneacetic acid) were not efficient in inducing regeneration on cotyledon explants. Browning of the basal portion of the subcultured shoots could be significantly reduced when they were cultured on the modified LS medium supplemented with 100 mgl−1 (33.3 μM) polyvinylpyrrolidone. Well-developed shoots formed roots on the same medium containing 1.0 mgl−1 (4.9 μM) indole-3-butyric acid. The efficient regeneration protocol reported here provides an important means of micropropagation of this plant. Furthermore, this protocol is essential to future genetic improvement of plants via transformation protocols.  相似文献   

17.
Efficient shoot regeneration and Agrobacterium-mediated genetic transformation systems were developed for Petunia hybrida cv. Mitchell. Leaf explants of petunia were cultured on Murashige and Skoog (MS) medium with different concentrations of thidiazuron (TDZ) without auxin. The highest frequency of shoot regeneration (52.1%) and mean number of shoots per explant (4.1) were obtained on medium containing 2 mg l?1 TDZ. Leaf explants inoculated with Agrobacterium tumefaciens strain EHA101/pIG121Hm harboring ß-glucuronidase (uidA) and hygromycin resistance genes developed putative transformant shoots. The highest frequency of shoot regeneration (22.5%) and mean number of transformant shoots per explant (2.4) were obtained on a selection medium consisting of the above described regeneration medium and containing 25 mg l?1 hygromycin as the selection agent. Approximately 95% of putative transformant shoots expressed the uidA gene following histochemical ß-glucuronidase (GUS) assay. These were confirmed to be transgenic by PCR analysis and Southern blot hybridization.  相似文献   

18.
An efficient in vitro propagation of kava (Piper methysticum) was established. Utilizing 15-d-old tender shoots from dormant auxiliary buds as explants, significant induction of vigorous aseptic cluster shoots was achieved in Murashige and Skoog (MS) medium containing 0.5 mg dm−3 6-benzyladenine (BA), 0.5 mg dm−3 indole-3-acetic acid (IAA), and antibiotics after 30 d. In vitro rooting was achieved at 100 % efficiency in MS medium containing 0.75 to 1.00 mg dm−3 IAA or indole-3-butyric acid and 3 % sucrose. The most robust and long roots were observed in medium with IBA. Moreover, the embryonic callus was induced from petioles in MS medium supplemented with 1.0 mg dm−3 BA and 0.1 mg dm−3 IAA, of which 70 % differentiated into shoots in the presence of 1.0 mg dm−3 BA and 0.5 mg dm−3 IAA.  相似文献   

19.
An efficient regeneration protocol via somatic embryogenesis was optimized for mung bean [Vigna radiata (L.) Wilczek; cv. Vamban 1]. Primary leaf explants were used for embryogenic callus induction in MMS medium (Murashige and Skoog salts with B5 vitamins) containing 2.0 mg dm−3 2,4-dichlorophenoxyacetic acid (2,4-D), 150 mg dm−3 glutamine and 3 % sucrose. Fast growing, highly embryogenic cell suspensions were established from 21-d-old calli in MMS medium supplemented with 0.5 mg dm−3 2,4-D and 50 mg dm−3 proline (Pro), and maximum recovery of globular (39.0 %), heart-shaped (26.3 %) and torpedo-stage (21.0 %) somatic embryos were observed in this medium. Mature cotyledonary-stage somatic embryos were cultured for 5 d in half strength B5 liquid medium containing 0.05 mg dm−3 2,4-D, 20 mg dm−3 Pro, 5 μM abscisic acid, 1000 mg dm−3 KNO3, 50 mg dm−3 polyethylene glycol (PEG 6000) and 30 g dm−3 D-mannitol. Mature somatic embryos were germinated after dessication for 3 d and complete development of plantlets accomplished in MMS medium containing 30 g dm−3 maltose, 0.5 mg dm−3 benzyladenine and 500 mg dm−3 KNO3. Profuse lateral roots, and regeneration frequency (up to 60 %) were observed in half-strength MMS medium containing 0.5 mg dm−3 indolebutyric acid (IBA). The regenerated plants were grown to fruiting and were morphologically normal and fertile.  相似文献   

20.
Direct regeneration from explants without an intervening callus phase has several advantages, including production of true type progenies. Axillary bud explants from 6-month-old sugarcane cultivars Co92061 and Co671 were co-cultivated with Agrobacterium strains LBA4404 and EHA105 that harboured a binary vector pGA492 carrying neomycin phosphotransferase II, phosphinothricin acetyltransferase (bar) and an intron containing -glucuronidase (gus-intron) genes in the T-DNA region. A comparison of kanamycin, geneticin and phosphinothricin (PPT) selection showed that PPT (5.0 mg l–1) was the most effective selection agent for axillary bud transformation. Repeated proliferation of shoots in the selection medium eliminated chimeric transformants. Transgenic plants were generated in three different steps: (1) production of putative primary transgenic shoots in Murashige-Skoog (MS) liquid medium with 3.0 mg l–1 6-benzyladenine (BA) and 5.0 mg l–1 PPT, (2) production of secondary transgenic shoots from the primary transgenic shoots by growing them in MS liquid medium with 2.0 mg l–1 BA, 1.0 mg l–1 kinetin (Kin), 0.5 mg l–1 -napthaleneacetic acid (NAA) and 5.0 mg l–1 PPT for 3 weeks, followed by five more cycles of shoot proliferation and selection under same conditions, and (3) rooting of transgenic shoots on half-strength MS liquid medium with 0.5 mg l–1 NAA and 5.0 mg l–1 PPT. About 90% of the regenerated shoots rooted and 80% of them survived during acclimatisation in greenhouse. Transformation was confirmed by a histochemical -glucuronidase (GUS) assay and PCR amplification of the bar gene. Southern blot analysis indicated integration of the bar gene in two genomic locations in the majority of transformants. Transformation efficiency was influenced by the co-cultivation period, addition of the phenolic compound acetosyringone and the Agrobacterium strain. A 3-day co-cultivation with 50 M acetosyringone considerably increased the transformation efficiency. Agrobacterium strain EHA105 was more effective, producing twice the number of transgenic shoots than strain LBA4404 in both Co92061 and Co671 cultivars. Depending on the variety, 50–60% of the transgenic plants sprayed with BASTA (60 g l–1 glufosinate) grew without any herbicide damage under greenhouse conditions. These results show that, with this protocol, generation and multiplication of transgenic shoots can be achieved in about 5 months with transformation efficiencies as high as 50%.Abbreviations BA 6-Benzyladenine - CaMV Cauliflower mosaic virus - GUS -Glucuronidase - Kin Kinetin - NAA -Naphthaleneacetic acid - Nos Nopaline synthase - nptII Neomycin phosphotransferase II - PCR Polymerase chain reaction - PPT Phosphinothricin - YEP Yeast extract and peptone  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号