首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
《IRBM》2022,43(3):217-228
Objective: Globally, cardiovascular diseases (CVDs) are one of the most leading causes of death. In medical screening and diagnostic procedures of CVDs, electrocardiogram (ECG) signals are widely used. Early detection of CVDs requires acquisition of longer ECG signals. It has triggered the development of personal healthcare systems which can be used by cardio-patients to manage the disease. These healthcare systems continuously record, store, and transmit the ECG data via wired/wireless communication channels. There are many issues with these systems such as data storage limitation, bandwidth limitation and limited battery life. Involvement of ECG data compression techniques can resolve all these issues.Method: In the past, numerous ECG data compression techniques have been proposed. This paper presents a methodological review of different ECG data compression techniques based on their experimental performance on ECG records of the Massachusetts Institute of Technology-Beth Israel Hospital (MIT-BIH) arrhythmia database.Results: It is observed that experimental performance of different compression techniques depends on several parameters. The existing compression techniques are validated using different distortion measures.Conclusion: This study elaborates advantages and disadvantages of different ECG data compression techniques. It also includes different validation methods of ECG compression techniques. Although compression techniques have been developed very widely but the validation of compression methods is still a prospective research area to accomplish an efficient and reliable performance.  相似文献   

2.
3.
The relationship between information and energy is key to understanding biological systems. We can display the information in DNA sequences specifically bound by proteins by using sequence logos, and we can measure the corresponding binding energy. These can be compared by noting that one of the forms of the second law of thermodynamics defines the minimum energy dissipation required to gain one bit of information. Under the isothermal conditions that molecular machines function this is joules per bit ( is Boltzmann''s constant and T is the absolute temperature). Then an efficiency of binding can be computed by dividing the information in a logo by the free energy of binding after it has been converted to bits. The isothermal efficiencies of not only genetic control systems, but also visual pigments are near 70%. From information and coding theory, the theoretical efficiency limit for bistate molecular machines is ln 2 = 0.6931. Evolutionary convergence to maximum efficiency is limited by the constraint that molecular states must be distinct from each other. The result indicates that natural molecular machines operate close to their information processing maximum (the channel capacity), and implies that nanotechnology can attain this goal.  相似文献   

4.
Negotiation and trade typically require a mutual interaction while simultaneously resting in uncertainty which decision the partner ultimately will make at the end of the process. Assessing already during the negotiation in which direction one's counterpart tends would provide a tremendous advantage. Recently, neuroimaging techniques combined with multivariate pattern classification of the acquired data have made it possible to discriminate subjective states of mind on the basis of their neuronal activation signature. However, to enable an online-assessment of the participant's mind state both approaches need to be extended to a real-time technique. By combining real-time functional magnetic resonance imaging (fMRI) and online pattern classification techniques, we show that it is possible to predict human behavior during social interaction before the interacting partner communicates a specific decision. Average accuracy reached approximately 70% when we predicted online the decisions of volunteers playing the ultimatum game, a well-known paradigm in economic game theory. Our results demonstrate the successful online analysis of complex emotional and cognitive states using real-time fMRI, which will enable a major breakthrough for social fMRI by providing information about mental states of partners already during the mutual interaction. Interestingly, an additional whole brain classification across subjects confirmed the online results: anterior insula, ventral striatum, and lateral orbitofrontal cortex, known to act in emotional self-regulation and reward processing for adjustment of behavior, appeared to be strong determinants of later overt behavior in the ultimatum game. Using whole brain classification we were also able to discriminate between brain processes related to subjective emotional and motivational states and brain processes related to the evaluation of objective financial incentives.  相似文献   

5.
6.
7.
内侧前额叶与社会认知   总被引:2,自引:0,他引:2  
早期的研究表明杏仁核、前额叶、颞上沟、前扣带回等与人类的社会认知活动有关;随着多种新技术的应用。越来越多的研究发现其它一些脑区结构(如岛叶、基底节、白质等)也与社会认知和行为有关。本文综述了内侧前额叶在社会认知中的作用,重点介绍了内侧前额叶在心灵理论、情绪认知、社会推理与决策、道德判断、自我认知等社会认知活动中的作用。未来研究希望能从整体和动态上认识内侧前额叶在社会认知活动中的作用。  相似文献   

8.
Human and nonhuman primates rely almost exclusively on vision for social communication. Therefore, tracking eye movements and examining visual scan paths can provide a wealth of information about many aspects of primate social information processing. Although eye-tracking techniques have been utilized with humans for some time, similar studies in nonhuman primates have been less frequent over recent decades. This has largely been owing to the need for invasive manipulations, such as the surgical implantation of devices to limit head movement, which may not be possible in some laboratories or at some universities, or may not be congruent with some experimental aims (i.e., longitudinal studies). It is important for all nonhuman primate researchers interested in visual information processing or operant behavior to realize that such invasive procedures are no longer necessary. Here, we briefly describe new methods for fully noninvasive video eye-tracking with adult rhesus monkeys (Macaca mulatta). We also describe training protocols that require only ~30 days to accomplish and quality control measures that promote reliable data collection. It is our hope that this brief overview will reacquaint nonhuman primate researchers with the benefits of eye-tracking and promote expanded use of this powerful methodology.  相似文献   

9.
Current methods for stallion semen cryopreservation: a survey   总被引:1,自引:0,他引:1  
Various factors affect the success of AI with frozen-thawed semen in horses. Stallion variability is thought to be one of the major factors, but semen processing and evaluation techniques, thawing protocols, packaging systems and timing of insemination are far from standardized among laboratories. Our objective was to survey current methods for stallion semen cryopreservation used commercially around the world. From the answers to the questions in the survey, we attempted to provide an overview of procedures that are standard as well as those that are used by only few laboratories and to review critically the efficacy of these procedures. Twenty-five questionnaires were sent to individuals or laboratories in 14 countries that were i.v. involved in freezing stallion semen for commercial purposes. Questionnaires were returned from 10/14 countries with 21/25 (84%) of the addresses responding. From the responses, it became evident that most of prefreezing, freezing and thawing and post-thawing processing procedures were far from standardized. The great variety of procedures makes it difficult to accept any of them as reliable. In order to increase the credibility of AI technology in the horse, laboratories need to standardize processing methods as well as the record-keeping systems. In addition, it is evident that no group of research mares is large enough to provide meaningful fertility data. It is therefore imperative to have multicentered collaborative studies to record and disseminate information about methods and the corresponding fertility rate. to gain valuable information and be able to compare different protocols.  相似文献   

10.
Evolutionary psychology and the brain   总被引:3,自引:0,他引:3  
The human brain is a set of computational machines, each of which was designed by natural selection to solve adaptive problems faced by our hunter-gatherer ancestors. These machines are adaptive specializations: systems equipped with design features that are organized such that they solve an ancestral problem reliably, economically and efficiently. The search for functionally specialized computational adaptations has now begun in earnest. A host of specialized systems have recently been found, including ones designed for sexual motivation, social inference, judgment under uncertainty and conditioning, as well as content-rich systems for visual recognition and knowledge acquisition.  相似文献   

11.
The previous generation of image analysis machines were capable of processing and analyzing binary, i.e., black and white images, and making measurements and decisions thereon. The Magiscan 2, one of the new generation computers, is capable of analyzing gray-level images in a variety of sophisticated ways. Its uses in the medical application of image analysis are presented, as are the techniques used to analyze images in general. The two principal current medical uses are the automatic karyotyping of chromosomes and the automatic screening of cervical smears. Other applications discussed include three-dimensional reconstruction of structures from two-dimensional sections and the possibility of developing expert systems for medical diagnostics.  相似文献   

12.
13.
The complexity of human gait patterns has become a topic of major interest in motor control and biomechanics. Range of motion is still the preferred method to quantify movement impairment, however, within these traditional linear measures, the inter-segmental coordination and movement variability is normally ignored. A dynamical systems approach using vector coding and circular statistics provides non-linear techniques to quantify coordination and variability. This study provides comprehensive vector coding and circular statistics calculations. Additionally, pelvis–lumbar coordination and coordination variability data obtained from ten healthy young male participants during five walking trials using an optoelectronic system is provided. This novel data can form the baseline information for future studies in this area of research. Finally, a new illustration to present coordination and coordination variability information of gait kinematics, combining the output from the modified vector coding technique with traditional time-series segmental angle data is presented. This technique, when applied to single patients can be beneficial to assess the effect of an intervention on the patient-specific inter-segmental coordination pattern with implications to the clinical setting.  相似文献   

14.
During wakefulness, a constant and continuous stream of complex stimuli and self-driven thoughts permeate the human mind. Here, eleven participants were asked to count down numbers and remember negative or positive autobiographical episodes of their personal lives, for 32 seconds at a time, during which they could freely engage in the execution of those tasks. We then examined the possibility of determining from a single whole-brain functional magnetic resonance imaging scan which one of the two mental tasks each participant was performing at a given point in time. Linear support-vector machines were used to build within-participant classifiers and across-participants classifiers. The within-participant classifiers could correctly discriminate scans with an average accuracy as high as 82%, when using data from all individual voxels in the brain. These results demonstrate that it is possible to accurately classify self-driven mental tasks from whole-brain activity patterns recorded in a time interval as short as 2 seconds.  相似文献   

15.
RNA-modifying machines in archaea   总被引:8,自引:0,他引:8  
It has been known for nearly half a century that coding and non-coding RNAs (mRNA, and tRNAs and rRNAs respectively) play critical roles in the process of information transfer from DNA to protein. What is both surprising and exciting, are the discoveries in the last decade that cells, particularly eukaryotic cells, contain a plethora of non-coding RNAs and that these RNAs can either possess catalytic activity or can function as integral components of dynamic ribonucleoprotein machines. These machines appear to mediate diverse, complex and essential processes such as intron excision, RNA modification and editing, protein targeting, DNA packaging, etc. Archaea have been shown to possess RNP complexes; some of these are authentic homologues of the eukaryotic complexes that function as machines in the processing, modification and assembly of rRNA into ribosomal subunits. Deciphering how these RNA-containing machines function will require a dissection and analysis of the component parts, an understanding of how the parts fit together and an ability to reassemble the parts into complexes that can function in vitro. This article summarizes our current knowledge about small-non-coding RNAs in Archaea, their roles in ribosome biogenesis and their relationships to the complexes that have been identified in eukaryotic cells.  相似文献   

16.
Here we report findings from neuropsychological investigations showing the existence, in humans, of intersensory integrative systems representing space through the multisensory coding of visual and tactile events. In addition, these findings show that visuo-tactile integration may take place in a privileged manner within a limited sector of space closely surrounding the body surface, i.e., the near-peripersonal space. They also demonstrate that the representation of near-peripersonal space is not static, as objects in the out-of-reach space can be processed as nearer, depending upon the (illusory) visual information about hand position in space, and the use of tools as physical extensions of the reachable space. Finally, new evidence is provided suggesting the multisensory coding of peripersonal space can be achieved through bottom-up processing that, at least in some instances, is not necessarily modulated by more "cognitive" top-down processing, such as the expectation regarding the possibility of being touched. These findings are entirely consistent with the functional properties of multisensory neuronal structures coding near-peripersonal space in monkeys, as well as with behavioral, and neuroimaging evidence for the cross-modal coding of space in normal subjects. This high level of convergence ultimately favors the idea that multisensory space coding is achieved through similar multimodal structures in both humans and non-human primates.  相似文献   

17.
Image compression is an application of data compression on digital images. Several lossy/lossless transform coding techniques are used for image compression. Discrete cosine transform (DCT) is one such widely used technique. A variation of DCT, known as warped discrete cosine transform (WDCT), is used for 2-D image compression and it is shown to perform better than the DCT at high bit-rates. We extend this concept and develop the 3-D WDCT, a transform that has not been previously investigated. We outline some of its important properties, which make it especially suitable for image compression. We then propose a complete image coding scheme for volumetric data sets based on the 3-D WDCT scheme. It is shown that the 3-D WDCT-based compression scheme performs better than a similar 3-D DCT scheme for volumetric data sets at high bit-rates.  相似文献   

18.
Cumulative cultural evolution is what 'makes us odd'; our capacity to learn facts and techniques from others, and to refine them over generations, plays a major role in making human minds and lives radically different from those of other animals. In this article, I discuss cognitive processes that are known collectively as 'cultural learning' because they enable cumulative cultural evolution. These cognitive processes include reading, social learning, imitation, teaching, social motivation and theory of mind. Taking the first of these three types of cultural learning as examples, I ask whether and to what extent these cognitive processes have been adapted genetically or culturally to enable cumulative cultural evolution. I find that recent empirical work in comparative psychology, developmental psychology and cognitive neuroscience provides surprisingly little evidence of genetic adaptation, and ample evidence of cultural adaptation. This raises the possibility that it is not only 'grist' but also 'mills' that are culturally inherited; through social interaction in the course of development, we not only acquire facts about the world and how to deal with it (grist), we also build the cognitive processes that make 'fact inheritance' possible (mills).  相似文献   

19.
To better understand the human mind from an evolutionary perspective, a great deal of research has focused on the closest living relative of humans, the chimpanzee, using various approaches, including studies of social intelligence. Here, I review recent research related to several aspects of social intelligence, including deception, understanding of perception and intention, social learning, trading, cooperation, and regard for others. Many studies have demonstrated that chimpanzees are proficient in using their social intelligence for selfish motives to benefit from their interactions with others. In contrast, it is not yet clear whether chimpanzees engage in prosocial behaviors that benefit others; however, chimpanzee mother–infant interactions indicate the possibility of such behaviors. Therefore, I propose that chimpanzees possess rudimentary traits of human mental competence not only in terms of theory of mind in a broader sense but also in terms of prosociality involving regard for others. Mother–infant interactions appear to be particularly important to understanding the manifestation of social intelligence from an evolutionary perspective.  相似文献   

20.
《IRBM》2022,43(5):325-332
ObjectiveIn cardiac patient-care, compression of long-term ECG data is essential to minimize the data storage requirement and transmission cost. Hence, this paper presents a novel electrocardiogram data compression technique which utilizes modified run-length encoding of wavelet coefficients.MethodFirst, wavelet transform is applied to the ECG data which decomposes it and packs maximum energy to less number of transform coefficients. The wavelet transform coefficients are quantized using dead-zone quantization. It discards small valued coefficients lying in the dead-zone interval while other coefficients are kept at the formulated quantized output interval. Among all the quantized coefficients, an average value is assigned to those coefficients for which energy packing efficiency is less than 99.99%. The obtained coefficients are encoded using modified run-length coding. It offers higher compression ratio than conventional run-length coding without any loss of information.ResultsCompression performance of the proposed technique is evaluated using different ECG records taken from the MIT-BIH arrhythmia database. The average compression performance in terms of compression ratio, percent root mean square difference, normalized percent mean square difference, and signal to noise ratio are 17.18, 3.92, 6.36, and 28.27 dB respectively for 48 ECG records.ConclusionThe compression results obtained by the proposed technique is better than techniques recently introduced by others. The proposed technique can be utilized for compression of ECG records of Holter monitoring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号