首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The abundance of lactosylceramide (LacCer; Gal beta 1-4Glc beta 1-1Cer) in human polymorphonuclear neutrophils (PMN) (about 10(9) molecules/cell) seemed inconsistent with an exclusive plasma membrane LacCer localization in these cells. Therefore, the distribution of LacCer between plasma membrane and intracellular compartments was analyzed. Binding of 125I-labeled monoclonal anti-LacCer antibody (T5A7) to intact cells indicated that only 0.1-0.2% of total LacCer was accessible to antibody. Chemical and immunochemical comparisons of organic extracts prepared from PMN cytoplasts (i.e. PMN depleted of nucleus and granules) and intact PMN demonstrated that less than 25% of PMN LacCer was plasma membrane-derived. Simultaneous particle volume and surface staining analyses suggested that selective LacCer loss from cytoplasts could not explain this result. Intracellular LacCer was demonstrated by intense staining of PMN frozen thin sections with T5A7 in indirect immunofluorescence tests. Two-color fluorescence studies using frozen thin sections of neutrophils previously surface-stained with saturating concentrations of T5A7 indicated that this staining did not reflect section artifact. Organic extracts of density gradient-fractionated PMN cavitates were analyzed by radioimmunoassay to determine whether LacCer associates with known populations of PMN granules. Antigen predominantly cosedimented with enzyme markers for primary and secondary granules rather than with plasma membrane marker. Thin layer chromatography of glycolipids extracted from these density gradient fractions identified LacCer as the only antigenic species and demonstrated that chemically detectable LacCer was primarily in granule-enriched rather than plasma membrane fractions. These data indicate that human PMN LacCer is predominantly intracellular and that the glycolipid may be a constituent of PMN lysosomal granules.  相似文献   

2.
Paf-acether (platelet-activating factor) is one of the most potent inflammatory mediators synthesized by and acting on most inflammatory cells. It also displays potent immunoregulatory properties. Two metabolic steps are involved in its biosynthesis: the action of a phospholipase A2 on membrane alkyl-acyl (long chain) phospholipids with choline polar head results in the production of lyso paf-acether, and acetylation of the lyso compound by an acetyltransferase yields the biologically active molecule. Recently we showed that E. coli and other bacteria are able to produce paf-acether using exogenous lyso paf-acether. This finding prompted us to search for the presence of paf-acether in fermented milk products. The fraction corresponding to paf-acether isolated from milk exhibited the same physicochemical and biological characteristics as synthetic paf-acether and that from eukaryotic cells. The presence of a biologically active phospholipid in fermented products may bring new perspectives with respect to the study of gastrointestinal diseases as well as the putative immunostimulating effect of yogurt.  相似文献   

3.
Human neutrophils (PMN) respond to various soluble stimuli by translocating intracellular complement C3b/C4b receptors (CR1) to the cell surface. Ligand-independent internalization of surface CR1 has been demonstrated previously, but the fate of total cellular CR1 during PMN stimulation has not been determined. In order to study the fate of CR1 during neutrophil activation, we have employed a unique approach for the quantitative analysis of intracellular antigens which allows simultaneous measurement of total cellular and surface membrane antigen pools. Stimulation of isolated PMN with N-formyl-Met-Leu-Phe or ionomycin resulted in a mean 7-fold increase in surface CR1 expression within 15 min. Total cellular CR1 decreased by as much as 45% within 15 min, with loss continuing for up to 1 h. Inclusion of NH4Cl during PMN stimulation inhibited the loss of total CR1 without affecting surface CR1 expression. Addition of phenylmethylsulfonyl fluoride inhibited loss of total CR1 and enhanced the stimulus-induced increases in surface CR1. These data suggest that intracellular degradation of CR1 occurs during stimulation of PMN and may involve proteolysis in an acidic intracellular compartment. Since our experiments were done with isolated PMN in the absence of serum and complement components, this degradation occurred in the absence of C3b, the ligand for CR1. To our knowledge, ligand-independent degradation of a cell surface receptor has not been previously detected.  相似文献   

4.

Background  

Polymorphonuclear neutrophils (PMN) constitute an essential cellular component of innate host defense against microbial invasion and exhibit a wide array of responses both to particulate and soluble stimuli. As the cells recruited earliest during acute inflammation, PMN respond rapidly and release a variety of potent cytotoxic agents within minutes of exposure to microbes or their products. PMN rely on the redistribution of functionally important proteins, from intracellular compartments to the plasma membrane and phagosome, as the means by which to respond quickly. To determine the range of membrane proteins available for rapid recruitment during PMN activation, we analyzed the proteins in subcellular fractions enriched for plasma membrane and secretory vesicles recovered from the light membrane fraction of resting PMN after Percoll gradient centrifugation and free-flow electrophoresis purification using mass spectrometry-based proteomics methods.  相似文献   

5.
Upon activation with various noncytokine stimuli, polymorphonuclear leukocytes (PMNs) mobilize intracellular sialidase to the plasma membrane, where the sialidase releases sialic acid from the cell surface. This desialylation enhances PMN adherence, spreading, deformability, and motility, functions critical to diapedesis. We now have examined the role of sialidase activity in PMN adhesion to and migration across the endothelium in vivo. A polyclonal antibody prepared against Clostridium perfringens neuraminidase 1) detected surface expression of sialidase on human PMNs stimulated with IL-8 in vitro and on murine PMNs stimulated in vivo, but not on that of unstimulated cells, 2) recognized proteins in human PMN lysates and granule preparations that were not detected by preimmune antibody, 3) inhibited bacterial neuraminidase and human PMN sialidase activities in vitro, and 4) inhibited both pulmonary leukostasis in mice systemically infused with cobra venom factor and intrapulmonary transendothelial migration of PMNs into the bronchoalveolar compartment of mice intranasally challenged with interleukin-8. We conclude that the chemokine interleukin-8, like other PMN agonists, induces the translocation of sialidase to the PMN surface and that surface expression of this sialidase is a prerequisite to PMN recruitment in vivo. The ability of antibodies raised against a prokaryotic neuraminidase to recognize eukaryotic sialidase extends the concept of the neuraminidase superfamily to mammalian enzymes. Inhibition of mobilized endogenous sialidase may provide a novel strategy for limiting the inflammatory response.  相似文献   

6.
Paf-acether (platelet-activating factor) is one of the most potent mediator of inflammation released from and acting on most cells that participate in inflammatory diseases. Its molecular structure is 1-O-alkyl-2-O-acetyl-sn-glycero-3-phosphocholine. Two metabolic steps are involved in its biosynthesis: the action of a phospholipase A2 on choline-containing membrane alkyl-ether lipids results in the production of lyso paf-acether and acetylation of the lyso compound by an acetyltransferase yields the biologically active molecule. Membrane alkyl-ether lipids can therefore be considered as potential precursors of paf-acether and their composition has been studied in various cell types. In this work, we investigated the presence of paf-acether in E. coli. Our results showed that paf-acether can be obtained from E. coli K12 under a variety of bacterial growth conditions. Paf-acether from E. coli exhibited the same physicochemical and biological characteristics as synthetic paf-acether and that from eucaryotic cells. Therefore, it appears that E. coli itself has the ability of producing paf-acether, a result that could be of some importance with respect to the pathogenesis of Enterobacteria and the use of E. coli in the recombinant DNA technology.  相似文献   

7.
The effect of a topical paf-acether superfusion over an injured arterial segment was assessed in the guinea-pig, using an opto-electronic in vivo thrombosis model allowing on line quantification of small platelet thrombus dynamics.As compared to control, ADP-induced, thromboformation and behaviour, exogenous paf-acether causes a large, dense platelet thrombus, invaded and surrounded by numerous leukocytes, spreading widely over the adjoining, vacuolized, endothelium. Its embolization has to be forced with prostanoids, mepacrine, EDTA, or with a specific paf-acether antagonist3 (BN 52021). A few minutes after such forced embolization, a new thrombus starts growing at the same site, without renewal of the paf-acether superfusion. This phenomenon of spontaneous reappearance after forced embolization can be followed during several hours. Experiments with labelled paf-acether and the paf-acether antagonist indicate a possible endogenous paf-acether (or paf-acether-like) production triggered by superfusion with exogenous paf-acether.  相似文献   

8.
We have undertaken a detailed study of the mechanisms of maintenance of intracellular Ca2+ homeostasis in human polymorphonuclear neutrophils (PMN) and its implications for phagocytosis and IgG Fc receptor (FcR) signaling. When PMN were incubated in Ca(2+)-free medium, cytoplasmic calcium concentration ([Ca2+]i) was markedly depressed and intracellular stores were depleted of calcium. [Ca2+]i in these depleted cells increased within 1 min when PMN were placed in medium containing Ca2+ and then decreased to a level close to the normal basal [Ca2+]i, replenishing the intracellular Ca2+ pools. LaCl3 prevented entry of Ca2+ into Ca(2+)-depleted PMN, but the calcium channel blockers nifedipine, diltiazem, and verapamil did not. Nifedipine and diltiazem but not verapamil inhibited the movement of Ca2+ from cytosol to intracellular stores. Nifedipine and diltiazem inhibited the normal increase in [Ca2+]i from aggregated IgG binding to FcR and also prevented formyl-methionyl-leucyl-phenyl-alanine (fMLP)-induced [Ca2+]i rise. Verapamil had no effect on either an fMLP- or IgG-mediated increase in [Ca2+]i. Consistent with this, nifedipine and diltiazem inhibited fMLP-stimulated phagocytosis (which is dependent on an increase in [Ca2+]i) when PMN had repleted intracellular stores. In contrast, LaCl3 inhibited fMLP-stimulated ingestion only in PMN which had intracellular store depleted. None of these compounds had any effect on phorbol dibutyrate-stimulated ingestion (which is independent of a [Ca2+]i rise). In summary, these data show that Ca2+ is in rapid equilibrium between intracellular and extracellular compartments in PMN. Exchange of cytoplasmic Ca2+ with the extracellular space is inhibited by LaCl3, while exchange of Ca2+ between the cytosol and intracellular stores is inhibited by the dihydropyridine nifedipine and the benzothiazepine diltiazem. These data suggest that these drugs, which are known to regulate some plasma membrane Ca2+ channels in excitable cells, can also regulate Ca2+ release from intracellular stores in PMN and that this regulation may have significant effects on PMN function.  相似文献   

9.
Polymorphonuclear leukocytes (PMN) constitutively synthesize various plasma membrane proteins including CR1(3) (CD35), CR3 (or Mac-1) alpha-chain (CD11b) and MHC class I. PMN are also able to up-regulate rapidly the expression of CR1 and CR3 to the plasma membrane in response to agonists such as FMLP. To determine whether constitutive PMN translation was static or up-regulatable, PMN were cultured in the presence or absence of the cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF) for 8 h. CR1, CR3 and class I proteins immunoprecipitated from lysates of 35S-methionine pulse-labeled PMN were resolved by SDS-PAGE, fluorographed and quantified by densitometry. GM-CSF-treated PMN synthesized 4.5-fold more class I protein, 3.7-fold more CR1, 2.4-fold more CD11b and 3.4-fold more CR3 beta-chain (CD18), compared with untreated control cells. Actinomycin D treatment of replicate samples of PMN decreased the amount of these proteins synthesized by each group of PMN from 30 to 90%, implying that continued translation was required for the increases in protein synthesis. Nascent CR and class I proteins were inserted into the plasma membrane of PMN, thereby supplementing the molecules already expressed on the cell surface. In addition to these longer term effects of GM-CSF, we observed its acute up-regulatory effects on PMN. GM-CSF induced a five- to 12-fold increase in the expression of CR1 and CR3 on the PMN cell surface within 30 min. These increases were both dose- and time-dependent with maximum up-regulation occurring at 25 pM and at 30 min. In contrast to the long term biosynthetic events, this rapid up-regulation was not dependent on protein synthesis but was due instead to mobilization of CR from intracellular compartments similar to those up-regulated by FMLP. These results demonstrate that PMN can respond to microenvironmental stimuli such as GM-CSF both by rapidly up-regulating and increasing translation and expression of functionally important plasma membrane proteins.  相似文献   

10.
The effect of a topical paf-acether superfusion over an injured arterial segment was assessed in the guinea-pig, using an opto-electronic in vivo thrombosis model allowing on-line quantification of small platelet thrombus dynamics. As compared to control, ADP-induced, thromboformation and behaviour, exogenous paf-acether causes a large, dense platelet thrombus, invaded and surrounded by numerous leukocytes, spreading widely over the adjoining, vacuolized, endothelium. Its embolization has to be forced with prostanoids, mepacrine, EDTA, or with a specific paf-acether antagonist (BN 52021). A few minutes after such forced embolization, a new thrombus starts growing at the same site, without renewal of the paf-acether superfusion. This phenomenon of spontaneous reappearance after forced embolization can be followed during several hours. Experiments with labelled paf-acether and the paf-acether antagonist indicate a possible endogenous paf-acether (or paf-acether-like) production triggered by superfusion with exogenous paf-acether.  相似文献   

11.
2-Deoxyglucose transport was characterized in human polymorphonuclear leukocytes (PMN) and rabbit alveolar macrophages (AM). The Km was 1 mM for human PMN and 1.6 mM for rabbit AM, and the Vmax was 0.66 x 10(-3) micromoles/45 sec/10(6) PMN and 5.09 x 10(-4) micromoles/45 sec/10(6) AM. The rate of 2-deoxyglucose transport was the same before and after phagocytosis in PMN from normal individuals and three patients with chronic granulomatous disease, as well as rabbit AM. Studies of the kinetics of 2-deoxyglucose transport and intracellular fate of 2-deoxyglucose in human PMN indicate that the nature of the membrane transport system is not altered by phagocytosis. The results support the concept that the plasma membrane is mosaic in character with geographically separate transport and phagocytic sites.  相似文献   

12.
We examined the mechanism of action of a derivative of wheat germ agglutinin (WGA-D) which specifically and irreversibly inhibits N-formyl-methionyl-leucyl-phenylalanine (FMLP)-induced polymorphonuclear leukocyte (PMN) chemotaxis. At a concentration that completely inhibited PMN chemotaxis, WGA-D had no effect on either the uptake or release of [3H]-FMLP by PMN. Similarly, WGA-D did not affect either the short-term binding to, or internalization by, PMN of a fluoresceinated FMLP analog. WGA-D did interfere, however, with the re-expression (or recycling) of FMLP receptors by PMN that had been preincubated with 1 microM FMLP for 10 min at 4 degrees C. This effect was specific for WGA-D, because it was not observed when concanavalin A was used. Scatchard plot analysis of FMLP binding to PMN after receptor re-expression demonstrated that WGA-D-treated PMN had a significant diminution in the number of high affinity receptors. WGA-D-mediated inhibition of FMLP receptor re-expression was associated with inhibition of FMLP-induced PMN chemotaxis, but had no effect on either FMLP-induced PMN superoxide anion generation or degranulation. Studies using [125I]-WGA-D demonstrated that PMN did not internalize WGA-D spontaneously. PMN did internalize [125I]-WGA-D, however, when stimulated with FMLP. Internalization of WGA-D by FMLP-stimulated PMN was rapid, dependent on the concentration of FMLP, and specific. Internalization of [125I]-WGA-D by PMN did not occur when highly purified human C5a, instead of FMLP, was used as a stimulus. Subcellular fractionation studies demonstrated that [125I]-WGA-D and [3H]-FMLP were co-internalized by PMN, and segregated to a compartment co-migrating with Golgi markers. Western blot analysis, using PMN plasma membranes, demonstrated that WGA-D bound to a single membrane glycoprotein that migrated with an apparent m.w. of 62,000. The data indicate that WGA-D, perhaps by binding to the FMLP receptor, inhibits FMLP-induced PMN chemotaxis by blocking the re-expression (or recycling) of a population of receptors required for continuous migration.  相似文献   

13.
The plasma membrane and intracellular granules of human polymorphonuclear neutrophils (PMN) contain large amounts of the glycolipid, lactosylceramide (LacCer; Gal beta 1----4Glc beta 1----1Cer). Despite its abundance, novel subcellular distribution, and lineage-restricted expression, nothing of PMN LacCer function is known. We examined the relationship between LacCer and PMN activation by assessing binding of anti-LacCer mAb (T5A7; anti-CDw17) to PMN during and after cell stimulation. CDw17 expression markedly decreased after treatment with PMA, dioctanoylglycerol, calcium ionophore, FMLP (with or without cytochalasin B or added Ca2+), TNF-alpha, or lymphotoxin. Depending on the stimulus, CDw17 declined to levels ranging from 70% (TNF, lymphotoxin) to less than 5% (phorbol ester, dioctanoylglycerol) of levels detected on untreated PMN. Loss of CDw17 from PMA-treated PMN followed dose- and temperature-dependent kinetics, with loss being detected after PMA treatment for 1 min. Membrane internalization explained PMA-induced loss of CDw17, as cell-associated 125I-anti-CDw17 became inaccessible to fluorescent anti-Ig after PMA treatment. CDw17 on PMN cytoplasts or retinoic acid-induced HL-60 cells was only slightly affected by stimulation, suggesting that down-regulation of the epitope is associated with granule exocytosis rather than superoxide production. Results with PMN from a patient with chronic granulomatous disease confirmed that normal superoxide production is not required for CDw17 loss induced by PMA or FMLP treatment. The data collectively demonstrate that reduced levels of cell-surface CDw17 are associated with granule exocytosis after PMN activation.  相似文献   

14.
Guinea pig polymorphonuclear leukocytes (PMN) were briefly activated with soluble stimulators such as sodium myristate (SM) or phorbol myristate acetate (PMA) and then disrupted by the nitrogen cavitation method to study the subcellular distribution of NADPH oxidase, which is responsible for O2 - generation. Fc-receptor and 5'-nucleotidase activities were measured as plasma membrane markers. 1) The homogenate was first fractionated by differential centrifugation. The O2- -generating activity of PMN activated either by SM or PMA was recovered in a 2 X 10(4) g pellet which contained a large amount of granules and about 50% of the plasma membrane markers, but not in a 1 X 10(5) g pellet which consisted of plasma membranes and few granules. 2) Further separation of the 2 X 10(4) g pellet from PMA-activated PMN was attempted by an iso-osmotic Percoll density gradient centrifugation. The O2- -generating activity was recovered in light fractions in which plasma membrane markers were found, but neither in specific nor in azurophil granules. The 1 X 10(5) g pellet showed a similar distribution of the plasma membrane markers to that of the 2 X 10(4) g pellet, except that the peak of the O2- -generating activity was much smaller on an identical density gradient. The results showed that NADPH oxidase is located in the plasma membranes precipitated by centrifugation at 2 X 10(4) X g but not in the ones precipitated at 1 X 10(5) X g. The results suggest that the plasma membrane of activated PMN has a mosaic distribution of NADPH oxidase.  相似文献   

15.
Human neutrophils (PMN) have received little attention as to the role they play in host defense against Histoplasma capsulatum (Hc). We have characterized the binding and phagocytosis of Hc yeasts by human PMN and quantified the PMN respiratory burst in response to this organism. mAb specific for CD11a, CD11b, and CD11c all partially blocked the attachment of unopsonized yeasts to PMN; a mAb to CD18 inhibited attachment by greater than 90%. Thus, human PMN recognize and bind Hc yeasts via CD18 adhesion receptors as has been found for human cultured macrophages and alveolar macrophages. Unopsonized yeasts were phagocytosed by PMN, but phagocytosis was increased markedly by heat-labile and heat-stable serum opsonins. These opsonins promoted enhanced phagocytosis of yeasts by increasing the attachment of Hc yeasts to the PMN membrane. Phagocytosis of viable or heat-killed Hc yeasts by PMN did not induce the secretion of superoxide anion (O2-) as quantified by the reduction of cytochrome c. O2- was not detected when yeasts were opsonized in normal serum or immune serum, or at a ratio of yeasts to PMN of up to a 100:1. However, phagocytosis of opsonized yeasts by PMN did not prevent them from subsequently releasing O2- after further incubation with opsonized zymosan or PMA. Opsonized Hc yeasts clearly stimulated the PMN respiratory burst as quantified by intracellular reduction of nitroblue tetrazolium, reduction of cytochrome c in the presence of cytochalasin D, oxygen consumption, luminol-enhanced and nonenhanced chemiluminescence, and H2O2 production. These data suggest that phagocytosis of Hc yeasts by PMN is associated with intracellular entrapment of O2- that is not detectable by reduction of extracellular cytochrome c.  相似文献   

16.
E Ninio  M Breton  J Bidault  O Colard 《FEBS letters》1991,289(2):138-140
Treatment of intact human polymorphonuclear neutrophils (PMN) with low concentrations of phorbol myristate acetate (PMA, 1-10 ng/ml) induced paf-acether (paf) and lyso paf formation, arachidonate release, and simultaneous inhibition of CoA-independent lyso paf: transacylase as assayed in a cell-free system. Inhibition of [3H]lyso paf reacylation was also observed when it was exogenously added to the PMA-treated intact PMN. When higher concentrations of PMA (40-100 ng/ml) were used, paf biosynthesis was severely impaired and the level of the CoA-independent transacylase activity returned to basal level. Since lyso paf appears to be the substrate for PMA-activated paf formation (remodeling pathway), we showed that [14C]acetate was incorporated into the paf molecule. By contrast, labeling with [3H]choline was not appropriate in this model. The presented results are against the involvement of a de novo route in paf synthesis initiated by PMA and open a new possibility of an important role for the CoA-independent transacylase in controlling the level of lyso paf availability for paf formation.  相似文献   

17.
Colonial variants of Neisseria gonorrhoeae strain P9 expressing different pili and/or outer membrane protein II (P.II) were investigated with respect to their interaction with human polymorphonuclear leucocytes (PMN). Two assay systems were used. A phagocytic killing assay measured the intracellular survival of gonococci, and PMN chemiluminescence (CL) was used to determine the initial surface interactions. All variants expressing P.II were killed effectively by PMN and also greatly stimulated PMN CL. The P.II- variants, on the other hand, were resistant to phagocytic killing and stimulated a much lower CL response. The presence of different P.II species was associated with different CL profiles and therefore different modes of interaction with the PMN membrane. A P.II-specific monoclonal IgG was opsonic and greatly increased PMN CL in contrast to F(ab')2 prepared from the same antibody, which inhibited it, thus confirming the role of P.II in the PMN interaction. Phagocytic killing assays revealed that with the loss of P.II, gonococcal variants acquired resistance to killing. Comparison of piliated and non-piliated pairs of variants with the same P.II profile showed that PMN-gonococcal interactions are dominated by the nature of the P.II species present whereas pili have little effect.  相似文献   

18.
The role of paf-acether as an intracellular mediator was recently challenged by studies showing that it remained cell-associated in several cell types. We showed that the level of paf-acether found in extracellular medium was strongly reduced when extracellular pH decreased and when cell concentration increased. Therefore the number of cells and extracellular pH should be taken into consideration before speculating on the release vs. retention of paf-acether.  相似文献   

19.
The anti-thrombotic effects of specific paf-acether antagonist BN 52021 were compared to the effects of Ginkgo Biloba extracts A, B, (A+B), and C local superfusion of BN 52021 over an experimentally injured arterial segment embolizes an existent paf-acether induced platelet thrombus. When applied before paf-acether, BN 52021 prevents local thromboformation in this model. Applied intravenously, BN 52021 reduces local thromboformation in a significant way. As compared to this BN 52021 standard, only Ginkgo Biloba B and the (A+B)-mixture present major thromboreductive activity.  相似文献   

20.
Paf-acether or platelet-activating factor (1-0-alkyl-2-acetyl-sn-glycero-3-phosphocholine) is a phospholipid mediator of inflammation initially described as a potent platelet-aggregating compound. It is newly formed by a variety of cells including monocytes and is now recognized as a major mediator of cell-cell interactions. The present studies were undertaken to determine whether paf-acether could modulate T cell function. We found that addition of paf-acether to CD4+ cells cultured with phytohemagglutinin markedly inhibited the proliferative response in a dose-dependent manner. Maximal inhibition occurred when paf-acether was present during the first 24 hr of cell culture and the presence of paf-acether did not alter the kinetics of CD4+ cell proliferation. Importantly, the mechanism by which paf-acether inhibited the proliferative response was not related to inhibition of interleukin 2 (IL-2) secretion since the amount of IL-2 in cultures was not altered and addition of exogenous IL-2 failed to restore the CD4+ cell proliferative response. Further, as judged by indirect immunofluorescence, paf-acether did not inhibit IL-2 receptor expression. Taken together, these data indicate that paf-acether interferes with some processes leading to CD4+ cell proliferation. This new role for the chemically defined monokine paf-acether emphasizes the potential role of inflammatory lipid mediators in the regulation of T cell response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号