首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Memon, A. R., Saccomani, M. and Glass, A. D. M. 1985. Efficiencyof potassium utilization by barley varieties: The role of subcellularcompartmentation.?J. exp. Bot. 36: 1860–1876. The subcellulardistributions of K+ in roots of three barley (Hordeum vulgareL.) varieties, grown at 10 and 100 mmol m–3 external K+([K+]o) were estimated by compartmental analyses. In general,increased [K+]o caused a 2–3 fold increase in vacuolar[K+], but cytoplasmic [K+] increased only slightly. Nevertheless,the three varieties, which had been selected for study on thebasis of their different rates of K+ utilization, showed distinctdifferences in the allocation of K+ between cytoplasm and vacuole.At 10 mmol m–3 [K+]o var. Betzes exhibited typical K+deficiency symptoms while var. Fergus and var. Compana did not,even though Betzes had higher [K+] in shoots and roots. Theinefficient utilization of K+ in this variety appears to beassociated with a failure to mobilize vacuolar K+ into the cytoplasmiccompartment (the ratio of vacuolar: cytoplasmic K+ contentsfor Betzes was 4.1 compared to 2.7 and 2.5, respectively, forFergus and Compana). Fergus and Betzes, which demonstrate pronouncedgrowth responses to increased [K+]0 between 10 and 100 mmolm–3, showed significant increases of cytoplasmic [K+]in this range of [K+]o. By contrast, cytoplasmic [K+] in Compana,a variety whose growth is not stimulated by increased [K+]0(from 10 to 100 mmol m–3) showed virtually no increase.It is suggested that the efficiency of K+ utilization and thegrowth response to [K+]0 in these varieties are functions ofthe subcellular distribution of this ion between cytoplasm andvacuole. Key words: Barley varieties, K+ subcellular compartmentation, utilization efficiency  相似文献   

2.
Rate of Uptake of Potassium by Three Crop Species in Relation to Growth   总被引:4,自引:0,他引:4  
Barley, ryegrass, and fodder radish were grown in flowing nutrientsolutions at four potassium concentrations, [Ke+], from 0.05to 4 mg I–1. During the first 2 weeks after germinationthe response to [Ke+] (fodder radish > barley > ryegrass)depended on the potential relative growth rate, the ratio ofroot surface area to plant weight, and on the K+ flux into theroots. Subsequently, there was no effect of [Ke+] on growthrate within the range tested. The K+ flux decreased from 4–23? 10–12 mol cm–2 s–1 in the first 2 weeksafter germination, when it was concentration-dependent, to 2–5? 10–12 mol cm–2 s–1 after 4–5 weeks,when it became independent of [Ke+] down to 0.05 mg 1–1.The results explain the importance of high [Ke+] and rapid rootgrowth during the first 2 weeks after seed germination.  相似文献   

3.
A possible role of extracellular Cl concentration ([Cl]o) in fatigue was investigated in isolated skeletal muscles of the mouse. When [Cl]o was lowered from 128 to 10 mM, peak tetanic force was unchanged, fade was exacerbated (wire stimulation electrodes), and a hump appeared during tetanic relaxation in both nonfatigued slow-twitch soleus and fast-twitch extensor digitorum longus (EDL) muscles. Low [Cl]o increased the rate of fatigue 1) with prolonged, continuous tetanic stimulation in soleus, 2) with repeated intermittent tetanic stimulation in soleus or EDL, and 3) to a greater extent with repeated tetanic stimulation when wire stimulation electrodes were used rather than plate stimulation electrodes in soleus. In nonfatigued soleus muscles, application of 9 mM K+ with low [Cl]o caused more rapid and greater tetanic force depression, along with greater depolarization, than was evident at normal [Cl]o. These effects of raised [K+]o and low [Cl]o were synergistic. From these data, we suggest that normal [Cl]o provides protection against fatigue involving high-intensity contractions in both fast- and slow-twitch mammalian muscle. This phenomenon possibly involves attenuation of the depolarization caused by stimulation- or exercise-induced run-down of the transsarcolemmal K+ gradient. potassium; skeletal muscle contraction; membrane potential; myotonia  相似文献   

4.
Siddiqi, M. Y. and Glass, A. D. M. 1987. Regulation of K+ influxin barley: Evidence for a direct control of influx by K+ concentrationof root cells.—J. exp. Bot. 38: 935–947. The kinetics of K+ (86Rb+) influx into intact roots of barley(Hordeum vulgare L. cv. Fergus) seedlings having different combinationsof root and shoot [K+], different growth rates and differentroot:shoot weight ratios were studied. K+ influx was stronglycorrelated with root [K+]; shoot [K+], growth rates, and root:shoot ratios appeared to have little effect on K+ influx. Adetailed study showed that both Vmax and Km for K+ influx wereaffected by root [K+] but not by shoot [K+]. We have suggestedthat factors such as growth rates and root: shoot ratio mayaffect K+ influx indirectly primarily via their influence onroot factors such as root [K+]. We have reiterated that othertypes of kinetic control, e.g. increased or decreased synthesisof ‘carrier systems’, may operate in addition todirect (allosteric?) control of K+ influx by root [K+]. Thenegative feedback signal from root [K+] appeared to be the primeeffector in the regulation of K+ influx. Key words: Barley, K+ influx  相似文献   

5.
A comparison was made between two methods of measuring the relationshipbetween the external [K+] and the flux of K+ into whole plantsof Lolium perenne and Raphanus sativus. The values of flux obtainedfrom solutions of 1.2 µM K+ held constant around the rootswere three and six times greater for Lolium and Raphanus respectivelythan the values obtained at the same concentration in a depletionexperiment in which the solutions, initially 100 µM K+,were depleted to below 1.2 µM K+ by plant uptake. In thedepletion experiment with Lolium, the flux was higher into plantsgrown at low [K+] than into plants grown at 100 µM eventhough [K+] within the plant was about the same for all groupsof plants. It is suggested that Lolium grown at low [K+] hasan efficient mechanism for K+ uptake which continues to operatefor some time after the plants have been transferred to a higherconcentration. With both species, Km was 15–20 µMin the depletion experiment and below 1 µM when concentrationswere held constant.  相似文献   

6.
Eight cvs of barley (Hordeum vulgare L.) were separately plantedwith Wild Oats (Avena fatua L., genetically pure line CS40)in a sand culture with two external K+ concentrations. Substantialdifferences were observed among barley cvs in their abilityto compete with wild oat. The variety Fergus was highly competitiveat both high and low [K+]e, whereas Steptoe was competitiveonly at high [K+]e, and Compana was only weakly competitivewith wild oat. The differences between barley cvs were relatedto their previously reported efficiencies of K+ uptake and utilization. Hordeum vulgare L., Avena fatua L., barley, wild oat, competition, K+ nutrition, utilization efficiency  相似文献   

7.
It was confirmed that osmotic adjustment occurred in young intactmung bean (Vigna mungo (L.) Hepper) seedlings exposed to highosmotic pressure stress. Root growth was not affected by osmoticpressure of less than 200 mOsra in the external solution, althoughhypocotyl growth was conspicuously reduced. Under this moderateosmotic stress, intracellular K+ concentration, [K+]i, increaseddramatically during the osmotic adjustment in all the regionsof the root, but the intracellular Cl concentration,[Cl]i, increased only in the aged mature region of theroot (28–33 mm from the root tip). About a half of theintracellular osmotic pressure in the aged mature region ofthe root could be ascribed to the contributions of [K+]i and[Cl]i, but in the hypocotyl, [K+]i only contributed slightlyto the osmotic adjustment. (Received June 18, 1986; Accepted August 26, 1986)  相似文献   

8.
Potassium Channels at Chara Plasmalemma   总被引:2,自引:0,他引:2  
Exposure to high K+ medium transforms Chara plasmalemma into[K+]osensitive state (K+ state). The current-voltage (I/V)characteristicsunder such conditions display a negative conductance region.This feature results from the complex time and voltage dependenceof K+ channel opening At potentials more negative than a thresholdp.d. the channels are closed and the I/V characteristics becomelinear with a low slope conductance of 0.8 S m2 and only a weakdependence on [K+]o. Such behaviour is usually associated witha non-specific leak current The threshold level for K+ channelclosing depends on [K+]o. In 2.0 mol m–3 and 5.0 mol m–3K+ medium the membrane resting p.d. follows EK, but hyperpolarizesgradually if the [K+]o is lowered. The proton pump thus appearsto be non-operative, while the cell is in the K+ state, andrecovers slowly as the cell is returned to a low K+ medium.Excitation currents decline if the cells are kept in K+ statefor some hours. Key words: K+ channels, Chara corallina, Proton pump, Current/, oltage characteristics, Conductance  相似文献   

9.
The electromotive force E and the conductance G of the Characorallina plasmalemma were measured under voltage clamp conditions.In the depolarized voltage range less negative than –60mV, E changed according to the Nerhst equation for K+, and Gincreased with the external K+ concentration [K+]o and alsowith the depolarization of the membrane potential. This is attributedto the voltage-dependent opening of the K+ channels in the largelydepolarized voltage region. The voltage-dependent increase ofG was due to the increase of the number of open K+ channelsper unit area. The density of the total K+ channels in the C. corallina plasmalemmawas estimated to be about 6.50/(10 µm)2. The single K+channel conductance K changed with the external [K+]o; it was79.3, 86.1, 105.9, 119.0 pS for external [K+]o of 0.2, 0.5,2.0 and 5.0 mu respectively. (Received May 22, 1986; Accepted August 22, 1986)  相似文献   

10.
Ricinus communis L. var. Gibsonii was grown in Long Ashton nutrientmedium with either 12mol m–3 NO3 or 8.0 mol m–3NH+4 as N source. Two plants from each N treatment were harvestedtwice a week and analysed for C, N, P, S, NO3, SO2–4ClK+Na+, Ca2+ Mg2+ and ash alkalinity. Statistical analysis of thedata showed that the effect of age and N source was differentfor the chemical variables analysed. Thus [Na+] was unaffectedby age or N source, and for both N sources [Mg2+] started atthe same level and decreased at the same rate as the plantsmatured. With NH+4 as N source, [SO2–4] was higher thanwith NO3, but did not alter with age. The concentrations,in mmol g–1 dry wt, of C, organic N, K+ and Ca2+ weredifferent for the two N sources, but the levels of these variablesaltered with age in the same way for both N sources; i.e. therewas no age x N interaction. In the case of P, NO3, Cl and COO, however,age-related variations were different for the two N sources.It is concluded, inter alia, that [Na+] is determined by external[Na+] alone, and that K+, Ca2+ and Cl are the inorganicions actively involved in charge balance during ion uptake bythe roots. Key words: Ontogeny, Chemical composition, Plant nutrition  相似文献   

11.
Millhouse, J. and Strother, S. 1987. Further characteristicsof salt-dependent bicarbonate use by the seagrass Zostera muelleri.—J.exp. Bot. 38: 1055–1068. The contribution of HCO3to photosynthetic O2 evolutionin the seagrass Zostera muelleri Irmisch ex Aschers. increasedwith increasing salinity of the bathing seawater when the inorganiccarbon concentration was kept constant. K1/2 (seawater salts)for HCO3 -dependent photosynthesis was 66% of seawatersalinity. Both short- and long-term pretreatment at low salinitiesstimulated photosynthesis in full strength seawater. Twentyfour hours pre-incubation of seagrass plants in 3·0 molm–3 NaHCO3 resulted in increased photosynthesis at allsalinities, apparently due to stimulation of HCO3 use(K1/2 (seawater salts) = 26%). Vmax (HCO3) was not affectedby low salinity pretreatment. The kinetics of HCO3 stimulationby the major seawater cations was investigated. Ca2+ was themost effective cation with the highest Vmax (HCO3) andwith K1/2(Ca2+) = 14 mol m–3. Mg2+ was also very effectiveat less than 50 mol m–3 but higher concentrations wereinhibitory. This inhibition cannot be accounted for solely byprecipitation of MgCO3. Na+ and K+ were both capable of stimulatingHCO3 use. Stimulation was in two distinct parts. Up to500 mol m–3, both citrate and chloride salts gave similarresults (K1/2(Na+) 81 mol m–3, Vmax(HCO3) 0·26µmol O2 mg–1 chl min–1), but use of citratesalts above 500 mol m–2 caused a second stimulation ofHCO3 use (K1/2(Na+) 830 mol m–3, Vmax(HCO3)0·68 µmol O2 mg–1 chl min–1). Vmax(HCO3)for the second-phase Na+ or K+ stimulation was of the same orderas for Ca2+-stimulated HCO3 use. To further characterizesalt-dependent HCO3 use, the sensitivity of photosynthesisto Tris and TES buffers was investigated. The effects of Trisappear to be due to the action of Tris+ causing stimulationof HCO3 -dependent photosynthesis in the absence of salt,but inhibition of HCO3 use in saline media. TES has noeffect on photosynthesis. External carbonic anhydrase, althoughimplicated in salt-dependent HCO3 use in Z. muelleri,could not be detected in whole leaves. Key words: Zostera muelleri, HCO3 use, salinity  相似文献   

12.
We hypothesized that highextracellular K+ concentration([K+]o)-mediated stimulation ofNa+-K+-Cl cotransporter isoform 1 (NKCC1) may result in a net gain of K+ and Cland thus lead to high-[K+]o-induced swellingand glutamate release. In the current study, relative cell volumechanges were determined in astrocytes. Under 75 mM[K+]o, astrocytes swelled by 20.2 ± 4.9%. This high-[K+]o-mediated swelling wasabolished by the NKCC1 inhibitor bumetanide (10 µM, 1.0 ± 3.1%; P < 0.05). Intracellular36Cl accumulation was increased from acontrol value of 0.39 ± 0.06 to 0.68 ± 0.05 µmol/mgprotein in response to 75 mM [K+]o. Thisincrease was significantly reduced by bumetanide (P < 0.05). Basal intracellular Na+ concentration([Na+]i) was reduced from 19.1 ± 0.8 to16.8 ± 1.9 mM by bumetanide (P < 0.05).[Na+]i decreased to 8.4 ± 1.0 mM under75 mM [K+]o and was further reduced to5.2 ± 1.7 mM by bumetanide. In addition, the recovery rate of[Na+]i on return to 5.8 mM[K+]o was decreased by 40% in the presenceof bumetanide (P < 0.05). Bumetanide inhibitedhigh-[K+]o-induced 14C-labeledD-aspartate release by ~50% (P < 0.05).These results suggest that NKCC1 contributes tohigh-[K+]o-induced astrocyte swelling andglutamate release.

  相似文献   

13.
Two approaches to quantifying relationships between nutrientsupply and plant growth were compared with respect to growth,partitioning, uptake and assimilation of NO3 by non-nodulatedpea (Pisum sativum L. cv. Marma). Plants grown in flowing solutionculture were supplied with NO3 at relative addition rates(RAR) of 0·03, 0·06, 0·12, and 0·18d–1, or constant external concentrations ([NO3)of 3, 10, 20, and 100 mmol m–3 over 19 d. Following acclimation,relative growth rates (RGR)approached the corresponding RARbetween 0·03–0.12 d-1, although growth was notlimited by N supply at RAR =0.18 d-1. Growth rates showed littlechange with [NO3–] between 10–100 mmol m–3(RGR=0·15 –0·16 d-1). The absence of growthlimitation over this range was suggested by high unit absorptionrates of NO3, accumulation of NO3 in tissues andprogressive increases in shoot: root ratio. Rates of net uptakeof NO3 from 1 mol m–3 solutions were assessed relativeto the growth-related requirement for NO3, showing thatthe relative uptake capacity increased with RGR between 0·03–0·06d–1 , but decreased thereafter to a theoretical minimumvalue at RGR  相似文献   

14.
Extracellular K+ concentration ([K+]) is closely regulated by the concerted regulatory responses of kidney and muscle. In this study, we aimed to define the responses activated when dietary K+ was moderately reduced from a control diet (1.0% K+) to a 0.33% K+ diet for 15 days. Although body weight and baseline plasma [K+] (4.0 mM) were not reduced in the 0.33% K+ group, regulatory responses to conserve plasma [K+] were evident in both muscle and kidney. Insulin-stimulated clearance of K+ from the plasma was estimated in vivo in conscious rats with the use of tail venous and arterial cannulas. During infusion of insulin·(50 mU·kg–1·min–1), plasma [K+] level fell to 3.2 ± 0.1 mM in the 1.0% K+ diet group and to only 3.47 ± 0.07 mM in the 0.33% K+ diet group (P < 0.01) with no reduction in urinary K+ excretion, which is evidence of insulin resistance to cellular K+ uptake. Insulin-stimulated cellular K+ uptake was quantitated by measuring the K+ infusion rate necessary to clamp plasma K+ at baseline (in µmol·kg–1·min–1) during 5 mU of insulin·kg–1·min–1 infusion: 9.7 ± 1.5 in 1% K+ diet was blunted to 5.2 ± 1.7 in the 0.33% K+ diet group (P < 0.001). Muscle [K+] and Na+-K+-ATPase activity and abundance were unchanged during the 0.33% K+ diet. Renal excretion, which was measured overnight in metabolic cages, was reduced by 80%, from 117.6 ± 10.5 µmol/h/animal (1% K+ diet) to 24.2 ± 1.7 µmol/h/animal (0.33% K+ diet) (P < 0.001). There was no significant change in total abundance of key renal K+ transporters, but 50% increases in both renal PTK cSrc abundance and ROMK phosphorylation in the 0.33% K+ vs. 1% K+ diet group, previously established to be associated with internalization of ROMK. These results indicate that plasma [K+] can be maintained during modest K+ restriction due to a decrease in insulin-stimulated cellular K+ uptake as well as renal K+ conservation mediated by inactivation of ROMK, both without a detectable change in plasma [K+]. The error signals inciting and maintaining these responses remain to be identified. potassium homeostasis; Na+-K+-ATPase; H+-K+-ATPase; protein tyrosine kinase; cSrc  相似文献   

15.
Barley (Hordeum vulgare L., cvs Golf, Mette, and Laevigatum)was grown under nitrogen limitation in solution culture untilnear maturity. Three different nitrogen addition regimes wereused: in the ‘HN’ culture the relative rate of nitrate-Naddition (RA) was 0·08 d–1 until day 48 and thendecreased stepwise to, finally, 0·005 d–1 duringgrain-filling; the ‘LN’ culture received 45% ofthe nitrogen added in HN; the ‘CN’ culture was maintainedat RA 0·0375 d–1 throughout. Kinetics of net nitrateuptake were measured during ontogeny at 30 to 150 mmol m–3external nitrate. Vmax (which is argued to reflect the maximuminflux rate in these plants) declined with age in both HN andLN cultures. A pronounced transient drop was observed just beforeanthesis, which correlated in time with a peak in root nitrateconcentration. Similar, but less pronounced, trends were observedin CN. The relative Vmax (unit nitrogen taken up per unit nitrogenin plants and day) in all three cultures declined from 1·3–2·3d–1 during vegetative growth to 0·1–0·7d–1 during generative growth. These values are in HN andLN cultures 15- to more than 100-fold in excess of the demandset by growth rates throughout ontogeny. Predicted balancingnitrate concentrations (defined as the nitrate concentrationrequired to support the observed rate of growth) were below6·0 mmol m–3 in HN and LN cultures before anthesisand then decreased during ontogeny. In CN cultures the balancingnitrate concentration increased during grain-filling. Apartfrom the transient decline during anthesis, most of the effectof ageing on relative Vmax can be explained in terms of reducedcontribution of roots to total biomass (R:T). The loss in uptakeper unit root weight is largely compensated for by the declinewith time in average tissue nitrogen concentrations. The quantitativerelationships between relative Vmax and R:T in ageing plantsare similar to those observed for vegetative plants culturedat different RAs. The data support the contention that the capacity for nitrateacquisition in N-limited plants is under general growth control,rather than controlled by specific regulation of the biochemicalpathway of nitrate assimilation. Key words: Barley, nitrogen concentration, root: total plant biomass ratio, Vmax  相似文献   

16.
Patients treated with glucocorticoids have elevated skeletal muscle ouabain binding sites. The major Na+-K+-ATPase (NKA) isoform proteins found in muscle, 2 and 1, are increased by 50% in rats treated for 14 days with the synthetic glucocorticoid dexamethasone (DEX). This study addressed whether the DEX-induced increase in the muscle NKA pool leads to increased insulin-stimulated cellular K+ uptake that could precipitate hypokalemia. Rats were treated with DEX or vehicle via osmotic minipumps at one of two doses: 0.02 mg·kg–1·day–1 for 14 days (low DEX; n = 5 pairs) or 0.1 mg·kg–1·day–1 for 7 days (high DEX; n = 6 pairs). Insulin was infused at a rate of 5 mU·kg–1·min–1 over 2.5 h in conscious rats. Insulin-stimulated cellular K+ and glucose uptake rates were assessed in vivo by measuring the exogenous K+ infusion () and glucose infusion (Ginf) rates needed to maintain constant plasma K+ and glucose concentrations during insulin infusion. DEX at both doses decreased insulin-stimulated glucose uptake as previously reported. Ginf (in mmol·kg–1·h–1) was 10.2 ± 0.6 in vehicle-treated rats, 5.8 ± 0.8 in low-DEX-treated rats, and 5.2 ± 0.6 in high-DEX-treated rats. High DEX treatment also reduced insulin-stimulated K+ uptake. (in mmol·kg–1·h–1) was 0.53 ± 0.08 in vehicle-treated rats, 0.49 ± 0.14 in low-DEX-treated rats, and 0.27 ± 0.08 in high-DEX-treated rats. DEX treatment did not alter urinary K+ excretion. NKA 2-isoform levels in the low-DEX-treated group, measured by immunoblotting, were unchanged, but they increased by 38 ± 15% (soleus) and by 67 ± 3% (gastrocnemius) in the high-DEX treatment group. The NKA 1-isoform level was unchanged. These results provide novel evidence for the insulin resistance of K+ clearance during chronic DEX treatment. Insulin-stimulated cellular K+ uptake was significantly depressed despite increased muscle sodium pump pool size. skeletal muscle; sodium pump; Na+-K+-ATPase  相似文献   

17.
Diurnal temperature fluctuations induced change in soya bean-pod[Glycine max (L.) Merr.] carbon exchange rate (CER, where positiveCER represents CO2 evolution). CER appeared to depend linearlyon temperature. Linear regressions of CER on temperature interceptedthe temperature axis at 5°C (i.e. zero CER at 5°C).Slopes of these regressions (i.e. temperature sensitivity) changedover the season. The CER-temperature sensitivity coefficient,K, (calculated from observed values of CER. pod temperatureand temperature intercept) rose from less than 0·02 mgCO2 h–1 pod–1 °C–1 during early pod-flll,peaked at over 0·04 mg CO2 h–1 pod–1 °C–1at mid pod-fill, and then declined during late pod-fill andmaturation. Glycine max (L.) Merr., Soya bean, carbon exchange rate, temperature  相似文献   

18.
Compartmental analyses of intact roots of barley (Hordeum vulgareL. cv. Klondike) plants, grown with different levels of NO3(up to 1·0 mol m–3) in the external media, wereundertaken using 13NO3. Two additional treatments, namelysodium dodecyl sulphate (SDS) or brief exposure to high temperature,designed to investigate the identity of the three NO3compartments revealed by compartmental analyses, provided supportfor the identification of the latter as corresponding to superficialsolution, apoplasm, and cytoplasm. Half-lives for exchange ofthese compartments, 3 s, 30 s, and 7 mm, were unaffected bythe level of NO3 provided during growth. Independentestimates of 13NO3 fluxes obtained by direct methodsagreed well with values of fluxes calculated from the compartmentalanalyses. Cytoplasmic [NO3], estimated from the compartmental analyses,were in the range from 1–37 mol m–3, and increasedwith increasing [NO3] of the medium. Such values forcytoplasmic [NO3] are inconsistent with an earlier proposal(Siddiqi, Glass, Ruth, and Rufty, 1990; Glass, Siddiqi, Ruth,and Rufty, 1990) of passive NO3 uptake in the concentrationrange above 10 mol m–3. A model, based upon localizeddistribution of nitrate reductase activity in epidermal cells,is proposed in which the proposed passive low affinity NO uptakeat high external [NO3] is restricted to epidermal cells. During loading periods with 13NO3, significant amountsof 13N were translocated to the shoot. Two pools of 13N, onebeing the root symplasm, appear to participate in the transferof labelled N to the shoot. Key words: Barley, compartmentation, nitrate, nitrate reductase, 13N  相似文献   

19.
Potassium transport has been studied in the marine euryhalinealga, Enteromorpha intestimlis cultured in seawater and in low-salinitymedium (Artificial Cape Banks Spring Water, ACBSW; 25·5mol m–3 Cl, 20·4 mol m–3 Na+, 0·5mol m–3 K+). K+ fluxes were measured using 42K+ and 86Rb+although 86Rb+ does not act as an efficient K+ analogue in thisplant. 42K+ experiments on seawater plants typically exhibiteda single protoplasmic exchange phase whereas 86Rb+ exhibitedtwo exchange phases. Compartmental analysis of 86Rb+ effluxexperiments on seawater-grown Enteromorpha plants were usedto deduce the intracellular partition of K+ between the cytoplasm(279±38 mMolal) and vacuole (405±68 mMolal). Theplasmalemma K+ flux in plants in seawater was greater in thelight than in the dark (563±108 nmol m–2 s–1versus 389±66·7 nmol m–2 s–1). Inlow-salinity plants, separate cytoplasmic and vacuolar exchangephases were apparent. Analysis of 42K+ efflux experiments onlow-salinity plants yielded a cytoplasmic K+ of 222±38mMolal and a vacuolar K+ of 82±11 mMolal. The plasmalemmaand tonoplast flux was 23±4·5 nmol m–2 s–1. The Nernst equation showed that, although K+ was close to electrochemicalequilibrium, active accumulation of K+ across the plasmalemmaoccurred in plants in seawater and ACBSW both in the light anddark. K+ was also actively transported inwards across the tonoplastin low-salinity plants. The electrochemical potential for K+across the plasmalemma ranged from 2·41±0·60kJ mol–1 in plants grown in seawater in the light to 5·79±0·87kJ mol–1 for plants in ACBSW in the light. Although K+is close to electrochemical equilibrium, the flux of K+ in plantsin both seawater and ACBSW media is high, hence the power consumptionof K+ transport is high. The permeability of K+ (PK+) was significantlyhigher in the light than in the dark in plants in seawater (about7·0 versus 2·5 nm s–1) but in plants inlow-salinity (ACBSW) medium the permeability was independentof light (about 12 nm s–1). The energy requirements ofactive K+ transport by ATP-dependent pumps is discussed. Key words: Enteromorpha, Potassium transport, Ionic relations, Saltwater, Low salinity, Thermodynamics  相似文献   

20.
Potassium-Ammonium Uptake Interactions in Tobacco Seedlings   总被引:6,自引:0,他引:6  
Short-term (< 12 h) uptake experiments were conducted with6–7-week-old tobacco (Nicotiana tabacum L. cv. Ky 14)seedlings to determine absorption interactions between K+ andNH4+. At equal solution concentrations (0.5 mol m–3) netK+ uptake was inhibited 30–35% by NH4+ and NH4+ uptakewas decreased 9–24%. Removal of NH4+ resulted in completerecovery in K+ uptake rate, but NH4+ uptake rate did not recoverwhen K+ was removed. In both cases, inhibition of the uptakerate of one cation saturated as the concentration of the othercation was increased up to 0.5 mol m–3. The relative effectof K+-NH4+ interactions was not altered when Cl- was replacedwith SO42–, but the magnitudes of the uptake rates wereless in the absence of Cl-. The Vmax for NH4+ uptake was reducedfrom 128 to 105 µmol g–1 dry wt. h–1 in thepresence of 0.5 mol m–3 K+ and the Km for NH4+ doubledfrom 12 to 27 mmol m–3 in the presence of K+. The resultsof these K+-NH4+ experiments are interpreted as mixed-noncompetitiveinteractions. However, an enhanced efflux of K+ coupled to NH4+influx via an antiporter cannot be ruled out as contributingto the decrease in net K+ uptake. Key words: Nicotiana tabacum, K+, NH4+, Uptake interactions  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号