首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Aims:  To study the seasonal variation of Shiga toxin-encoding genes ( stx ) and to investigate the presence of Shiga toxin-producing Escherichia coli (STEC) O157 in cattle belonging to five dairy farms from Argentina.
Methods and Results:  Rectal swab samples were collected from 360 dairy cows in each season and 115 and 137 calves in autumn and in spring, respectively. The stx were investigated by multiplex PCR and it was used as the indicator for STEC. Samples positives for stx were tested by PCR for eae-γ1 of E. coli O157 and then subjected to IMS (immunomagnetic separation). In positive animals significant differences in the prevalence of stx between warm and cold seasons were detected. In warm seasons, stx1  +  stx2 increased and stx1 decreased, independently of the animal category. The prevalence of STEC O157 in cows and calves were 0·2% and 0·8%, respectively.
Conclusions:  This work provides new data about the occurrence of stx and STEC O157 in dairy herds from Argentina and suggests a relationship between the type of stx and season of year.
Significance and Impact of Study:  The detection of STEC O157 and the seasonality of stx and its types provide an opportunity to improve control strategies designed to prevent contamination of food products and transmission animal-person.  相似文献   

2.
AIMS: To study the incidence of Shiga-toxigenic Escherichia coli (STEC) in seafoods from India. METHODS AND RESULTS: Escherichia coli isolated from various seafoods such as fresh fish, clams and water were screened for the presence of stx, hlyA and rfbO157 genes by PCR; 5% of clams and 3% of fresh fish samples were positive for non-O157 STEC. CONCLUSIONS: STEC is prevalent in seafoods in India, and non-O157 serotype is more common. SIGNIFICANCE AND IMPACT OF THE STUDY: Seafood could be a vehicle for transmission of STEC even in tropical countries.  相似文献   

3.
A study was conducted to determine the prevalence of Shiga toxin-producing Escherichia coli (STEC) in swine feces in the United States as part of the National Animal Health Monitoring System's Swine 2000 study. Fecal samples collected from swine operations from 13 of the top 17 swine-producing states were tested for the presence of STEC. After enrichment of swine fecal samples in tryptic soy broth, the samples were tested for the presence of stx1 and stx2 by use of the TaqMan E. coli STX1 and STX2 PCR assays. Enrichments of samples positive for stx1 and/or stx2 were plated, and colony hybridization was performed using digoxigenin-labeled probes complementary to the stx1 and stx2 genes. Positive colonies were picked and confirmed by PCR for the presence of the stx1, stx2, or stx2e genes, and the isolates were serotyped. Out of 687 fecal samples tested using the TaqMan assays, 70% (484 of 687) were positive for Shiga toxin genes, and 54% (370 of 687), 64% (436 of 687), and 38% (261 of 687) were positive for stx1, stx2, and both toxin genes, respectively. Out of 219 isolates that were characterized, 29 (13%) produced stx1, 14 (6%) produced stx2, and 176 (80%) produced stx2e. Twenty-three fecal samples contained at least two STEC strains that had different serotypes but that had the same toxin genes or included a strain that possessed stx1 in addition to a strain that possessed stx2 or stx2e. The STEC isolates belonged to various serogroups, including O2, O5, O7, O8, O9, OX10, O11, O15, OX18, O20, O57, O65, O68, O69, O78, O91, O96, O100, O101, O120, O121, O152, O159, O160, O163, and O untypeable. It is noteworthy that no isolates of serogroup O157 were recovered. Results of this study indicate that swine in the United States harbor STEC that can potentially cause human illness.  相似文献   

4.
Escherichia coli O157:H7 is a Shiga toxin (stx)-producing E. coli (STEC) strain that has been classified as an adulterant in U.S. beef. However, numerous other non-O157 STEC strains are associated with diseases of various severities and have become an increasing concern to the beef industry, regulatory officials, and the public. This study reports on the prevalence and characterization of non-O157 STEC in commercial ground beef samples (n = 4,133) obtained from numerous manufacturers across the United States over a period of 24 months. All samples were screened by DNA amplification for the presence of Shiga toxin genes, which were present in 1,006 (24.3%) of the samples. Then, culture isolation of an STEC isolate from all samples that contained stx(1) and/or stx(2) was attempted. Of the 1,006 positive ground beef samples screened for stx, 300 (7.3% of the total of 4,133) were confirmed to have at least one strain of STEC present by culture isolation. In total, 338 unique STEC isolates were recovered from the 300 samples that yielded an STEC isolate. All unique STEC isolates were serotyped and were characterized for the presence of known virulence factors. These included Shiga toxin subtypes, intimin subtypes, and accessory virulence factors related to adherence (saa, iha, lifA), toxicity (cnf, subA, astA), iron acquisition (chuA), and the presence of the large 60-MDa virulence plasmid (espP, etpD, toxB, katP, toxB). The isolates were also characterized by use of a pathogenicity molecular risk assessment (MRA; based on the presence of various O-island nle genes). Results of this characterization identified 10 STEC isolates (0.24% of the 4,133 total) that may be considered a significant food safety threat, defined by the presence of eae, subA, and nle genes.  相似文献   

5.
During a 2.5-year survey of 33 farms and ranches in a major leafy greens production region in California, 13,650 produce, soil, livestock, wildlife, and water samples were tested for Shiga toxin (stx)-producing Escherichia coli (STEC). Overall, 357 and 1,912 samples were positive for E. coli O157:H7 (2.6%) or non-O157 STEC (14.0%), respectively. Isolates differentiated by O-typing ELISA and multilocus variable number tandem repeat analysis (MLVA) resulted in 697 O157:H7 and 3,256 non-O157 STEC isolates saved for further analysis. Cattle (7.1%), feral swine (4.7%), sediment (4.4%), and water (3.3%) samples were positive for E. coli O157:H7; 7/32 birds, 2/145 coyotes, 3/88 samples from elk also were positive. Non-O157 STEC were at approximately 5-fold higher incidence compared to O157 STEC: cattle (37.9%), feral swine (21.4%), birds (2.4%), small mammals (3.5%), deer or elk (8.3%), water (14.0%), sediment (12.3%), produce (0.3%) and soil adjacent to produce (0.6%). stx1, stx2 and stx1/stx2 genes were detected in 63%, 74% and 35% of STEC isolates, respectively. Subtilase, intimin and hemolysin genes were present in 28%, 25% and 79% of non-O157 STEC, respectively; 23% were of the “Top 6″ O-types. The initial method was modified twice during the study revealing evidence of culture bias based on differences in virulence and O-antigen profiles. MLVA typing revealed a diverse collection of O157 and non-O157 STEC strains isolated from multiple locations and sources and O157 STEC strains matching outbreak strains. These results emphasize the importance of multiple approaches for isolation of non-O157 STEC, that livestock and wildlife are common sources of potentially virulent STEC, and evidence of STEC persistence and movement in a leafy greens production environment.  相似文献   

6.
Environmental samples were taken from ground, cattle water troughs, and feeders from a dairy farm with different STEC prevalence between animal categories (weaning calves, rearing calves, and dairy cows). Overall, 23 % of samples were positive for stx genes, stx(2) being the most prevalent type. Isolates were analyzed by PCR monoplex to confirm generic E. coli and by two multiplex PCR to investigate the presence of stx(1), stx(2), eae, saa, ehxA, and other putative virulence genes encoded in STEC plasmids: katP, espP, subA, and stcE. The toxin genes were subtyped and the strains were serotyped. The ground and the environment of the rearing calves were the sites with the highest number of STEC-positive samples; however, cattle water troughs and the environment of cows were the places with the greater chance of finding stx(2EDL933) which is a subtype associated with serious disease in humans. Several non-O157 STEC serotypes were detected. The serotypes O8:H19; O26:H11; O26:H-; O118:H2; O141:H-; and O145:H- have been asociated with human illness. Furthermore, the emergent pathogen STEC O157:H- (stx(1)-ehxA-eae) was detected in the environment of the weaning calves. These results emphasize the risk that represents the environment as source of STEC, a potential pathogen for human and suggest the importance of developing control methods designed to prevent contaminations of food products and transmission from animal to person.  相似文献   

7.
Aims: To feno‐genotypically characterize the Shiga toxin‐producing Escherichia coli (STEC) population in Argentinean dairy cows. Methods and Results: From 540 STEC positive samples, 170 isolates were analyzed by multiplex PCR and serotyping. Of these, 11% carried stx1, 52%stx2 and 37%stx1/stx2. The ehxA, saa and eae were detected in 77%, 66% and 3%, respectively. Thirty‐five per cent of strains harboured the profile stx1, stx2, saa, ehxA and 29%stx2, saa, ehxA. One hundred and fifty‐six strains were associated with 29 different O serogroups, and 19 H antigens were distributed among 157 strains. STEC O113:H21, O130:H11 and O178:H19 were the most frequently found serotypes. The STEC O157:H7 were detected in low rate and corresponded to the stx2+, eae+, ehxA+ virulence pattern. Conclusions: We detected a diversity of STEC strains in dairy cattle from Argentina, most of them carrying genes linked to human disease. Significance and Impact of the study: The non‐O157 STEC serotypes described in this study are associated worldwide with disease in humans and represent a risk for the public health. For this, any microbiological control in dairy farms should be targeted not only to the search of O157:H7 serotype.  相似文献   

8.
AIMS: This study was carried out to evaluate the presence of Shiga toxin-producing Escherichia coli (STEC) and E. coli O157:H7 in shellfish from French coastal environments. METHODS AND RESULTS: Shellfish were collected in six growing areas or natural beds (B category) and nonfarming areas (D category) from July 2002 to August 2004. PCR detection of stx genes was performed on homogenized whole shellfish and digestive gland tissues enrichments. STEC strains were detected by colony DNA hybridization using a stx-specific gene probe and E. coli O157 strains were additionally searched by immunomagnetic separation with O157-specific magnetic beads. Stx genes were detected in 40 of 144 (27.8%) sample enrichments from mussels, oysters or cockles, 32 of 130 enrichments (24.6%) were from B-category areas and eight of 14 (57.1%) from the D-category area. Five strains carrying stx(1) or stx(1d) genes and one stx negative, eae and ehxA positive E. coli O157:H7 were isolated from six of 40 stx-positive enrichments. No relation was found between the total E. coli counts in shellfish and the presence of STEC strains in the samples. CONCLUSIONS: The STEC strains of different serotypes and stx types are present in shellfish from French coastal environments. It is the first isolation of STEC stx1d strains in France. SIGNIFICANCE AND IMPACT OF THE STUDY: Shellfish collected in coastal environments can serve as a vehicle for STEC transmission.  相似文献   

9.
AIMS: To develop and evaluate a multiplex PCR (mPCR) system for rapid and specific identification of Shiga toxin-producing Escherichia coli (STEC) and their main virulence marker genes. METHODS AND RESULTS: A series of mPCR assays were developed using primer pairs that identify the sequences of Shiga toxins 1 and 2 (stx1 and stx2, including the stx2c, stx2d, stx2e and stx2f variants), intimin (eaeA), and enterohaemorrhagic E. coli enterohaemolysin (ehlyA). Moreover, two additional genes (rfb O157 and fliC H7), providing the genotypic identification of the O157:H7 E. coli serotype, were detected. As an internal positive control, primers designated to amplify the E. coli 16S rRNA were included in each mPCR. All the amplified genes in the E. coli reference strains were sucessfully identified by this procedure. The method was then used for the examination of 202 E. coli isolates recovered from cattle and children. Among them, 25 (12.4%) were stx positive including the strains of O157:H7 serotype (six isolates) and O157:NM serogroup (four strains). Moreover, 20 STEC strains possessed the eaeA (intimin) and ehlyA (enterohaemolysin) genes. CONCLUSIONS: The developed mPCR-based system enabled specific detection of STEC bacteria and identification of their main virulence marker genes. SIGNIFICANCE AND IMPACT OF THE STUDY: The ability to identify STEC bacteria and the majority of their virulence gene markers, including four variants of Shiga toxin, as well as the differentiation of O157:H7 from non-O157 isolates represents a considerable advancement over other PCR-based methods for rapid characterization of STEC.  相似文献   

10.
In the present investigation, out of 27 (24.10%) strains of Escherichia coli isolated from 112 beef samples comprising raw meat (45), kabab (36) and kofta (31), 9 (33.33%) belonging to 7 different serotypes were verotoxic as tested by vero cell cytotoxic assay. Serotype O145 was the predominant STEC in raw meat. Interestingly, one STEC-O157 strain was also detected. All the STEC strains were positive for Stx genes by polymerase chain reaction showing stx2 (77.78%) to be most predominant followed by stx1 (22.22%). Phenotypic enterohaemolysin production on washed sheep blood agar supplemented with CaCl2 revealed 6 (66.67%) STEC strains to be positive. Presence of STEC in cooked beef products, viz., kabab and kofta appeared to be a matter of concern and potential threat to public health.  相似文献   

11.
We examined 219 Shiga toxin-producing Escherichia coli (STEC) strains from meat, milk, and cheese samples collected in Germany between 2005 and 2006. All strains were investigated for their serotypes and for genetic variants of Shiga toxins 1 and 2 (Stx1 and Stx2). stx(1) or variant genes were detected in 88 (40.2%) strains and stx(2) and variants in 177 (80.8%) strains. Typing of stx genes was performed by stx-specific PCRs and by analysis of restriction fragment length polymorphisms (RFLP) of PCR products. Major genotypes of the Stx1 (stx(1), stx(1c), and stx(1d)) and the Stx2 (stx(2), stx(2d), stx(2-O118), stx(2e), and stx(2g)) families were detected, and multiple types of stx genes coexisted frequently in STEC strains. Only 1.8% of the STEC strains from food belonged to the classical enterohemorrhagic E. coli (EHEC) types O26:H11, O103:H2, and O157:H7, and only 5.0% of the STEC strains from food were positive for the eae gene, which is a virulence trait of classical EHEC. In contrast, 95 (43.4%) of the food-borne STEC strains carried stx(2) and/or mucus-activatable stx(2d) genes, an indicator for potential high virulence of STEC for humans. Most of these strains belonged to serotypes associated with severe illness in humans, such as O22:H8, O91:H21, O113:H21, O174:H2, and O174:H21. stx(2) and stx(2d) STEC strains were found frequently in milk and beef products. Other stx types were associated more frequently with pork (stx(2e)), lamb, and wildlife meat (stx(1c)). The combination of serotyping and stx genotyping was found useful for identification and for assignment of food-borne STEC to groups with potential lower and higher levels of virulence for humans.  相似文献   

12.
Manure samples were collected from 16 organic (ORG) and 9 low-input conventional (LIC) Dutch dairy farms during August and September 2004 to determine the prevalence of the STEC virulence genes stx(1) (encoding Shiga toxin 1), stx(2) (encoding Shiga toxin 2), and eaeA (encoding intimin), as well as the rfbE gene, which is specific for Escherichia coli O157. The rfbE gene was present at 52% of the farms. The prevalence of rfbE was higher at ORG farms (61%) than at LIC farms (36%), but this was not significant. Relatively more LIC farms were positive for all Shiga toxin-producing E. coli (STEC) virulence genes eaeA, stx(1), and stx(2), which form a potentially highly virulent combination. Species richness of Enterobacteriaceae, as determined by DGGE, was significantly lower in manure positive for rfbE. Survival of a green fluorescent protein-expressing E. coli O157:H7 strain was studied in the manure from all farms from which samples were obtained and was modeled by a biphasic decline model. The time needed to reach the detection limit was predominantly determined by the level of native coliforms and the pH (both negative relationships). Initial decline was faster for ORG manure but leveled off earlier, resulting in longer survival than in LIC manure. Although the nonlinear decline curve could theoretically be explained as the cumulative distribution of an underlying distribution of decline kinetics, it is proposed that the observed nonlinear biphasic pattern of the survival curve is the result of changing nutrient status of the manure over time (and thereby changing competition pressure), instead of the presence of subpopulations differing in the level of resistance.  相似文献   

13.
In Mellassine (a major city in the state of Tunis) and Ben Arous state (south east of Tunis), a total of 212 stool samples were collected from children and adults (symptomatic and asymptomatic groups) between November 2001 and November 2004. Three hundred and twenty-seven E. coli strains were isolated and studied, to look for shiga toxin-producing Escherichia coli (STEC) strains, which were further analysed to investigate and determine clonal relationship among Tunisian STEC strains isolated from different sources (diarrheal cases and food products). They were analysed to characterize their serotypes, virulence genes by PCR, cytotoxic effect on Vero cell, plasmid profiles, and pulsed-field gel electrophoresis (PFGE) patterns. Eleven isolates (10 nontypeable, one O157:H7) carried stx gene and shared Stx restriction fragment length polymorphism (RFLP) patterns (stx1 ( + ), stx2 ( + )). Seven of these strains were isolated from acute diarrheal cases, and four were isolated from a control group (among which the only isolated STEC O157:H7). Two of the STEC strains harboured both eae and ehxA genes. Analysis of the cytotoxic effect on Vero cells showed that a correlation exists between carrying stx1 ( + ), stx2 ( + ) genes and cytotoxicity. Also a correlation was noticed between STEC strains recovered from different sources regarding plasmid profiles and PFGE patterns. All stool samples positive for STEC were nonbloody. None of the STEC-positive patients developed severe diseases. These data demonstrate that although STEC is not a major cause of acute diarrhea in Tunis, it should not be overlooked. Measures should be taken to improve the detection and isolation of STEC from acute diarrheal cases as well as carriers.  相似文献   

14.
为了解产志贺毒素大肠埃希菌 (Shigatoxin producingEscherichiacoli ,STEC)stx1,stx2 ,eaeA ,hlyA 4种毒力基因的分布情况 ,以及分离株对 18种抗生素的敏感性 ,采用多重PCR(multiplexPCR ,mPCR)法对分离株进行毒力基因的分子生物学鉴定 ;用WHO推荐的K B法对分离株进行抗生素的敏感性测定。产志贺毒素的大肠埃希菌共有 4 6株 ,其中 2种毒素均产生的有 2 2株 (4 7.8% ) ;单纯产生stx1的有 16株 (36 .9% ) ,stx2 的有 8株 (17.4 % ) ;4种毒力基因均存在的有 19株 (4 1.3% ) ,血清型为O15 7∶H7,而非O15 7∶H7血清型的菌株 (2 3/46 )中 ,4种毒力基因同时存在的仅有 3株 (6 .6 % ) ,但有 13株 (5 6 .9% )hlyA基因阳性。全部STEC对复方新诺明耐药 ,对链霉素耐药率为 2 8.3% ,氨苄西林为 30 .4 % ,红霉素为 6 9.6 % ,而且有 5株对至少 4种以上抗生素多重耐药 ,耐药谱为复方新诺明 链霉素 红霉素 氨苄西林。非O15 7型STEC耐药菌次为 12 2 ,而O15 7型为 6 3。可见 ,mPCR法可以快速检测STEC特征性毒力基因 ,以判定其致病性能。非O15 7型STEC对抗生素较易形成耐药性。  相似文献   

15.
The prevalence of Shiga-toxin-producing Escherichia coli (STEC) in healthy dairy ruminants was investigated between 1996 and 1998 by a multiplex polymerase chain reaction (mPCR) technique. A total of 13 552 E. coli colonies from 726 cows, 28 sheep and 93 goats out of 112 randomly selected dairy farms in Hessia, Germany were analysed. STEC strains were recovered from 131 (18.0%) cows, nine (32.1%) sheep and 70 (75.3%) goats. Further characterization of the STEC isolates showed that 89 (0.66% of the investigated colonies) of animal field strains carried stx1 gene, 64 (0.47%) stx2 gene and 57 (0.42%) stx1 and stx2 gene. Sixty (93.8%) out of 64 stx2 field strains were harboured by cows. In contrast, 74 (83.1%) out of 89 stx1 dairy animal field strains were from ovine or caprine origin. Only 17 (8. 1%) stx-positive isolates (13 from cattle, three from sheep and only one from goat) were positive for eaeA gene. Eight (9.0%) of the stx1, five (7.8%) of the stx2 and four (7.0%) of the stx1/stx2 gene-positive field strains carried the eaeA gene. The prevalence of EHEC-haemolysin (EHEC-hlyA) gene sequence was 88.8% (79 isolates) of the stx1 and 68.8% (44 isolates) of the stx2 isolates. Out of 57 stx1- and stx2-positive field-strains, 34 (59.6%) carried the EHEC-hlyA gene. E. coli O serovars O:157 and O:111 were not found. Only one isolate was positive with O26 antiserum.  相似文献   

16.
A total of 153 Shiga-toxin-producing Escherichia coli (STEC) isolates from feces of cattle and beef products (hamburgers and ground beef) in Argentina were characterized in this study. PCR showed that 22 (14%) isolates carried stx1 genes, 113 (74%) possessed stx2 genes and 18 (12%) both stx1 and stx2. Intimin (eae), enterohemolysin (ehxA), and STEC autoagglutinating adhesin (saa) virulence genes were detected in 36 (24%), 70 (46%) and in 34 (22%) of the isolates, respectively. None of 34 saa-positive isolates carried the gene eae, and 31 were ehxA-positive. Fourteen (7 of serotype O26:H11 and 4 of serotype O5:H-) isolates had intimin b1, 16 isolates possessed intimin g1 (11 of serotype O145:H- and 5 of serotype O157:H7), 5 isolates had intimin type e1 (4 of serotypes O103:H- and O103:H2), and one isolate O111:H- showed intimin type q/g2. Although the 153 STEC isolates belonged to 63 different seropathotypes, only 12 accounted for 58% of isolates. Seropathotype ONT:H- stx2 (18 isolates) was the most common, followed by O171:H2 stx2 (12 isolates), etc. The majority (84%) of STEC isolates belonged to serotypes previously found in human STEC and 56% to serotypes associated with STEC isolated from patients with hemolytic uremic syndrome (HUS). Thus, this study confirms that cattle are a major reservoir of STEC pathogenic for humans. To our knowledge, this is the first study that described the presence of saa gene in STEC of serotypes O20:H19, O39:H49, O74:H28, O79:H19, O116:H21, O120:H19, O141:H7, O141:H8, O174:H21, and ONT:H21. The serotypes O120:H19 and O185:H7 were not previously reported in bovine STEC.  相似文献   

17.
AIMS: To determine the prevalence and molecular characteristics of Shiga toxin-producing Escherichia coli (STEC) isolates from bovine mastitic milk in Brazil. METHODS AND RESULTS: A total of 2144 milk samples from dairy cattle showing mastitis were screened for the presence of E. coli. A total of 182 E. coli isolates were selected and examined. All were subjected to dot blot analysis using the CVD419 probe for the detection of the enterohaemolysin (hly) gene, and to a multiplex PCR for the detection of stx1, stx2 and eaeA genes. STEC were isolated from 22 (12.08%) milk samples. All the STEC isolates were tested for sensibility to 10 antimicrobials; the resistances most commonly observed were to cephalothin (86.3%), tetracycline (63.6%) and doxycycline (63.6%). CONCLUSION: STEC isolates were found in bovine mastitic milk in Brazil. SIGNIFICANCE AND IMPACT OF THE STUDY: STEC isolates from mastitic milk were potentially pathogenic for human in that they belonged to serogroups associated with diarrhoea and haemolytic-uraemic syndrome, some of them were stx2, eaeA and hly positive.  相似文献   

18.
Shiga toxin (Stx)-producing Escherichia coli (STEC) strains are a diverse group of food-borne pathogens with various levels of virulence for humans. In this study, we describe the use of a combination of multiple real-time PCR assays for the screening of 400 raw-milk cheeses for the five main pathogenic STEC serotypes (O26:H11, O103:H2, O111:H8, O145:H28, and O157:H7). The prevalences of samples positive for stx, intimin-encoding gene (eae), and at least one of the five O group genetic markers were 29.8%, 37.3%, and 55.3%, respectively. The H2, H7, H8, H11, and H28 fliC alleles were highly prevalent and could not be used as reliable targets for screening. Combinations of stx, eae variants, and O genetic markers, which are typical of the five targeted STEC serotypes, were detected by real-time PCR in 6.5% of the cheeses (26 samples) and included stx-wzx(O26)-eae-β1 (4.8%; 19 samples), stx-wzx(O103)-eae-ε (1.3%; five samples), stx-ihp1(O145)-eae-γ1 (0.8%; three samples), and stx-rfbE(O157)-eae-γ1 (0.3%; one sample). Twenty-eight immunomagnetic separation (IMS) assays performed on samples positive for these combinations allowed the recovery of seven eaeβ1-positive STEC O26:H11 isolates, whereas no STEC O103:H2, O145:H28, or O157:H7 strains could be isolated. Three stx-negative and eaeβ1-positive E. coli O26:[H11] strains were also isolated from cheeses by IMS. Colony hybridization allowed us to recover STEC from stx-positive samples for 15 out of 45 assays performed, highlighting the difficulties encountered in STEC isolation from dairy products. The STEC O26:H11 isolates shared the same virulence genetic profile as enterohemorrhagic E. coli (EHEC) O26:H11, i.e., they carried the virulence-associated genes EHEC-hlyA, katP, and espP, as well as genomic O islands 71 and 122. Except for one strain, they all contained the stx1 variant only, which was reported to be less frequently associated with human cases than stx2. Pulsed-field gel electrophoresis (PFGE) analysis showed that they displayed high genetic diversity; none of them had patterns identical to those of human O26:H11 strains investigated here.  相似文献   

19.
AIMS: To investigate the prevalence and characteristics of Shiga toxin-producing Escherichia coli (STEC) in cattle from Paraná State, southern Brazil. METHODS AND RESULTS: One hundred and seven faeces cattle samples were cultured on Sorbitol-MacConkey agar. Escherichia coli colonies were tested for production of Shiga toxin using Vero-cell assay. A high prevalence (57%) of STEC was found. Sixty-four STEC were serotyped and examined for the presence of stx(1), stx(2), eae, ehxA and saa genes and stx(2) variants. The isolates belonged to 31 different serotypes, of which three (O152:H8, O175:H21 and O176:H18) had not previously been associated with STEC. A high prevalence of stx(2)-type genes was found (62 strains, 97%). Variant forms found were stx(2), stx(2c), stx(2vhb), stx(2vO111v/OX393) and a form nonclassifiable by PCR-RFLP. The commonest genotypes were stx(2)ehxA saa and stx(1)stx(2)ehxA saa. CONCLUSIONS: A high frequency of STEC was observed. Several strains belong to serotypes previously associated with human disease and carry stx(2) and other virulence factors, thus potentially representing a risk to human health. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first study of STEC in Paraná State, and its findings emphasize the need for proper cattle handling to prevent human contamination.  相似文献   

20.
Twenty-seven Shiga toxin-producing Escherichia coli (STEC) strains were isolated from 207 stx-positive French environmental samples. Ten of these strains were positive for stx(1), and 24 were positive for stx(2) (10 were positive for stx(2vh-a) or stx(2vh-b), 19 were positive for stx(2d), and 15 were positive for stx(2e)). One strain belonged to serotype O157:H7, and the others belonged to serogroups O2, O8, O11, O26, O76, O103, O113, O121, O141, O166, and O174. The environment is a reservoir in which new clones of STEC that are pathogenic for humans can emerge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号