首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dog thyroid epithelial cells in primary culture constitute a model of positive control of DNA synthesis initiation and GO-S prereplicative phase progression by cyclic AMP as a second messenger for TSH. In its early steps, this mitogenic control is quite distinct from cyclic AMP-independent mitogenic cascades elicited by growth factors. We demonstrate here that TSH (cyclic AMP) and EGF + serum (cyclic AMP-independent) stimulations cooperate and finally converge on proteins that control the cell cycle machinery. This convergence included a common induction of the expression of cyclin A and p34cdc2, and to a lesser extent of p33/38cdk2, which was already expressed in quiescent thyroid cells, and common changes of cdc2 and CDK2 phosphorylations as evidenced by electrophoretic mobility shifts. Kinetic differences in these processes after stimulation by TSH or EGF + serum or by these factors in combination correlated with differences in cell cycle kinetics. Moreover, an immunofluorescence analysis of these proteins using the double labeling of PCNA as a marker of each cell cycle phase shows: (1) a previously undescribed nuclear translocation of CDK2 before S phase initiation; (2) a sudden increase of cdc2 nuclear immunoreactivity at G2/mitosis transition. These data support the roles of CDK2 and cdc2 at G1/S and G2/mitosis transitions, respectively. (3) We were unable to demonstrate in individual cells a strict association between the nuclear appearance of cyclin A and G1/S transition, and an association of cyclin A and CDK2 with PCNA-stained DNA replication sites. On the other hand, the lengthening of G2 phase in the TSH/cyclic AMP-dependent thyroid cell cycle was associated with a stabilization of Tyr15 inhibitory phosphorylation of cdc2 and an especially high nuclear concentration of cyclin A and CDK2. We hypothesize that high nuclear accumulation of cyclin A and CDK2 during G2 phase could be causative in the cyclic AMP-dependent delay of mitosis onset. © 1996 Wiley-Liss, Inc.  相似文献   

2.
Protein synthesis in the G1 period of the cell cycle has been investigated using two-dimensional gel electrophoresis in primary cultures of dog quiescent thyroid cells, incubated in defined medium and induced to proliferate by the combined action of thyrotropin (TSH), epidermal growth factor (EGF) and serum or by each of these agents, acting alone. The analysis of the proteins, pulse-labeled for 3 h with [35S]methionine, in quiescent cells deprived of serum and in cells that had been stimulated for various periods of time by the addition of TSH, EGF and serum showed maximal modifications before entry into S phase: the labeling of at least ten proteins was enhanced while that of at least six proteins was decreased. The synthesis of one of these proteins (protein 1; Mr approximately equal to 81 000) was maximal 9-12 h after stimulation by the proliferative agents but began to decrease at 15-18 h and was still decreased at 29-32 h. The study of the effect of each of the proliferation agents alone on the labeling of these sixteen proteins showed that TSH specifically stimulated the labeling of eight polypeptides (proteins 2-9) and that, in contrast, EGF and serum specifically increased the labeling of two other proteins (proteins 1 and 10). The labeling of one protein was decreased by each of the different agents (protein 6') while TSH specifically decreased the labeling of four polypeptides (proteins 1'-4') and increased the labeling of one polypeptide (protein 5') whose synthesis was decreased by EGF and serum. The specific effect of TSH on one protein labeling (protein 7; Mr approximately equal to 39 000) was potentiated by EGF and serum while the specific effect of EGF and serum on another protein labeling (protein 1) was potentiated by TSH. There is thus a correlation between the level of synthesis of these two proteins and the proliferative state of the cells, which is much greater when the stimulating agents are acting together. The induction of protein 1 synthesis by EGF was no longer observed when the cells were no longer proliferating. In the same way, TSH no longer stimulated the synthesis of protein 7 in thyroid cells at confluence. In conclusion, the present study has identified some proteins (proteins 1 and 7) which, as judged by the peculiar stimulation and the kinetics of their synthesis, could be part of the final key events triggering DNA replication in thyroid cells.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
We have investigated the growth effects of thyrotropin (TSH) (mimicked by forskolin and acting through cyclic AMP), epidermal growth factor (EGF), serum (10%) and insulin on quiescent dog thyroid epithelial cells in primary culture in a serum-free defined medium. These cells were previously shown to retain the capacity to express major thyroid differentiation markers. In the presence of insulin and after a similar prereplicative phase of 18 +/- 2h, TSH, EGF, and serum promoted DNA synthesis in such quiescent cells only a minority of which had proliferated in vitro before stimulation. The combination of these factors induced more than 90% of the cells to enter S phase within 48 h and near exponetial proliferation. Analysis of the cell cycle parameters of the stimulated cells revealed that the G1 period duration was similar to the length of the prereplicative phase of quiescent thyroid cells; this might indicate that they were in fact in an early G1 stage rather than in G0 prior to stimulation. TSH and EGF action depended on or was potentiated by insulin. Strikingly, nanomolar concentrations of insulin were sufficient to support stimulation of DNA synthesis by TSH, while micromolar concentrations of insulin were required for the action of EGF. This suggests that insulin supported the action of TSH by acting on its own high affinity receptors, whereas its effect on EGF action would be related to its somatomedinlike effects at high supraphysiological concentrations. Insulin stimulated the progression in the prereplicative phase initiated by TSH or forskolin. In addition, in some primary cultures TSH must act together with insulin to stimulate early events of the prereplicative phase. In the presence of insulin, EGF, and forskolin, an adenylate cyclase activator, markedly synergized to induce DNA synthesis. Addition of forskolin 24 h after EGF or EGF 24 h after forskolin also resulted in amplification of the growth response but with a lag equal to the prereplicative period observed with the single compound. This indicates that events induced by the second factor can no longer be integrated during the prereplicative phase set by the first factor. These findings demonstrate the importance of synergistic cooperation between hormones and growth factors for the induction of DNA synthesis in epithelial thyroid cells and support the proposal that essentially different mitogenic pathways--cyclic AMP-dependent or independent--may coexist in one cell.  相似文献   

4.
Protein phosphorylation was studied in primary cultures of thyroid epithelial cells after the addition of different mitogens: thyrotropin (TSH) acting through cyclic AMP, epidermal growth factor (EGF), or 12-O-tetradecanoylphorbol-13-acetate (TPA). EGF or TPA increased the phosphorylation of five common polypeptides. Among these, two 42-kilodalton proteins contained phosphotyrosine and phosphoserine with or without phosphothreonine. Their characteristics suggested that they are similar to the two 42-kilodalton target proteins for tyrosine protein phosphorylation demonstrated in fibroblasts in response to mitogens. No common phosphorylated proteins were detected in TSH-treated cells and in EGF- or TPA-treated cells. The differences in the protein phosphorylation patterns in response to TSH, EGF, and TPA suggested that the newly emerging cyclic AMP-mediated mitogenic pathway is distinct from the better known growth factor- and tumor promoter-induced pathways.  相似文献   

5.
Dog thyroid epithelial cells in primary culture constitute a physiologically relevant model of positive control of DNA synthesis initiation and G0-S prereplicative phase progression by cAMP as a second messenger for thyrotropin (thyroid-stimulating hormone [TSH]). As previously shown in this system, the cAMP-dependent mitogenic pathway differs from growth factor cascades as it stimulates the accumulation of p27(kip1) but not cyclins D. Nevertheless, TSH induces the nuclear translocations and assembly of cyclin D3 and cdk4, which are essential in cAMP-dependent mitogenesis. Here we demonstrate that transforming growth factor beta(1) (TGFbeta(1)) selectively inhibits the cAMP-dependent cell cycle in mid-G1 and various cell cycle regulatory events, but it weakly affects the stimulation of DNA synthesis by epidermal growth factor (EGF), hepatocyte growth factor, serum, and phorbol esters. EGF+serum and TSH did not interfere importantly with TGFbeta receptor signaling, because they did not affect the TGFbeta-induced nuclear translocation of Smad 2 and 3. TGFbeta inhibited the phosphorylation of Rb, p107, and p130 induced by TSH, but it weakly affected the phosphorylation state of Rb-related proteins in EGF+serum-treated cells. TGFbeta did not inhibit c-myc expression. In TSH-stimulated cells, TGFbeta did not affect the expression of cyclin D3, cdk4, and p27(kip1), nor the induced formation of cyclin D3-cdk4 complexes, but it prevented the TSH-induced relocalization of p27(kip1) from cdk2 to cyclin D3-cdk4. It prevented the nuclear translocations of cdk4 and cyclin D3 without altering the assembly of cyclin D3-cdk4 complexes probably formed in the cytoplasm, where they were prevented from sequestering nuclear p27(kip1) away from cdk2. This study dissociates the assembly of cyclin D3-cdk4 complexes from their nuclear localization and association with p27(kip1). It provides a new mechanism of regulation of proliferation by TGFbeta, which points out the subcellular location of cyclin D-cdk4 complexes as a crucial factor integrating mitogenic and antimitogenic regulations in an epithelial cell in primary culture.  相似文献   

6.
In canine thyrocytes in primary culture, our previous studies have identified three mitogenic agents and pathways: thyrotropin (TSH) acting through cyclic AMP (cAMP), EGF and its receptor tyrosine protein kinase, and the phorbol esters that stimulate protein kinase C. TSH enhances, while EGF and phorbol esters inhibit, the expression of differentiation. Given that growth and differentiation expression are often considered as mutually exclusive activities of the cells, it was conceivable that the differentiating action of TSH was restricted to noncycling (Go) cells, while the inhibition of the differentiation expression by EGF and phorbol esters only concerned proliferating cells. Therefore, the capacity to express the thyroglobulin (Tg) gene, the most prominent marker of differentiation in thyrocytes, was studied in proliferative cells (with insulin) and in quiescent cells (without insulin). Using cRNA in situ hybridization, we observed that TSH (and, to a lesser extent, insulin and insulin-like growth factor I) restored or maintained the expression of the Tg gene. Without these hormones, the Tg mRNA content became undetectable in most of the cells. EGF and 12-0-tetradecanoyl phorbol-13-acetate (TPA) inhibited the Tg mRNA accumulation induced by TSH (and/or insulin). Most of the cells (up to 90%) responded to both TSH and EGF. Nevertheless, the range of individual response was quite variable. The effects of TSH and EGF on differentiation expression were not dependent on insulin and can therefore be dissociated from their mitogenic effects. Cell cycling did not affect the induction of Tg gene. Indeed, the same cell distribution of Tg mRNA content was observed in quiescent cells stimulated by TSH alone, or in cells approximately 50% of which had performed one mitotic cycle in response to TSH + insulin. Moreover, after proliferation in "dedifferentiating" conditions (EGF + serum + insulin), thyrocytes had acquired a fusiform fibroblast-like morphology, and responded to TSH by regaining a characteristic epithelial shape and high Tg mRNA content. 32 h after the replacement of EGF by TSH, cells in mitosis presented the same distribution of the Tg mRNA content as the rest of the cell population. This implies that cell cycling (at least 27 h, as previously shown) did not affect the induction of the Tg gene which is clearly detectable after a time lag of at least 24 h. The data unequivocally show that the reexpression of differentiation and proliferative activity are separate but fully compatible processes when induced by cAMP in thyrocytes.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
Regulation of TSH receptor (TSHr) mRNA accumulation has been investigated in canine thyrocytes in primary culture by in situ hybridization experiments; the effects of the mitogenic thyrotropin (TSH), epidermal growth factor (EGF), and phorbol ester TPA (12-O-tetradecanoylphorbol-13-acetate) have been compared. Apart from their mitogenic action, TSH enhances, while EGF and phorbol ester inhibit, the expression of differentiation. The TSHr gene was transcribed in almost all the cells cultured in control conditions (serum free medium supplemented with insulin). Addition of TSH slightly upregulated (twofold) the expression (mRNA) of the TSHr gene. This positive effect was maintained for 20 and 44 h of treatment. EGF and TPA reduced transiently the TSHr mRNA accumulation but did not suppress it. In these different conditions, the TSHr mRNA was homogeneously distributed within the cell population. This contrasted strongly with the effects of TSH, EGF, and TPA on the expression of the thyroglobulin gene, a prominent marker of thyroid cell differentiation: in this case, the regulation was much tighter (high range of stimulation by TSH, strong inhibition by EGF, and suppression of Tg gene expression by TPA) and displayed a great variability of the level of individual cellular response. The fact that the TSHr gene was little modulated and remained expressed regardless of the treatment may reflect the physiological role of the receptor which is the main connection of the thyrocyte to the regulation network.  相似文献   

8.
Regulation of TSH receptor (TSHr) mRNA accumulation has been investigated in canine thyrocytes in primary culture by in situ hybridization experiments; the effects of the mitogenic thyrotropin (TSH), epidermal growth factor (EGF), and phorbol ester TPA (12-O-tetradecanoylphorbol-13-acetate) have been compared. Apart from their mitogenic action, TSH enhances, while EGF and phorbol ester inhibit, the expression of differentiation. The TSHr gene was transcribed in almost all the cells cultured in control conditions (serum free medium supplemented with insulin). Addition of TSH slightly upregulated (twofold) the expression (mRNA) of the TSHr gene. This positive effect was maintained for 20 and 44 h of treatment. EGF and TPA reduced transiently the TSHr mRNA accumulation but did not suppress it. In these different conditions, the TSHr mRNA was homogeneously distributed within the cell population. This contrasted strongly with the effects of TSH, EGF, and TPA on the expression of the thyroglobulin gene, a prominent marker of thyroid cell differentiation: in this case, the regulation was much tighter (high range of stimulation by TSH, strong inhibition by EGF, and suppression of Tg gene expression by TPA) and displayed a great variability of the level of individual cellular response. The fact that the TSHr gene was little modulated and remained expressed regardless of the treatment may reflect the physiological role of the receptor which is the main connection of the thyrocyte to the regulation network.  相似文献   

9.
DNA synthesis of WF-1 fibroblasts derived from a patient with Werner's syndrome was stimulated by fetal calf serum and adult human serum but not by various mitogens including epidermal growth factor, platelet-derived growth factor (PDGF), fibroblast growth factor, insulin and 12-O-tetradecanoylphorbol-13-acetate (TPA). To clarify the cause of nonresponsiveness to these mitogens, we compared the rate of protein phosphorylation in normal fibroblasts HF-O and Werner's WF-1 cells. PDGF and TPA enhanced the phosphorylation of a Mr 80 K protein, which is known to be a substrate for protein kinase C, both in HF-O and WF-1 cells. This indicates that the pathway involving PDGF receptor, phosphatidylinositol turnover and protein kinase C activation is operational in WF-1 cells. Several species of phosphoproteins of Mr 250 K, 135 K, 110 K, 78 K and 42 K were detected in normal HF-O cells by immunoprecipitation using an anti-phosphotyrosine antibody. The same species of phosphoproteins were detected in Werner's WF-1 cells at passage 6, but only when treated with various mitogens and were not detected in WF-1 cells at passage 10 even after the PDGF- or TPA-treatment. These results suggest that the reduction of phosphorylation of these target proteins may be in part responsible for the diminished mitogenic responsiveness of Werner's fibroblasts.  相似文献   

10.
G0-arrested human diploid fibroblasts, TIG-1, was stimulated to induce DNA synthesis by serum, epidermal growth factor (EGF), colchicine, colcemid, or 12-O-tetradecanoylphorbol-13-acetate (TPA). The induction of DNA synthesis was mediated by protein kinase C (PKC) when stimulated with TPA but not when stimulated with other agents. When TPA-stimulated cells were immediately treated with colcemid, induction of DNA synthesis was reduced. This reduction diminished when colcemid was added more than 6 h after TPA treatment. Conversely, when colcemid-stimulated cells were treated with TPA, induction of DNA synthesis was also reduced. This reduction was enhanced when the interval between the addition of two stimulants was extended. PKC-deprivation abolished both stimulatory and inhibitory effects of TPA on DNA synthesis. Staurosporine blocked an induction of DNA synthesis by TPA but appeared to be ineffective on the inhibitory action of TPA on DNA synthesis by colcemid. These results suggest that the inhibitory effect of TPA on the induction of DNA synthesis by colcemid is mediated by down regulation-sensitive and staurosporine-insensitive PKC.  相似文献   

11.
M Issandou  J M Darbon 《FEBS letters》1991,281(1-2):196-200
The tumor-promoting phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA) is shown to be mitogenic for quiescent glomerular mesangial cells cultured in serum-free conditions. TPA induces DNA synthesis measured by [3H]thymidine incorporation in a dose-dependent manner with an ED50 of 7 ng/ml and an optimal response for 50 ng/ml. The phorbol ester action is potentiated by insulin with an increase of the maximal effect from 232 +/- 15% for TPA alone to 393 +/- 96% for TPA plus insulin. Down-regulation of protein kinase C by prolonged exposure to TPA completely abolishes the mitogenic effect of the phorbol ester. Using a highly resolutive 2D electrophoresis, we have shown that TPA is able to stimulate the phosphorylation of 2 major proteins of Mr 80,000, pl 4.5 (termed 80K) and Mr 28,000, pI 5.7-5.9 (termed 28K). The 80K protein phosphorylation is time- and dose-dependent with an ED50 of 8 ng/ml TPA. Exposure of mesangial cells to heat-shock induces synthesis of a 28K protein among a set of other proteins suggesting that the 28K protein kinase C substrate belongs to the family of low molecular mass stress proteins. Mitogenic concentrations of TPA and phorbol 12,13-dibutyrate inhibit [125 I]epidermal growth factor binding and stimulate the 80K protein phosphorylation with the same order of potency. The inactive tumor-promoter 4 alpha-phorbol was found to be ineffective both on these 2 parameters and on DNA synthesis. These results suggest a positive role for protein kinase C on mesangial cell proliferation and indicate the existence in this cell line of 2 major protein kinase C substrates.  相似文献   

12.
The mitogenic pathways so far identified in mammalian cells fall into three main categories: tyrosine kinase, kinase C, and the cAMP-dependent pathways. In quiescent murine 3T3 fibroblasts, all three signaling pathways synergize with each other to restart DNA synthesis. In order to establish if the same was true in other rodent fibroblast lines we studied the effects of factors, known to modulate the above-mentioned pathways, on DNA synthesis in Chinese hamster embryo fibroblasts (CHEF/18). The factors examined were: (1) EGF and insulin representative of tyrosine kinase-activating growth factors, (2) TPA as specific activator of protein kinase C, (3) cholera toxin, dibutyryl cyclic AMP, and theophylline as compounds increasing cAMP levels. We found that EGF alone is a strong mitogen in CHEF/18 cells, probably because it can modulate by itself all three pathways. Although cAMP acts as a growth enhancer in 3T3 cells, in CHEF/18 where high levels of cAMP were found, increased concentrations of this second messenger produce strong DNA synthesis inhibition and temporal disturbance of ribosomal protein S6 phosphorylation. Possible interpretations of these findings are presented.  相似文献   

13.
Secreted modular calcium-binding protein-2 (SMOC-2) is a recently-identified SPARC-related protein of unknown function. In mRNA profiling experiments we, found that SMOC-2 expression was elevated in quiescent (G0) mouse fibroblasts and repressed after mitogenic stimulation with serum. The G0-specific expression of SMOC-2 was similar to that of platelet-derived growth factor-beta receptor (PDGFbetaR), a major mitogenic receptor. Therefore, we tested a possible role for SMOC-2 in growth factor-induced cell cycle progression. SMOC-2 overexpression augmented DNA synthesis induced by serum and fibroblast mitogens (including PDGF-BB and basic fibroblast growth factor). Conversely, SMOC-2 ablation by using small interfering RNA attenuated DNA synthesis in response to PDGF-BB and other growth factors. Mitogen-induced expression of cyclin D1 was attenuated in SMOC-2-ablated cells, and cyclin D1-overexpressing cells were resistant to inhibition of mitogenesis after SMOC-2 ablation. Therefore, cyclin D1 is limiting for G1 progression in SMOC-2-deficient cells. SMOC-2 ablation did not inhibit PDGF-induced PDGFbetaR autophosphorylation or PDGF-BB-dependent activation of mitogen-activated protein kinase and Akt kinases, suggesting that SMOC-2 is dispensable for growth factor receptor activation. However, integrin-linked kinase (ILK) activity was reduced in SMOC-2-ablated cells. Ectopic expression of hyperactive ILK corrected the defective mitogenic response of SMOC-2-deficient cells. Therefore, SMOC-2 contributes to cell cycle progression by maintaining ILK activity during G1. These results identify a novel role for SMOC-2 in cell cycle control.  相似文献   

14.
The mitotic effects of epidermal growth factor (EGF) were investigated in two cultured fibroblast lines, BALB/c-3T3 and C3H 10T1/2 cells. EGF (30 ng/ml) added to quiescent 3T3 cells in medium containing either platelet-poor plasma or 10(-5) M insulin caused only minimal increases in the percentage of cells stimulated to initiate DNA synthesis. In contrast, EGF acted synergistically with either insulin or plasma to stimulate DNA synthesis in quiescent cultures of 10T1/2 cells, although the maximum effects of EGF were measured at concentrations several-fold greater than those found in either serum or plasma. In either 3T3 or 10T1/2 cells a transient preexposure to platelet-derived growth factor (PDGF) caused over a 10-fold increase in the sensitivity to the mitogenic effects of EGF. It is therefore possible that a primary action of PDGF is to increase the sensitivity of fibroblasts to EGF, independent of whether EGF alone is found to be mitogenic.  相似文献   

15.
In quiescent Swiss 3T3 fibroblasts, the B subunit of cholera toxin, a protein which binds specifically to ganglioside GM1 on the cell surface, stimulates DNA synthesis and potentiates the effects of several other growth factors such as insulin, epidermal growth factor, bombesin, and even unfractionated serum. In contrast to its synergistic effect with other known growth factors, the B subunit markedly inhibited DNA synthesis induced by the phorbol ester, 12-O-tetradecanoyl-phorbol 13-acetate (TPA). The inhibitory effect of the B subunit was observed even in the presence of insulin, which greatly potentiates the mitogenic response to TPA or the B subunit. In contrast to the effect of the B subunit, calcium ionophores and cholera toxin stimulated DNA synthesis induced by TPA. The antagonism between the B subunit and TPA is not simply due to their abilities to modify their mutual binding sites or known effector systems. TPA did not block the early rise in cytosolic free calcium in response to the B subunit, and conversely, the B subunit did not modify the ability of TPA to activate protein kinase C. However, in protein kinase C-deficient cells, the antagonistic effect between TPA and the B subunit was abolished. In addition, there was no indication for the involvement of a pertussis toxin-sensitive G protein in the antagonism. Maximum inhibition was found when the B subunit was added 2 h after the addition of TPA. Significant inhibition was still evident when the time of addition of the B subunit was delayed until 6 h after the addition of TPA. This suggests that the cross-talk between signal transduction induced through endogenous gangliosides and protein kinase C is a late step in mitogenesis.  相似文献   

16.
Two distinct mitogenic modes coexist in thyroid epithelial cells. TSH via cAMP induces proliferation and differentiation expression, whereas growth factors including epidermal growth factor (EGF) induce proliferation and dedifferentiation. Divergent models of TSH/cAMP-dependent mitogenesis have emerged from different thyroid cell culture systems. In the FRTL-5 rat cell line, cAMP cross-signals with transduction pathways of growth factors to induce cyclin D1 and p21(cip1) and down-regulate p27(kip1). By contrast, in canine primary cultures, mitogenic pathways of cAMP and growth factors are fully distinct. cAMP does not induce D-type cyclins and p21, it up-regulates p27, and it stimulates the formation and activity of cyclin D3-cyclin-dependent kinase (CDK) 4 complexes. In primary cultures of normal human thyrocytes, EGF + serum increased cyclin D1 and p21 accumulation, and it stimulated the assembly and activity of cyclin D1-CDK4-p21 complexes. By contrast, TSH repressed or did not induce cyclin D1 and p21, and it rather up-regulated p27. TSH did not increase cyclin D1-CDK4 activity, but it stimulated the activating phosphorylation of CDK4 and the pRb-kinase activity of preexisting cyclin D3-CDK4 complexes. As recently demonstrated in dog thyrocytes and other systems, cyclin D1 and cyclin D3 differently oriented the site specificity of CDK4 pRb-kinase activity, which might differently impact some pRb functions. Cyclin D1 or cyclin D3 are thus differentially used in the distinct mitogenic stimulations by growth factors or TSH, and potentially in hyperproliferative diseases generated by the overactivation of their respective signaling pathways. At variance with dog thyroid primary cultures, rat thyroid cell lines might not be valid models of TSH-dependent mitogenesis of human thyrocytes.  相似文献   

17.
The expressions of the protooncogenes c-jun and jun D have been investigated in dog thyrocytes in a primary culture whose proliferation is stimulated by three distinct intracellular signaling pathways (1) the thyrotropin (TSH) or forskolin-cyclic-AMP-mediated cascade; (2) the protein kinase C pathway activated by diacylglycerol (DAG) and phorbol esters (TPA); (3) a protein tyrosine kinase system activated by epidermal growth factor (EGF). While the first cascade is compatible with the differentiated state of the cell, the two latter pathways induce dedifferentiation. Following the stimulation by TPA or EGF, the expression of c-jun was increased and the expression of jun D was faintly increased. Both expressions are superinduced in the presence of cycloheximide as in mitogenically stimulated fibroblasts but, in the presence of cycloheximide alone, the expressions of c-jun and jun D are clearly unstable with time. This indicates that cycloheximide controls should be included at all time points examined in such experiments. Increasing intracellular concentrations of cyclic-AMP by forskolin or TSH was followed by an inhibition of the expression of c-jun. This inhibition was independent of protein synthesis. Similarly, the TPA or EGF stimulation of c-jun expression was also inhibited by TSH or forskolin, as in fibroblasts in which cyclic-AMP inhibits proliferation. Our results show that the expression of c-jun is not universally correlated with the stimulation of cell proliferation. The stimulation of c-jun expression is not common between the three mitogenic pathways. It thus represents another of the very different responses elicited by the cyclic-AMP cascade as compared to the more studied tyrosine kinase and protein kinase C mitogenic pathways.  相似文献   

18.
The effects of 17 beta-estradiol (E2), epidermal growth factor (EGF) and insulin, alone or in association on guinea-pig uterine epithelial cell proliferation were examined in serum-free culture conditions. Primary cultures of epithelial cells were made quiescent by serum depletion, then incubated in a chemically defined medium. In this medium, insulin increased DNA synthesis but not in a dose-dependent manner for concentrations ranging from 0.2 to 10 micrograms/ml. A significant effect of EGF was found only for the highest concentration tested (100 ng/ml). E2 alone or in the presence of insulin (1 microgram/ml) had no effect whatsoever on the concentration tested (10(-10)-10(-5)M). Insulin (10 micrograms/ml) plus EGF (100 ng/ml) exerted on DNA synthesis and cell proliferation a significant additive effect which was identical to the growth stimulation induced by 10% fetal calf serum. The effects of insulin plus EGF were not modified by the addition of E2. These findings suggest that E2 is not directly mitogenic for uterine epithelial cells in defined culture conditions and that the mitogenic response to optimal concentration of insulin plus EGF is independent of E2.  相似文献   

19.
Two distinct mitogenic modes coexist in the physiologically relevant model ofprimary cultures of dog thyroid epithelial cells. The differentiation-associated mitogenicstimulation by TSH and cAMP specifically requires the assembly and activation of cyclin D3-cyclin-dependent kinase (CDK)4 associated to p27kip1, while the dedifferentiatingproliferation induced by growth factors is associated with induction of cyclin D1. Here, wesuggest that the related CDK “inhibitors” p21cip1 and p27 are differentially utilized as positiveCDK4 regulators in these mitogenic stimulations. p21 was induced by EGF+serum, butrepressed by TSH, which, as previously shown, up-regulates p27. In response to EGF+serum,p21 supported the nuclear localization, phosphorylation and pRb-kinase activity of CDK4.Unexpectedly, partly different site-specificities of pRb-kinase activity, leading to similardifferences in the phosphorylation pattern of pRb in intact cells, were associated with cyclinD3-CDK4 bound to p27 in TSH-stimulated cells, or with CDK4 bound to p21 in growthfactor-stimulated cells. These differences were ascribed to the predominant association of thelatter complex to cyclin D1. Indeed, in different cell types and species, cyclin D1 varied fromcyclin D3 by more efficiently driving the phosphorylation of pRb at sites (Ser807/811 andThr826) required for its electrophoretic mobility shift. Therefore, different D-type cyclinscould differently impact some pRb functions, which should be considered not only in theunderstanding of the relationships between cell cycle and differentiation expression in thedistinct mitogenic modes of thyroid cells, but also in various development or differentiationmodels associated with dramatic switches in the expression of individual D-type cyclins.  相似文献   

20.
Using indirect immunofluorescence, we have found that epidermal growth factor (EGF), at 100 ng/ml, induces centrosomal separation within 20 min in HeLa and 3T3 cells. The effect was evident both in unsynchronized cultures and in HeLa cells blocked in early S phase by hydroxyurea. EGF also induced centrosomal separation in quiescent 3T3 cells blocked in G0/G1 by serum deprivation, indicating that DNA replication is not necessary for this effect. The mechanism of this rapid centrosomal separation and its role in the mitogenic effects of EGF remains to be determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号