首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Aim In this study we evaluate patterns of endemism for benthic polychaete species along the southeastern Pacific coast of Chile. Our goals were (1) to describe latitudinal gradients of endemism and identify areas of high endemism, (2) to evaluate the effect of biogeographical limits on endemism patterns, and (3) to evaluate indirectly the role played by evolutionary dynamics on patterns of endemism. Location South‐eastern Pacific coast of Chile, ranging from Arica (18° S) to Cape Horn (56° S). Methods We used a list of 178 species of endemic, shallow benthic polychaetes to evaluate patterns of endemism. Parsimony analysis of endemicity (PAE) and the endemism index (EI) were used to evaluate hierarchical relationships of endemism between different latitudinal bands, and to identify areas with high degrees of endemism and differences in endemism. We evaluated the effect of biogeographical limits on endemic polychaete fauna by testing for the existence of geometric constraints (mid‐domain effect). The role of evolutionary dynamics on latitudinal patterns of endemism was evaluated with nestedness analysis (NA) using the temperature index. Results The PAE analysis indicated two large, separate areas of endemism: (1) the northern area between 18° S and 38° S, and (2) the southern area between 39° S and 56° S. The endemism index showed a maximum value (32 species) around 39°–41° S. Species‐richness curves of each 3° band of latitude showed a clear mid‐domain effect (69%), but the two maximum points of species richness at mid‐latitudes (36° S to 38° S and 39° S to 41° S) did not correspond to the mid‐domain peak in species richness, presenting a greater number of species than expected by the mid‐domain effect. The nestedness analysis showed that the number of genera reaches a maximum of 70 at mid‐latitudes (36°–41° S), decreasing towards both the northern and southern areas. The spatial distribution of the entire data set of endemic species showed a nested pattern (T° = 24.5°, P < 0.0001). Main conclusions Our results strongly support the existence of a latitudinal gradient of endemism for benthic polychaete species along the Chilean coast. The shape of this gradient is clearly non‐linear, with a marked peak of endemism occurring at mid‐latitudes (36°–41° S, endemism hotspot), which also corresponds to a peak in species richness. Furthermore, this hotspot is the midpoint separating two distinct areas of endemism to the north and south. We suggest that the observed pattern of endemism for benthic polychaete taxa of the Chilean coast can be explained by a combination of geometric constraints and historical mechanisms, such as the processes that affected the Chilean coast during the Neogene (e.g. ENSO, oxygen minimum zone, glaciations).  相似文献   

2.
Distributional patterns of Valeriana species from southern South America were analyzed. We prepared a database with the records of 40 species from Argentina and Chile south of 33°S, obtained from herbarium specimens, published taxonomic studies and field trips. We undertook a track analysis and a parsimony analysis of endemicity (PAE), the latter with 134 grid cells of 1.5° latitude by 1.5° longitude. Three generalized tracks and one node were obtained, and three areas of endemism were identified. These general patterns of distribution in Valeriana were used to infer possible vicariance and dispersal events that might have shaped them. We identified a center of diversification in Central Chile and the Argentinean province of Neuquén. It represents a complex area that is related to both the Central Chilean and Subantarctic subregions.  相似文献   

3.
Neotropical seasonally dry forests (NSDFs) are widely distributed and possess high levels of species richness and endemism; however, their biogeography remains only partially understood. Using species distribution modelling and parsimony analysis of endemicity, we analysed the distributional patterns of the NSDF avifauna in order to identify their areas of endemism and provide a better understanding of the historical relationships among those areas. The strict consensus trees revealed 17 areas of endemism for NSDFs, which involve four large regions: Baja California, Caribbean–Antilles islands, Mesoamerica and South America. These well-resolved clades are circumscribed by geographical and ecological barriers associated with the Gulf of California, the leading edge of the Caribbean plate, the Tehuantepec Isthmus, the Polochic–Motagua fault, the Nicaragua Depression, the Chocó forest, the Amazon basin and the Andean Cordillera. Relationships among groups of NSDFs found here suggest that evolution of their avifauna involved a mixture of vicariance and dispersal events. Our results support the idea of independent diversification patterns and biogeographical processes in each region, including those previously associated with the Pleistocene Arc Hypothesis for NSDFs of south-eastern South America. This study provides a biogeographical framework to open new lines of research related to the biotic diversification of NSDFs.  相似文献   

4.
Aim We evaluate the extent to which the tropical conservatism hypothesis can explain the evolutionary development of the Muscidae. Furthermore, we compare the geographical patterns of muscid phylogenetic structure with biogeographical regions that have been identified for Neotropical insects. Location Central and South America. Methods We modelled the geographic distributions of 658 species using Maxent and 19 environmental variables. A generic‐level supertree of the Muscidae was assembled using matrix representation with parsimony and used to map the geographic pattern of mean root distance (MRD), a metric of the relative evolutionary development of assemblages. Regression models (ordinary least squares and regression trees) were used to examine temperature and other environmental correlates of MRD to explore potential environmental drivers of muscid diversification. We used the regression tree results to recognize variable intervals that best explained MRD, and these intervals were mapped to recognize and compare with biogeographical regions of Neotropical insects. Results The geographic pattern of MRD was consistent with the tropical conservatism hypothesis: species in genera that diversified relatively early, as measured by their distance from the tree root, dominate lowland tropical South America, whereas species in genera that diversified more recently occupy extra‐tropical areas, sub‐Antarctic areas and the Andean highlands. Temperature was the strongest correlate of MRD. Three biogeographical regions were recognized and they coincided with two regions known for insects. Main conclusions Evolutionary responses of muscid flies to post‐Eocene climate change taking the form of an expansion of a tropical group into regions with colder climates may be fundamental to explaining their distribution in the Neotropics. Our biogeographical regions delimited by temperature and the phylogenetic metric, surrogates of the tropical conservatism hypothesis, were very similar to general insect patterns, supporting the ‘tropical origin and evolutionary response to climate cooling’ as a broadly based historical narrative for the Neotropics.  相似文献   

5.
The aim of this research is to relate patterns of endemism and turnover along a local elevation gradient in northwest Argentina with continental biogeographical transitions. Specimen based records constituted the principal source of information to infer rodent distribution along the elevation gradient. I assessed elevational variation of richness, endemism and turnover by means of non-linear regression analysis. Then I identified five distributional patterns based on the overlap of species geographic range. Their frequency along elevation was used to validate biogeographical boundaries inferred by turnover rates. Eleven species out of 37 (30%) are endemic to the study area. Species richness and endemism were hump-shaped. The rate of endemism reached its maximum value at the upper limit of the forest (2500 m). By contrast, species turnover was U-shaped, with a small peak at 1500 m and a maximum at 3500 m. The species’ geographic range patterns were not randomly distributed along elevation but agglomerated at specific elevation. Species turnover and chorological analysis suggest two biogeographical boundaries, a weaker at 1500 m and a stronger at 3500 m. The 1500 m boundary marks the transition from assemblages dominated by Lowland-widespread fauna at lower elevation to Montane (Andean eastern slopes) species at middle elevation. This boundary is characterized by moderate species turnover and high species richness. The strong turnover rate at 3500 and the dominance of highland Andean and Andean-Patagonian species above this elevation suggest the occurrence of the transition between the Neotropical and Andean regions; which is characterised by an almost complete species replacement.  相似文献   

6.
According to the global latitudinal diversity gradient, a decrease in animal and plant species richness exists from the tropics towards higher latitudes. The aim of this study was to describe the latitudinal distribution patterns of Chilean continental flora and delineate biogeographic regions along a 4270‐km north–south gradient. We reviewed plant lists for each of the 39 parallels of continental Chile to build a database of the geographical distribution of vascular plant species comprising 184 families, 957 genera and 3787 species, which corresponded to 100%, 94.9% and 74.2% of the richness previously defined for Chile, respectively. Using this latitudinal presence–absence species matrix, we identified areas with high plant richness and endemism and performed a Cluster analysis using Jaccard index to delineate biogeographic regions. This study found that richness at family, genus and species levels follow a unimodal 4270‐km latitudinal distribution curve, with a concentration of richness in central Chile (31–42°S). The 37th parallel south (central Chile) presented the highest richness for all taxonomic levels and in specific zones the endemism (22–37°S) was especially high. This unimodal pattern contrasts the global latitudinal diversity gradient shown by other studies in the Northern hemisphere. Seven floristic regions were identified in this latitudinal gradient: tropical (18–22°S), north Mediterranean (23–28°S), central Mediterranean (29–32°S), south Mediterranean (33–37°S), north temperate (38–42°S), south temperate (43–52°S) and Austral (53–56°S). This regionalization coincides with previous bioclimatic classifications and illustrates the high heterogeneity of the biodiversity in Chile and the need for a reconsideration of governmental conservation strategies to protect this diversity throughout Chile.  相似文献   

7.
Considering that Earth and life evolve together, the present study aims to verify whether the species richness patterns are spatially congruent to biotic history. Niche conservatism was adopted as a background hypothesis to associate species richness with phylogenetic information. A parallel analysis between this procedure and cladistic biogeography was undertaken. Eleven Muscidae genera that were previously systematically reviewed for phylogenetic hypotheses were chosen for the analysis. The genera were split into ‘basal’ and ‘derived’ species, following terminal taxon root distance within each genus. Richness patterns were contrasted for the most basal and most derived 33% of species, and richness maps were constructed at 220 × 220 km grid size. A difference richness map was drawn by derived minus basal values (=derived?basal). For regions with difference values around zero, a component analysis was performed and compared with relationships established by other studies. Derived and basal species richness showed a very concise richness gradient in the Neotropical region and it was compatible with its known biogeographical history. In the Andean region, richness did not show any pattern. The area cladogram grouped Subantarctic subregion in a polytomy and Central Chile as a paraphyletic group. All hypotheses about area relationship were divergent and no vicariant pattern could be recognized in Andean region. In Neotropical region, Muscidae results corroborated a previous component relationship. The hypothesis that Paleogene climatic changes could drive the biotic component’s split was suggested. In the Andean region, recently ice sheet covering events had driven the species to disperse and/or extinct resulted in absence of pattern seen either in richness analysis or in component analysis. It is believed that species richness is linked to biotic history and this fact may be considered when evaluating hypotheses to explain broad‐scale richness gradients.  相似文献   

8.
Aim Floristic blocks and areas of endemism resulting from a parsimony analysis of endemicity (PAE) using raw floristic data versus data generated from distributional modelling for 130 species in the genus Senecio Tourn. ex L. distributed in the Mediterranean‐type climate area of Central Chile were compared, and the results were used to identify conservation priorities for the flora of the region. Location Central Chile, between 30° and 38° S. Methods Using herbarium records, a species × area matrix consisting of presence/absence data was constructed from a 0.5° × 0.5° grid. Distributional modelling techniques incorporating vegetation formations, elevation and the contagion index were used to interpolate floristic composition of poorly known areas. Parsimony analysis of endemicity was used to identify floristic blocks and areas of endemism. Results Using the number of most parsimonious trees as an index, distributional modelling greatly optimized the results of the PAE analysis. Three floristic blocks and four areas of endemism were suggested based on the PAE results using potential distribution data not incorporating the contagion index, while four blocks and two areas of endemism were suggested from the PAE results using potential distribution data incorporating the contagion index. Floristic blocks for the northern coast, southern Andes, and northern/central Andes were found, with some blocks showing divisions within them representing distinct geographic subunits. Major breaks between and within floristic blocks were identified at 32.5°–33° S and 34.5°–35° S. Main conclusions The floristic blocks identified with the distributional modelling and PAE correspond well to results from some previous studies and support hypothesized biogeographic divisions within Central Chile. The results were similar to those obtained from parallel analysis of the entire tree flora of Central Chile. The vegetative formation‐based distributional modelling produced robust and reproducible results when used along with PAE, especially when the contagion index was incorporated, and is a useful technique for area classification. The results demonstrate the utility of Senecio as an indicator genus for biogeography and conservation in southern South America.  相似文献   

9.
Aim Understanding large‐scale patterns of beta diversity and endemism is essential for ecoregional conservation planning. We present a study of spatial patterns of faunal diversification and biogeographical relationships in the Andean region of Colombia. This region has a great geomorphological complexity, as it is formed by several mountain ranges with different geologic origins. We hypothesize that this complexity results in a high turnover in species composition among subregions. Location The Andean region of Colombia, including the Santa Marta and Macarena mountain ranges. Methods The region was divided into subregions, represented by the eastern and western slopes of each of the three Andean cordilleras, the Cauca and Magdalena valley bottoms, and the peripheral mountain ranges of Perijá, Macarena and Sierra Nevada de Santa Marta. Species lists for five animal taxa (rodents, bats, birds, frogs and butterflies) were compiled for each subregion and similarities in species composition were determined by cluster analysis. To explore biogeographical relationships, species were classified into one of four distributional categories: endemic, tropical Andean, Andean‐Central American and wide continental distribution. Results The highest species richness in the region was found in the Pacific and eastern versants of the Andes, and the lowest in the Cauca and Magdalena valley bottoms. Inter‐Andean slopes were intermediate in species richness. However, when species richness was calculated per unit area, the most diverse regions were the Santa Marta and Macarena ranges, the Cauca Valley watershed and the Pacific slope. Although each taxonomic group had a different branching pattern, dendrograms indicated five common subregional clusterings: (1) Perijá‐Sierra Nevada, (2) the Pacific slope, (3) the eastern Andean slope, (4) the Cauca and Magdalena valley bottoms, and (5) the inter‐Andean slopes. Clustering patterns of inter‐Andean slopes varied among taxa. In birds, bats and rodents, grouping was by opposite slopes of the same valley, whereas frogs were grouped by mountain ranges and butterflies by valleys and their respective slopes. Seventy‐five per cent of species in all taxa were found in less than five subregions. The fauna of the Magdalena and Cauca valley bottoms was composed mostly of lowland species with wide geographical distributions, whereas the cordilleran fauna was mostly restricted to the tropical Andes. Main conclusions The western and eastern versants of the Andes have the highest species richness, but are also the largest subregions. On a per unit area basis, the peripheral ranges (Santa Marta and Macarena) are the richest, followed by the western portion of the Andes (the Cauca Valley watershed and the Pacific versant). Clustering patterns in dendrograms suggest two major patterns of differentiation of the Andean fauna: one elevational (lowlands vs. highlands) and one horizontal (among ranges and/or slopes). Biogeographical affinities of the inter‐Andean valley bottoms are with the lowland faunas of tropical America. In contrast, Andean faunas diversified locally, resulting in the evolution of a large number of endemic species, particularly among the less vagile taxa. Three different main branches of Andean fauna can be recognized, one confined to the Pacific, another to the eastern (Amazonian‐Llanos) versant of the Andes, and the third one composed by the inter‐Andean slopes of the Cauca and Magdalena valleys. The identification of five main biogeographical units in the Andean region of Colombia has important implications for the conservation of the regional biota. Conservation initiatives that seek to preserve representative samples of the regional biodiversity should take into account the patterns of diversification described here, and the evolutionary processes that gave rise to these patterns.  相似文献   

10.
Aim The study aimed to establish areas of endemism and distribution patterns for Neotropical species of the genus Piper in the Neotropical and Andean regions by means of parsimony analysis of endemicity (PAE) and track‐compatibility analysis. Location The study area includes the Neotropical region and the Northern Andean region (Páramo‐Punan subregion). Methods We used distribution information from herbarium specimens and recent monographic revisions for 1152 species of Piper from the Neotropics. First, a PAE was attempted in order to delimit the areas of endemism. Second, we performed a track‐compatibility analysis to establish distribution patterns for Neotropical species of Piper. Terminology for grouping Piper is based on recent phylogenetic analyses. Results The PAE yielded 104 small endemic areas for the genus Piper, 80 of which are in the Caribbean, Amazonian and Paranensis subregions of the Neotropical region, and 24 in the Páramo‐Punan subregion of the Andean region. Track‐compatibility analysis revealed 26 generalized tracks, one in the Páramo‐Punan subregion (Andean region), 19 in the Neotropical region, and six connecting the Andean and Neotropical regions. Both the generalized tracks and endemic areas indicate that distribution of Piper species is restricted to forest areas in the Andes, Amazonia, Chocó, Central America, the Guayana Shield and the Brazilian Atlantic coast. Main conclusions Piper should not be considered an Andean‐centred group as it represents two large species components with distributions centred in the Amazonian and Andean regions. Furthermore, areas of greater species richness and/or endemism are restricted to lowland habitats belonging to the Neotropical region. The distribution patterns of Neotropical species of Piper could be explained by recent events in the Neotropical region, as is the case for the track connecting Chocó and Central America, where most of the species rich groups of the genus are found. Two kinds of event could explain the biogeography of a large part of the Piper taxa with Andean–Amazonian distribution: pre‐Andean and post‐Andean events.  相似文献   

11.
Historical biogeography of South American freshwater fishes   总被引:4,自引:0,他引:4  
Aim To investigate biogeographical patterns of the obligate freshwater fish order Characiformes. Location South America. Methods Parsimony analysis of endemicity, likelihood analysis of congruent geographical distribution, and partition Bremer support were used. Results Areas of endemism are deduced from parsimony analysis of endemicity, and putative dispersal routes from a separate analysis of discordant patterns of distribution. Main conclusions Our results demonstrate the occurrence of 11 major areas of endemism and support a preferential eastern–western differentiation of the characiforms in the Amazonian region, contrasting with the southern–northern differentiation of terrestrial organisms. The areas of endemism identified seem to be deeply influenced by the distribution of the emerged land during the 100‐m marine highstand that occurred during the late Miocene and allow us to hypothesize the existence of eight aquatic freshwater refuges at that time. The raw distribution of non‐endemic species supports nine patterns of species distribution across the 11 areas of endemism, two of which support a southern–northern differentiation in the eastern part of the Amazon. This result shows that the main channel of the Amazon limited dispersal between tributaries from each bank of the river. The levels of endemism further demonstrate that the aquatic freshwater refuges promoted allopatric speciation and later allowed the colonization of the lowlands. By contrast, the biogeographical pattern found in the western part of the Amazon is identified as a result of the Miocene Andean foreland dynamic and the uplift of the palaeoarches that promoted allopatric divergence across several sedimentary basins by the establishment of disconnected floodplains. The assessment of conflicting species distributions also shows the presence of seven putative dispersal routes between the Amazon, Orinoco and Paraná rivers. Our findings suggest that, rather than there being a single predominant process, the establishment of the modern South American freshwater fish biotas is the result of an interaction between marine incursions, uplift of the palaeoarches, and historical connections allowing cross‐drainage dispersal.  相似文献   

12.
Aim The endoparasites of Sebastes capensis Gmelin are examined over most of its geographical range (coasts of Peru, Chile, Argentina and South Africa) to determine: (1) whether the endoparasite communities of this fish show zoogeographical patterns; and (2) if so, whether there are any relationships between spatial variations in the endoparasite fauna and known zoogeographical patterns for marine free‐living organisms (e.g. prey that are included in the life cycles of endoparasites). Location Fish were captured at nine localities along the Pacific coast of South America, from 11° S in the centre of the Peruvian coast, to 52° S in southern Chile, and also at two localities in the Atlantic Ocean, at 43° S in Argentina, and 34° S in South Africa. Methods From April to September 2003 and April to August 2004, 626 fish were captured. Endoparasites and diet were examined following traditional methods. Cluster analyses were used to evaluate the distribution patterns of the endoparasite communities, and to evaluate similarities in the prey composition per locality. Results The endoparasite fauna of S. capensis consisted of four species widely distributed along the Pacific coast: Ascarophis cf. sebastodis, Anisakis sp., Corynosoma australe, and Pseudopecoelus sp. Other parasites were distributed only in some geographical areas. The species richness of the parasite communities increased with latitude along the Pacific coast, while parasite communities from Argentina and South Africa showed low species richness. Cluster analyses based on endoparasite composition and on prey composition grouped localities in a way consistent with known biogeographical areas for marine free‐living organisms. Main conclusions The endoparasites of S. capensis exhibit a pattern associated with known biogeographical areas for free‐living organisms. The latitudinal increase in endoparasite community richness is associated with changes in prey composition (intermediate hosts) and also possibly with the presence of definitive hosts. Therefore, the biogeographical patterns of prey are considered key determinants of the endoparasite community structure of the host.  相似文献   

13.
Atlantic reef fish biogeography and evolution   总被引:3,自引:0,他引:3  
Aim To understand why and when areas of endemism (provinces) of the tropical Atlantic Ocean were formed, how they relate to each other, and what processes have contributed to faunal enrichment. Location Atlantic Ocean. Methods The distributions of 2605 species of reef fishes were compiled for 25 areas of the Atlantic and southern Africa. Maximum‐parsimony and distance analyses were employed to investigate biogeographical relationships among those areas. A collection of 26 phylogenies of various Atlantic reef fish taxa was used to assess patterns of origin and diversification relative to evolutionary scenarios based on spatio‐temporal sequences of species splitting produced by geological and palaeoceanographic events. We present data on faunal (species and genera) richness, endemism patterns, diversity buildup (i.e. speciation processes), and evaluate the operation of the main biogeographical barriers and/or filters. Results Phylogenetic (proportion of sister species) and distributional (number of shared species) patterns are generally concordant with recognized biogeographical provinces in the Atlantic. The highly uneven distribution of species in certain genera appears to be related to their origin, with highest species richness in areas with the greatest phylogenetic depth. Diversity buildup in Atlantic reef fishes involved (1) diversification within each province, (2) isolation as a result of biogeographical barriers, and (3) stochastic accretion by means of dispersal between provinces. The timing of divergence events is not concordant among taxonomic groups. The three soft (non‐terrestrial) inter‐regional barriers (mid‐Atlantic, Amazon, and Benguela) clearly act as ‘filters’ by restricting dispersal but at the same time allowing occasional crossings that apparently lead to the establishment of new populations and species. Fluctuations in the effectiveness of the filters, combined with ecological differences among provinces, apparently provide a mechanism for much of the recent diversification of reef fishes in the Atlantic. Main conclusions Our data set indicates that both historical events (e.g. Tethys closure) and relatively recent dispersal (with or without further speciation) have had a strong influence on Atlantic tropical marine biodiversity and have contributed to the biogeographical patterns we observe today; however, examples of the latter process outnumber those of the former.  相似文献   

14.
Diversification rates and evolutionary trajectories are known to be influenced by phenotypic traits and the geographic history of the landscapes that organisms inhabit. One of the most conspicuous traits in butterflies is their wing color pattern, which has been shown to be important in speciation. The evolution of many taxa in the Neotropics has also been influenced by major geological events. Using a dated, species‐level molecular phylogenetic hypothesis for Preponini, a colorful Neotropical butterfly tribe, we evaluated whether diversification rates were constant or varied through time, and how they were influenced by color pattern evolution and biogeographical events. We found that Preponini originated approximately 28 million years ago and that diversification has increased through time consistent with major periods of Andean uplift. Even though some clades show evolutionarily rapid transitions in coloration, contrary to our expectations, these shifts were not correlated with shifts in diversification. Involvement in mimicry with other butterfly groups might explain the rapid changes in dorsal color patterns in this tribe, but such changes have not increased species diversification in this group. However, we found evidence for an influence of major Miocene and Pliocene geological events on the tribe''s evolution. Preponini apparently originated within South America, and range evolution has since been dynamic, congruent with Andean geologic activity, closure of the Panama Isthmus, and Miocene climate variability.  相似文献   

15.
Seamounts: centres of endemism or species richness for ophiuroids?   总被引:1,自引:0,他引:1  
Aim To test the hypotheses that seamounts exhibit high rates of endemism and/or species richness compared to surrounding areas of the continental slope and oceanic ridges. Location The south‐west Pacific Ocean from 19–57° S to 143–171° E. Methods Presence/absence museum data were compiled for seamount and non‐seamount areas at depths between 100 and 1500 m for the Ophiuroidea (brittle‐stars), an abundant and speciose group of benthic invertebrates. Large‐scale biogeographical gradients were examined through multivariate analyses at two spatial scales, at the scale of seamounts (< 1° of latitude/longitude) and regions (5–9°). The robustness of these patterns to spatially inconsistent sampling effort was tested using Monte Carlo‐style simulations. Levels of local endemism and species richness over numbers of samples were compared for seamount and non‐seamount areas using linear regressions. Non‐seamount populations were randomly generated from areas and depth ranges that reflected the typical sampling profile of seamounts. Results Seamount ophiuroid assemblages did not exhibit elevated levels of species richness or narrow‐range endemism compared with non‐seamount areas. Seamounts can exhibit high overall species richness for low numbers of samples, particularly on seamounts supporting a dense coral matrix, but this does not increase with additional sampling at the rates found in non‐seamount areas. There were relatively few identifiable seamount specialists. In general, seamount faunas reflected those found at similar depths in surrounding areas, including the continental slope. Seamount and non‐seamount faunas within the study area exhibited congruent latitudinal and bathymetric species turnover. Main conclusions Seamount faunas were variable for ophiuroid faunal composition, species richness and narrow‐range endemism, reflecting their environmental diversity and complex history. The continental slope was also variable, with some areas being particularly species rich. Broad geomorphological habitat categories such as ‘seamounts’ or ‘continental slope’ may be at the wrong scale to be useful for conservation planning.  相似文献   

16.
Input data, analytical methods and biogeography of Elegia (Restionaceae)   总被引:1,自引:0,他引:1  
Aim The aim of this paper is to determine the optimal methods for delimiting areas of endemism for Elegia L. (Restionaceae), an endemic genus of the Cape Floristic Region. We assess two methods of scoring the data (presence–absence in regular grids, or in irregular eco‐geographical regions) and three methods for locating biogeographical centres or areas of endemism, and evaluate one method for locating biotic elements. Location The Cape Floristic Region (CFR), South Africa. Methods The distribution of all 48 species of Elegia was mapped as presence–absence data on a quarter‐degree grid and on broad habitat units (eco‐geographical areas). Three methods to delimit areas of endemism were applied: parsimony analysis of endemism (PAE), phenetic cluster analysis, and NDM (‘end em ism’). In addition, we used presence–absence clustering (‘Prabclus’) to delimit biotic elements. The performances of these methods in elucidating the geographical patterns in Elegia were compared, for both types of input data, by evaluating their efficacy in maximizing the proportion of endemics and the number of areas of endemism. Results Eco‐geographical areas perform better than quarter‐degree grids. The eco‐geographical areas are potentially more likely to track the distribution of species. The phenetic approach performed best in terms of its ability to delimit areas of endemism in the study area. The species richness and the richness of range‐restricted species are each highest in the south‐western part of the CFR, decreasing to the north and east. The phytogeographical centres identified in the present study are the northern mountains, the southern mountains (inclusive of the Riviersonderend Mountains and the Cape Peninsula), the Langeberg range, the south coast, the Cape flats, and the west coast. Main conclusions This study demonstrates that (1) eco‐geographical areas should be preferred over a grid overlay in the study of biogeographical patterns, (2) phenetic clustering is the most suitable analytical method for finding areas of endemism, and (3) delimiting biotic elements does not contribute to an understanding of the biogeographical pattern in Elegia. The areas of endemism in Elegia are largely similar to those described in other studies, but there are many detailed differences.  相似文献   

17.
Studies of South American biodiversity have identified several areas of endemism that may have enhanced historical diversification of South American organisms. Hypotheses concerning the derivation of birds in the Chocó area of endemism in northwestern South America were evaluated using protein electrophoretic data from 14 taxonomically diverse species groups of birds. Nine of these groups demonstrated that the Chocó area of endemism has a closer historical relationship to Central America than to Amazonia, a result that is consistent with phytogeographic evidence. Within species groups, genetic distances between cis-Andean (east of the Andes) and trans-Andean (west of the Andes) taxa are, on average, roughly twice that between Chocó and Central American taxa. The genetic data are consistent with the hypotheses that the divergence of most cis-Andean and trans-Andean taxa was the result of either the Andean uplift fragmenting a once continuous Amazonian-Pacific population (Andean Uplift Hypothesis), the isolation of the two faunas in forest refugia on opposite sides of the Andes during arid climates (Forest Refugia Hypothesis), or dispersal of Amazonian forms directly across the Andes into the trans-Andean region (Across-Andes Dispersal Hypothesis). Disentangling these hypotheses is difficult due to the complexity of the Andean uplift and to the scant geologic and paleoclimatic information that elucidates diversification events in northwestern South America. Regarding the divergence of cis- and trans-Andean taxa, the genetic, geologic, and paleoclimatic data allow weak rejection of the Andean Uplift Hypothesis and weak support for the Forest Refugia and Andean Dispersal Hypotheses. The subsequent diversification of Chocó and Central American taxa was the result of Pleistocene forest refugia, marine transgressions, or parapatric speciation.  相似文献   

18.
Geospatial patterns in the distribution of regional biodiversity reflect the composite processes that underpin evolution: speciation, dispersal and extinction. The spatial distribution and phylogeny of a globally widespread and species rich bird family (Rallidae) were used to help assess the role of large‐scale biogeographical processes in diversity and diversification. Here, we examine how different geostatistical diversity metrics enhance our understanding of species distribution by linking occurrence records of rail species to corresponding species level phylogeny. Tropical regions and temperate zones contained a large proportion of rail species richness and phylogenetic diversity whilst small islands in Australian, Oceanian and Oriental regions held the highest weighted and phylogenetic endemism. Our results suggest that habitat connectivity and dispersal were important ecological features in rail evolution and distribution. Spatial isolation was a significant driver of diversification where islands in Oceania were centres of neo‐endemism with recent multiple and independent speciation events and could be considered as nurseries of biodiversity. Palaeo‐endemism was mostly associated with older stable regions, so despite extensive long distance range shifting these areas retain their own ancient and distinct character. Madagascar was the major area of palaeo‐endemism associated with the oldest rail lineages and could be considered a museum of rail diversity. This implies a mixture of processes determine the current distribution and diversity of rail clades with some areas dominated by recent ‘in situ’ speciation while others harbour old diversity with ecological traits that have stood the test of time.  相似文献   

19.
An analysis of the distribution patterns of 124 Mexican gymnosperm species was undertaken, in order to detect the Mexican areas with high species richness and endemism, and with this information to propose areas for conservation. Our study includes an analysis of species richness, endemism and distributional patterns of Mexican species of gymnosperms based on three different area units (states, biogeographic provinces and grid-cells of 1° × 1° latitude/longitude). The richest areas in species and endemism do not coincide; in this way, the Sierra Madre Oriental province, the state of Veracruz and a grid-cell located in the state of Oaxaca were the areas with the highest number of species, whereas the Golfo de México province, the state of Chiapas and a grid-cell located in this state were the richest areas in endemic species. A weighted endemism and corrected weighted endemism indices were calculated, and those grid-cells with high values in both indices and with high species richness were considered as hotspots; these grid-cells are mainly located in Southern and Central Mexico.  相似文献   

20.
The concepts of biogeographical regions and areas of endemism are briefly reviewed prior to a discussion of what constitutes a natural biogeographical unit. It is concluded that a natural biogeographical unit comprises a group of endemic species that share a geological history. These natural biogeographical units are termed Wallacean biogeographical units in honour of the biogeographer A.R. Wallace. Models of the geological development of Indonesia and the Philippines are outlined. Areas of endemism within Wallacea are identified by distributional data, and their relationship to each other and to the adjacent continental regions are evaluated using molecular phylogenies from the literature. The boundaries of these areas of endemism are in broad agreement with earlier works, but it is argued that the Tanimbar Islands are biologically part of south Maluku, rather than the Lesser Sundas, and that Timor (plus Savu, Roti, Wetar, Damar, and Babar) and the western Lesser Sundas form areas of endemism in their own right. Wallacean biogeographical units within Wallacea are identified by congruence between areas of endemism and geological history. It is concluded that although Wallacea as a whole is not a natural biogeographical region, neither is it completely artificial as it is formed from a complex of predominantly Australasian exotic fragments linked by geological processes within a complex collision zone. The Philippines are argued to be an integral part of Wallacea, as originally intended. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 101 , 193–212.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号