首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Both genomic and subgenomic RNAs of the Alphavirus have m(7)G(5')ppp(5')N (cap0 structure) at their 5' end. Previously it has been shown that Alphavirus-specific nonstructural protein Nsp1 has guanine-7N-methyltransferase and guanylyltransferase activities needed in the synthesis of the cap structure. During normal cap synthesis the 5' gamma-phosphate of the nascent viral RNA chain is removed by a specific RNA 5'-triphosphatase before condensation with GMP, delivered by the guanylyltransferase. Using a novel RNA triphosphatase assay, we show here that nonstructural protein Nsp2 (799 amino acids) of Semliki Forest virus specifically cleaves the gamma,beta-triphosphate bond at the 5' end of RNA. The same activity was demonstrated for Nsp2 of Sindbis virus, as well as for the amino-terminal fragment of Semliki Forest virus Nsp2-N (residues 1-470). The carboxyl-terminal part of Semliki Forest virus Nsp2-C (residues 471-799) had no RNA triphosphatase activity. Replacement of Lys-192 by Asn in the nucleotide-binding site completely abolished RNA triphosphatase and nucleoside triphosphatase activities of Semliki Forest virus Nsp2 and Nsp2-N. Here we provide biochemical characterization of the newly found function of Nsp2 and discuss the unique properties of the entire Alphavirus-capping apparatus.  相似文献   

2.
The replication of Semliki Forest virus requires four nonstructural proteins (nsP1 to nsP4), all derived from the same polyprotein. One of these, nsP2, is a multifunctional protein needed in RNA replication and in the processing of the nonstructural polyprotein. On the basis of amino acid sequence homologies, nsP2 was predicted to possess nucleoside triphosphatase and RNA helicase activities. Here, we report the engineered expression in Escherichia coli of nsP2 and of an amino-terminal fragment of it by use of the highly efficient T7 expression system. Both polypeptides were produced as fusion proteins with a histidine tag at the amino terminus and purified by immobilized-metal affinity chromatography. The two recombinant proteins exhibited ATPase and GTPase activities, which were further stimulated by the presence of single-stranded RNA. The activities were not found in similarly prepared fractions from uninduced control cells or cells expressing an unrelated polypeptide. Radiolabeled ribonucleoside triphosphates could be cross-linked to both the full-length and the carboxy-terminally truncated nsP2 protein, and both polypeptides had RNA-binding capacity. We also expressed and purified an nsP2 variant which had a single amino acid substitution in the nucleotide-binding motif (Lys-192-->Asn). No nucleoside triphosphatase activity was associated with this mutant protein.  相似文献   

3.
The complete nucleotide sequence of turnip yellow mosaic virus (TYMV) genomic RNA has been determined on a set of overlapping cDNA clones using a sequential sequencing strategy. The RNA is 6318 nucleotides long, excluding the cap structure. The genome organization deduced from the sequence confirms previous results of in vitro translation. A novel open reading frame (ORF) putatively encoding a Pro-rich and very basic 69K (K = kilodalton) protein is detected at the 5' end of the genome. It is initiated at the first AUG codon on the RNA and overlaps the major ORF that encodes the non structural 206K (previously referred to as 195K) protein of TYMV; its function is unknown. Several amino acid consensus sequences already described among plant and animal viruses are also found in the TYMV-encoded polypeptides. A comparison with other viruses whose RNA sequence is known leads to the conclusion that TYMV belongs to the "Sindbis-like" supergroup of viruses and could be related to Semliki forest virus.  相似文献   

4.
Open reading frame 1 (ORF1) of potexviruses encodes a viral replicase comprising three functional domains: a capping enzyme at the N terminus, a putative helicase in the middle, and a polymerase at the C terminus. To verify the enzymatic activities associated with the putative helicase domain, the corresponding cDNA fragment from bamboo mosaic virus (BaMV) was cloned into vector pET32 and the protein was expressed in Escherichia coli and purified by metal affinity chromatography. An activity assay confirmed that the putative helicase domain has nucleoside triphosphatase activity. We found that it also possesses an RNA 5'-triphosphatase activity that specifically removes the gamma phosphate from the 5' end of RNA. Both enzymatic activities were abolished by the mutation of the nucleoside triphosphate-binding motif (GKS), suggesting that they have a common catalytic site. A typical m(7)GpppG cap structure was formed at the 5' end of the RNA substrate when the substrate was treated sequentially with the putative helicase domain and the N-terminal capping enzyme, indicating that the putative helicase domain is truly involved in the process of cap formation by exhibiting its RNA 5'-triphosphatase activity.  相似文献   

5.
6.
A defining feature of alfalfa mosaic virus (AMV) and ilarviruses [type virus: tobacco streak virus (TSV)] is that, in addition to genomic RNAs, viral coat protein is required to establish infection in plants. AMV and TSV coat proteins, which share little primary amino acid sequence identity, are functionally interchangeable in RNA binding and initiation of infection. The lysine-rich amino-terminal RNA binding domain of the AMV coat protein lacks previously identified RNA binding motifs. Here, the AMV coat protein RNA binding domain is shown to contain a single arginine whose specific side chain and position are crucial for RNA binding. In addition, the putative RNA binding domain of two ilarvirus coat proteins, TSV and citrus variegation virus, is identified and also shown to contain a crucial arginine. AMV and ilarvirus coat protein sequence alignment centering on the key arginine revealed a new RNA binding consensus sequence. This consensus may explain in part why heterologous viral RNA-coat protein mixtures are infectious.  相似文献   

7.
8.
The stability properties of cucumber mosaic virus were investigated in relation to those of two other, well-described, icosahedral RNA viruses of similar geometry; the cowpea chlorotic mottle virus and the turnip yellow mosaic virus. High concentrations of neutral salts caused the dissociation of cucumber mosaic virus into its constituent RNA and protein subunits irrespective of the pH of the solution. At low ionic strength the effect of pH on the infectivity and the sedimentation behavior of the virus was tested between pH 4.0 and 8.5. No effect was noticed in this range, but significant change became evident at pH 9.8 and was complete at pH 10.45. The products of this alkaline treatment were a mixture of slower sedimenting nucleoproteins. The RNA inside cucumber mosaic virus was accessible to pancreatic ribonuclease. There was little or no pH-dependence of the ribonuclease susceptibility. Under no circumstances were protein capsids of cucumber mosaic virus ever obtained, neither by degradation of the virion, reassembly of the protein subunits, nor directly from the infected plant. These stability properties of cucumber mosaic virus are strikingly different from those of cowpea chlorotic mottle virus and turnip yellow mosaic virus, as reported in the literature, and indicate the possession of only weak inter-protein subunit linkages, or their total absence.  相似文献   

9.
Nucleotide sequence of turnip yellow mosaic virus coat protein mRNA   总被引:1,自引:0,他引:1  
H. Guilley  J.P. Briand 《Cell》1978,15(1):113-122
The primary structure of the coat protein messenger RNA of turnip yellow mosaic virus is presented. This sequence is the first complete nucleotide sequence of the coat protein messenger of a plant virus to be reported. The coding region, consisting of 567 nucleotides, is flanked by a 5′ noncoding region of 19 nucleotides (not including the initiation codon and the cap structure) and by a 3′ noncoding region of 109 nucleotides (including the termination signal). The coat protein mRNA has a base composition identical to that of the genome RNA with, in particular, the same high content in cytosine (38%). The codons that govern the incorporation of amino acids into the coat protein are nonrandomly utilized: >50% of the time the third base of the codons used is a cytosine. This pattern of codon preference is particularly marked for Leu, lie, Val, Thr and Cys.  相似文献   

10.
Dissociation-reassociation experiments performed with turnip yellow mosaic virus in the presence of various RNAs and polynucleotides were used to investigate the degree of specificity and the contribution of the associated RNA moiety to the stability of TYMV. The results emphasize the importance of strategic cytosine residues spread along the RNA chain. Some insight into the contribution of the protein could be gained from comparison of TYMV and eggplant mosaic virus (EMV), a virus similar to TYMV although its top component contains low molecular mass RNA's able to bind various amino acids. Hydrophobic interactions between protein subunits are less important in EMV than in TYMV, and artificial capsids could be obtained from dissociated EMV coat protein. Whether the capsid is or is not the precursor of the virion in tymovirus morphogenesis is discussed.  相似文献   

11.
12.
The 3'-end of the RNA genome of turnip yellow mosaic virus can form a pseudoknotted tRNA-like structure that can be recognized by several tRNA-specific enzymes. We have found that the catalytic RNA component of Bacillus subtilis RNase P can cleave this structure in unusually low ionic strength buffers at a site analogous to the 5'-end of an aminoacyl stem of a tRNA. Most other precursors can only be processed under low ionic strength conditions if the RNase P holoenzyme is used; processing by the catalytic RNA component alone requires a higher ionic strength buffer. The cleavage of the turnip yellow mosaic virus tRNA-like structure demonstrates the importance of the substrate in determining the optimal buffer conditions for this reaction and also shows that high ionic strength buffers are not always necessary for cleavage by the catalytic RNA.  相似文献   

13.
The minimal DNA binding domain of the replication-associated protein (Rep) of Tomato leaf curl New Delhi virus was determined by electrophoretic mobility gel shift analysis and co-purification assays. DNA binding activity maps to amino acids 1-160 (Rep-(1-160)) of the Rep protein and overlaps with the protein oligomerization domain. Transient expression of Rep protein (Rep-(1-160)) was found to inhibit homologous viral DNA accumulation by 70-86% in tobacco protoplasts and in Nicotiana benthamiana plants. The results obtained showed that expression of N-terminal sequences of Rep protein could efficiently interfere with DNA binding and oligomerization activities during virus infection. Surprisingly, this protein reduced accumulation of the African cassava mosaic virus, Pepper huasteco yellow vein virus and Potato yellow mosaic virus by 22-48%. electrophoretic mobility shift assays and co-purification studies showed that Rep-(1-160) did not bind with high affinity in vitro to the corresponding common region sequences of heterologous geminiviruses. However, Rep-(1-160) formed oligomers with the Rep proteins of the other geminiviruses. These data suggest that the regulation of virus accumulation may involve binding of the Rep to target DNA sequences and to the other Rep molecules during virus replication.  相似文献   

14.
A fragment representing the 3'-terminal 'tRNA-like' region of turnip yellow mosaic (TYM) virus RNA has been purified following incubation of intact TYM virus RNA with Escherichia coli 'RNase P'. This fragment, which is 112+3-nucleotides long has been completely digested with T1 RNase and pancreatic RNase and all the oligonucleotides present in such digests have been sequenced using 32P-end labelling techniques in vitro. The TYM virus RNA fragment is free of modified nucleosides and does not contain a G-U-U-C-R sequence. Using nuclease P1 from Penicillium citrinum, the sequence of 26 nucleotides from the 5' end and 16 nucleotides from the 3' end of this fragment has been deduced. The nucleotide sequence at the 5' end of the TYM virus RNA fragment indicates that this fragment includes the end of the TYM virus coat protein gene.  相似文献   

15.
16.
Desmodium yellow mottle virus is a 28 nm diameter, T=3 icosahedral plant virus of the tymovirus group. Its structure has been solved to a resolution of 2.7 A using X-ray diffraction analysis based on molecular replacement and phase extension methods. The final R value was 0.151 (R(free)=0.159) for 134,454 independent reflections. The folding of the polypeptide backbone is nearly identical with that of turnip yellow mosaic virus, as is the arrangement of subunits in the virus capsid. However, a major difference in the disposition of the amino-terminal ends of the subunits was observed. In turnip yellow mosaic virus, those from the B and C subunits comprising the hexameric capsomeres formed an annulus about the interior of the capsomere, while the corresponding N termini of the pentameric capsomere A subunits were not visible at all in electron density maps. In Desmodium yellow mottle tymovirus, amino termini from the A and B subunits combine to form the annuli, thereby resulting in a much strengthened association between the two types of capsomeres and an, apparently, more stable capsid. The first 13 residues of the C subunit were invisible in electron density maps. Two ordered fragments of single-stranded RNA, seven and two nucleotides in length, were observed. The ordered water structure of the virus particle was delineated and required 95 solvent molecules per protein subunit.  相似文献   

17.
18.
NS3 protein of dengue virus type 2 has a serine protease domain within the N-terminal 180 residues. NS2B is required for NS3 to form an active protease involved in processing of the viral polyprotein precursor. The region carboxy terminal to the protease domain has conserved motifs present in several viral RNA-stimulated nucleoside triphosphatase (NTPase)/RNA helicases. To define the functional domains of protease and NTPase/RNA helicase activities of NS3, full-length and amino-terminal deletion mutants of NS3 were expressed in Escherichia coli and purified. Deletion of 160 N-terminal residues of NS3 (as in NS3del.2) had no detrimental effect on the basal and RNA-stimulated NTPase as well as RNA helicase activities. However, mutagenesis of the conserved P-loop motif of the RNA helicase domain (K199E) resulted in loss of ATPase activity. The RNA-stimulated NTPase activity was significantly affected by deletion of 20 amino acid residues from the N terminus or by substitutions of the cluster of basic residues, 184RKRK-->QNGN, of NS3del.2, although both mutant proteins retained the conserved RNA helicase motifs. Furthermore, the minimal NS3 protease domain, required for cleavage of the 2B-3 site, was precisely defined to be 167 residues, using the in vitro processing of NS2B-NS3 precursors. Our results reveal that the functional domains required for serine protease and RNA-stimulated NTPase activities map within the region between amino acid residues 160 and 180 of NS3 protein and that a novel motif, the cluster of basic residues 184RKRK, plays an important role for the RNA-stimulated NTPase activity.  相似文献   

19.
Analysis of the predicted amino acid sequence of Bacillus anthracis adenylyl cyclase revealed sequences with homology to consensus sequences for A- and B-type ATP binding domains found in many ATP binding proteins. Based on the analysis of nucleotide binding proteins, a conserved basic amino acid residue in the A-type consensus sequence and a conserved acidic amino acid residue in the B-type consensus sequence have been implicated in the binding of ATP. The putative ATP binding sequences in the B. anthracis adenylyl cyclase possess analogous lysine residues at positions 346 and 353 within two A-type consensus sequences and a glutamate residue at position 436 within a B-type consensus sequence. The two A-type consensus sequences overlap each other and have the opposite orientation. To determine whether Lys-346, Lys-353, or Glu-436 of the B. anthracis adenylyl cyclase are crucial for enzyme activity, Lys-346 and Lys-353 were replaced with methionine and Glu-436 with glutamine by oligonucleotide-directed mutagenesis. Furthermore, Lys-346 was also replaced with arginine. The genes encoding the wild type and mutant adenylyl cyclases were placed under the control of the lac promoter for expression in Escherichia coli, and extracts were assayed for adenylyl cyclase activity. In all cases, a 90-kDa polypeptide corresponding to the catalytic subunit of the enzyme was detected in E. coli extracts by rabbit polyclonal antibodies raised against the purified B. anthracis adenylyl cyclase. The proteins with the Lys-346 to methionine or arginine mutations exhibited no adenylyl cyclase activity, indicating that Lys-346 in the A-type ATP binding consensus sequence plays a critical role for enzyme catalysis. Furthermore, the enzyme with the Lys-353 to methionine mutation was also inactive, suggesting that Lys-353 may also directly contribute to enzyme catalysis. In contrast, the protein with the Glu-436 to glutamine mutation retained 75% of enzyme activity, suggesting that Glu-436 in the B-type ATP binding consensus sequence may not be directly involved in enzyme catalysis. It is concluded that Lys-346 and Lys-353 in B. anthracis adenylyl cyclase may interact directly with ATP and contribute to the binding of the nucleotide to the enzyme.  相似文献   

20.
C K Ho  S Shuman 《Journal of virology》1996,70(4):2611-2614
Alanine-substitution mutations were targeted to 14 amino acid residues within the double-stranded (ds) RNA binding motif (dsRBM) of the vaccinia virus E3 protein. Substitutions at six positions--Glu-124, Phe-135, Phe-148, Lys-167, Arg-168, and Lys-171--caused significant reductions in dsRNA binding. These six residues are conserved in the two dsRBMs for which structural information is available (Escherichia coli RNase III and Drosophila melanogaster staufen) and in many other members of the dsRBM protein family. Residues we show to be important for dsRNA binding by vaccinia virus E3 map to the same face of the dsRBM structure and are thus likely to compose part of the RNA binding site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号