首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 344 毫秒
1.
Economic bioconversion of plant cell wall hydrolysates into fuels and chemicals has been hampered mainly due to the inability of microorganisms to efficiently co-ferment pentose and hexose sugars, especially glucose and xylose, which are the most abundant sugars in cellulosic hydrolysates. Saccharomyces cerevisiae cannot metabolize xylose due to a lack of xylose-metabolizing enzymes. We developed a rapid and efficient xylose-fermenting S. cerevisiae through rational and inverse metabolic engineering strategies, comprising the optimization of a heterologous xylose-assimilating pathway and evolutionary engineering. Strong and balanced expression levels of the XYL1, XYL2, and XYL3 genes constituting the xylose-assimilating pathway increased ethanol yields and the xylose consumption rates from a mixture of glucose and xylose with little xylitol accumulation. The engineered strain, however, still exhibited a long lag time when metabolizing xylose above 10 g/l as a sole carbon source, defined here as xylose toxicity. Through serial-subcultures on xylose, we isolated evolved strains which exhibited a shorter lag time and improved xylose-fermenting capabilities than the parental strain. Genome sequencing of the evolved strains revealed that mutations in PHO13 causing loss of the Pho13p function are associated with the improved phenotypes of the evolved strains. Crude extracts of a PHO13-overexpressing strain showed a higher phosphatase activity on xylulose-5-phosphate (X-5-P), suggesting that the dephosphorylation of X-5-P by Pho13p might generate a futile cycle with xylulokinase overexpression. While xylose consumption rates by the evolved strains improved substantially as compared to the parental strain, xylose metabolism was interrupted by accumulated acetate. Deletion of ALD6 coding for acetaldehyde dehydrogenase not only prevented acetate accumulation, but also enabled complete and efficient fermentation of xylose as well as a mixture of glucose and xylose by the evolved strain. These findings provide direct guidance for developing industrial strains to produce cellulosic fuels and chemicals.  相似文献   

2.
In this study, five recombinant Saccharomyces cerevisiae strains were compared for their xylose-fermenting ability. The most efficient xylose-to-ethanol fermentation was found by using the industrial strain MA-R4, in which the genes for xylose reductase and xylitol dehydrogenase from Pichia stipitis along with an endogenous xylulokinase gene were expressed by chromosomal integration of the flocculent yeast strain IR-2. The MA-R4 strain rapidly converted xylose to ethanol with a low xylitol yield. Furthermore, the MA-R4 strain had the highest ethanol production when fermenting not only a mixture of glucose and xylose, but also mixed sugars in the detoxified hydrolysate of wood chips. These results collectively suggest that MA-R4 may be a suitable recombinant strain for further study into large-scale ethanol production from mixed sugars present in lignocellulosic hydrolysates.  相似文献   

3.

Background

Ethanolic fermentation of lignocellulosic biomass is a sustainable option for the production of bioethanol. This process would greatly benefit from recombinant Saccharomyces cerevisiae strains also able to ferment, besides the hexose sugar fraction, the pentose sugars, arabinose and xylose. Different pathways can be introduced in S. cerevisiae to provide arabinose and xylose utilisation. In this study, the bacterial arabinose isomerase pathway was combined with two different xylose utilisation pathways: the xylose reductase/xylitol dehydrogenase and xylose isomerase pathways, respectively, in genetically identical strains. The strains were compared with respect to aerobic growth in arabinose and xylose batch culture and in anaerobic batch fermentation of a mixture of glucose, arabinose and xylose.

Results

The specific aerobic arabinose growth rate was identical, 0.03 h-1, for the xylose reductase/xylitol dehydrogenase and xylose isomerase strain. The xylose reductase/xylitol dehydrogenase strain displayed higher aerobic growth rate on xylose, 0.14 h-1, and higher specific xylose consumption rate in anaerobic batch fermentation, 0.09 g (g cells)-1 h-1 than the xylose isomerase strain, which only reached 0.03 h-1 and 0.02 g (g cells)-1h-1, respectively. Whereas the xylose reductase/xylitol dehydrogenase strain produced higher ethanol yield on total sugars, 0.23 g g-1 compared with 0.18 g g-1 for the xylose isomerase strain, the xylose isomerase strain achieved higher ethanol yield on consumed sugars, 0.41 g g-1 compared with 0.32 g g-1 for the xylose reductase/xylitol dehydrogenase strain. Anaerobic fermentation of a mixture of glucose, arabinose and xylose resulted in higher final ethanol concentration, 14.7 g l-1 for the xylose reductase/xylitol dehydrogenase strain compared with 11.8 g l-1 for the xylose isomerase strain, and in higher specific ethanol productivity, 0.024 g (g cells)-1 h-1 compared with 0.01 g (g cells)-1 h-1 for the xylose reductase/xylitol dehydrogenase strain and the xylose isomerase strain, respectively.

Conclusion

The combination of the xylose reductase/xylitol dehydrogenase pathway and the bacterial arabinose isomerase pathway resulted in both higher pentose sugar uptake and higher overall ethanol production than the combination of the xylose isomerase pathway and the bacterial arabinose isomerase pathway. Moreover, the flux through the bacterial arabinose pathway did not increase when combined with the xylose isomerase pathway. This suggests that the low activity of the bacterial arabinose pathway cannot be ascribed to arabitol formation via the xylose reductase enzyme.  相似文献   

4.
An ethanologenic microorganism capable of fermenting all of the sugars released from lignocellulosic biomass through a saccharification process is essential for secondary bioethanol production. We therefore genetically engineered the ethanologenic bacterium Zymomonas mobilis such that it efficiently produced bioethanol from the hydrolysate of wood biomass containing glucose, mannose, and xylose as major sugar components. This was accomplished by introducing genes encoding mannose and xylose catabolic enzymes from Escherichia coli. Integration of E. coli manA into Z. mobilis chromosomal DNA conferred the ability to co-ferment mannose and glucose, producing 91 % of the theoretical yield of ethanol within 36 h. Then, by introducing a recombinant plasmid harboring the genes encoding E. coli xylA, xylB, tal, and tktA, we broadened the range of fermentable sugar substrates for Z. mobilis to include mannose and xylose as well as glucose. The resultant strain was able to ferment a mixture of 20 g/l glucose, 20 g/l mannose, and 20 g/l xylose as major sugar components of wood hydrolysate within 72 h, producing 89.8 % of the theoretical yield. The recombinant Z. mobilis also efficiently fermented actual acid hydrolysate prepared from cellulosic feedstock containing glucose, mannose, and xylose. Moreover, a reactor packed with the strain continuously produced ethanol from acid hydrolysate of wood biomass from coniferous trees for 10 days without accumulation of residual sugars. Ethanol productivity was at 10.27 g/l h at a dilution rate of 0.25 h(-1).  相似文献   

5.
Two industrial effluents, a pre-fermentation effluent and a post-fermentation effluent from a wheat starch production plant, were used as substrates for fuel ethanol production in anaerobic batch cultures using minimal nutritional amendment. The performances of three metabolically engineered xylose-utilizing Saccharomyces cerevisiae strains: TMB 3001 expressing XYL1, XYL2 and XKS1, redox metabolism modulated CPB.CR1 and glucose de-repressed CPB.CR2, as well as a reference strain CEN.PK 113-7D not fermenting xylose, were evaluated. For the recombinant strains a glucose consumption phase preceded the xylose consumption phase. In both effluents, biomass and ethanol production occurred predominantly during the glucose consumption phase, whereas xylitol and glycerol formation were predominant in the xylose consumption phase. Total specific ethanol productivities on glucose were 6-fold higher than on xylose in the pre-fermentation effluent and 15-fold higher than on xylose in the post-fermentation effluent. CPB.CR1 showed impaired growth compared to the two other xylose-utilizing strains, but displayed 18% increased ethanol yield in the post-fermentation effluent.  相似文献   

6.
The evolutionary adaptation was carried out on the thermotolerant yeast Kluyveromyces marxianus NIRE-K1 at 45 °C up to 60 batches to enhance its xylose utilization capability. The adapted strain showed higher specific growth rate and 3-fold xylose uptake rate and short lag phase as compared to the native strain. During aerobic growth adapted yeast showed 2.81-fold higher xylose utilization than that of native. In anaerobic batch fermentation, adapted yeast utilized about 91 % of xylose in 72 h and produced 2.88 and 18.75 g l?1 of ethanol and xylitol, respectively, which were 5.11 and 5.71-fold higher than that of native. Ethanol yield, xylitol yield and specific sugar consumption rate obtained by the adapted cells were found to be 1.57, 1.65 and 4.84-fold higher than that of native yeast, respectively. Aforesaid results suggested that the evolutionary adaptation will be a very effective strategy in the near future for economic lignocellulosic ethanol production.  相似文献   

7.
Zymomonas mobilis is a promising organism for biofuel production as it can produce ethanol from glucose at high rates. However, Z. mobilis does not natively ferment C5 sugars such as xylose. While it has been engineered to do so, the engineered strains do not metabolize these sugars at high rates. Previous research has identified some of the bottlenecks associated with xylose metabolism in Z. mobilis. In this work, we investigated transport as a possible bottleneck. In particular, we hypothesized that the slow uptake of xylose through the promiscuous Glf transporter may limit the efficiency of xylose metabolism in Z. mobilis. To test this hypothesis, we expressed XylE, the low-affinity xylose transporter from Escherichia coli, in a xylose-utilizing strain of Z. mobilis. Our results show that the expression of this pentose-specific transporter improves the rate of xylose utilization in Z. mobilis; however, this enhancement is seen only at high xylose concentrations. In addition, we also found that overexpression of the promiscuous Z. mobilis transporter Glf yielded similar results, suggesting that the transport bottleneck is not due to the specificity, but rather the capacity for sugar uptake.  相似文献   

8.
Its metabolic characteristics suggest that Zymobacter palmae gen. nov., sp. nov. could serve as a useful new ethanol-fermenting bacterium, but its biotechnological exploitation will require certain genetic modifications. We therefore engineered Z. palmae so as to broaden the range of its fermentable sugar substrates to include the pentose sugar xylose. The Escherichia coli genes encoding the xylose catabolic enzymes xylose isomerase, xylulokinase, transaldolase, and transketolase were introduced into Z. palmae, where their expression was driven by the Zymomonas mobilis glyceraldehyde-3-phosphate dehydrogenase promoter. When cultured with 40 g/liter xylose, the recombinant Z. palmae strain was able to ferment 16.4 g/liter xylose within 5 days, producing 91% of the theoretical yield of ethanol with no accumulation of organic acids as metabolic by-products. Notably, xylose acclimation enhanced both the expression of xylose catabolic enzymes and the rate of xylose uptake into recombinant Z. palmae, which enabled the acclimated organism to completely and simultaneously ferment a mixture of 40 g/liter glucose and 40 g/liter xylose within 8 h, producing 95% of the theoretical yield of ethanol. Thus, efficient fermentation of a mixture of glucose and xylose to ethanol can be accomplished by using Z. palmae expressing E. coli xylose catabolic enzymes.  相似文献   

9.
The fermentation of lignocellulose-derived sugars, particularly xylose, into ethanol by the yeast Saccharomyces cerevisiae is known to be inhibited by compounds produced during feedstock pretreatment. We devised a strategy that combined chemical profiling of pretreated feedstocks, high-throughput phenotyping of genetically diverse S. cerevisiae strains isolated from a range of ecological niches, and directed engineering and evolution against identified inhibitors to produce strains with improved fermentation properties. We identified and quantified for the first time the major inhibitory compounds in alkaline hydrogen peroxide (AHP)-pretreated lignocellulosic hydrolysates, including Na+, acetate, and p-coumaric (pCA) and ferulic (FA) acids. By phenotyping these yeast strains for their abilities to grow in the presence of these AHP inhibitors, one heterozygous diploid strain tolerant to all four inhibitors was selected, engineered for xylose metabolism, and then allowed to evolve on xylose with increasing amounts of pCA and FA. After only 149 generations, one evolved isolate, GLBRCY87, exhibited faster xylose uptake rates in both laboratory media and AHP switchgrass hydrolysate than its ancestral GLBRCY73 strain and completely converted 115 g/liter of total sugars in undetoxified AHP hydrolysate into more than 40 g/liter ethanol. Strikingly, genome sequencing revealed that during the evolution from GLBRCY73, the GLBRCY87 strain acquired the conversion of heterozygous to homozygous alleles in chromosome VII and amplification of chromosome XIV. Our approach highlights that simultaneous selection on xylose and pCA or FA with a wild S. cerevisiae strain containing inherent tolerance to AHP pretreatment inhibitors has potential for rapid evolution of robust properties in lignocellulosic biofuel production.  相似文献   

10.
Spent sulfite pulping liquor (SSL) is a high-organic content byproduct of acid bisulfite pulp manufacture which is fermented to make industrial ethanol. SSL is typically concentrated to 240 g/l (22% w/w) total solids prior to fermentation, and contains up to 24 g/l xylose and 30 g/l hexose sugars, depending upon the wood species used. The xylose present in SSL is difficult to ferment using natural xylose-fermenting yeast strains due to the presence of inhibitory compounds, such as organic acids. Using sequential batch shake flask experiments, Saccharomyces cerevisiae 259ST, which had been genetically modified to ferment xylose, was compared with the parent strain, 259A, and an SSL adapted strain, T2, for ethanol production during SSL fermentation. With an initial SSL pH of 6, without nutrient addition or SSL pretreatment, the ethanol yield ranged from 0.32 to 0.42 g ethanol/g total sugar for 259ST, compared to 0.15-0.32 g ethanol/g total sugar for non-xylose fermenting strains. For most fermentations, minimal amounts of xylitol (<1 g/l) were produced, and glycerol yields were approximately 0.12 g glycerol/g sugar consumed. By using 259ST for SSL fermentation up to 130% more ethanol can be produced compared to fermentations using non-xylose fermenting yeast.  相似文献   

11.
An efficient fermenting microorganism for bioethanol production from lignocellulose is highly tolerant to the inhibitors released during pretreatment and is able to ferment efficiently both glucose and xylose. In this study, directed evolution was employed to improve the xylose fermenting Saccharomyces cerevisiae F12 strain for bioethanol production at high substrate loading. Adapted and parental strains were compared with respect to xylose consumption and ethanol production. Adaptation led to an evolved strain more tolerant to the toxic compounds present in the medium. When using concentrated prehydrolysate from steam-pretreated wheat straw with high inhibitor concentration, an improvement of 65 and 20% in xylose consumption and final ethanol concentration, respectively, were achieved using the adapted strain. To address the need of high substrate loadings, fed-batch SSF experiments were performed and an ethanol concentration as high as 27.4 g/l (61% of the theoretical) was obtained with 11.25% (w/w) of water insoluble solids (WIS).  相似文献   

12.
Ethanol production from xylose is important for the utilization of lignocellulosic biomass as raw materials. Recently, we reported the development of an industrial xylose-fermenting Saccharomyces cerevisiae strain, MA-R4, which was engineered by chromosomal integration to express the genes encoding xylose reductase and xylitol dehydrogenase from Pichia stipitis along with S. cerevisiae xylulokinase gene constitutively using the alcohol-fermenting flocculent yeast strain, IR-2. IR-2 has the highest xylulose-fermenting ability of the industrial diploid strains, making it a useful host strain for genetically engineering xylose-utilizing S. cerevisiae. To optimize the activities of xylose metabolizing enzymes in the metabolic engineering of IR-2 for further improvement of ethanol production from xylose, we constructed a set of recombinant isogenic strains harboring different combinations of genetic modifications present in MA-R4, and investigated the effect of constitutive expression of xylulokinase and of different levels of xylulokinase and xylose reductase activity on xylose fermentation. This strain comparison showed that constitutive expression of xylulokinase increased ethanol production from xylose at the expense of xylitol excretion, and that high activity of xylose reductase resulted in an increased rate of xylose consumption and an increased glycerol yield. Moreover, strain MA-R6, which has moderate xylulokinase activity, grew slightly better but accumulated more xylitol than strain MA-R4. These results suggest that fine-tuning of introduced enzyme activity in S. cerevisiae is important for improving xylose fermentation to ethanol.  相似文献   

13.
For cost-effective and efficient ethanol production from lignocellulosic fractions of plant biomass, the conversion of not only major constituents, such as glucose and xylose, but also less predominant sugars, such as l-arabinose, is required. Wild-type strains of Saccharomyces cerevisiae, the organism used in industrial ethanol production, cannot ferment xylose and arabinose. Although metabolic and evolutionary engineering has enabled the efficient alcoholic fermentation of xylose under anaerobic conditions, the conversion of l-arabinose into ethanol by engineered S. cerevisiae strains has previously been demonstrated only under oxygen-limited conditions. This study reports the first case of fast and efficient anaerobic alcoholic fermentation of l-arabinose by an engineered S. cerevisiae strain. This fermentation was achieved by combining the expression of the structural genes for the l-arabinose utilization pathway of Lactobacillus plantarum, the overexpression of the S. cerevisiae genes encoding the enzymes of the nonoxidative pentose phosphate pathway, and extensive evolutionary engineering. The resulting S. cerevisiae strain exhibited high rates of arabinose consumption (0.70 g h(-1) g [dry weight](-1)) and ethanol production (0.29 g h(-1) g [dry weight](-1)) and a high ethanol yield (0.43 g g(-1)) during anaerobic growth on l-arabinose as the sole carbon source. In addition, efficient ethanol production from sugar mixtures containing glucose and arabinose, which is crucial for application in industrial ethanol production, was achieved.  相似文献   

14.
Towards industrial pentose-fermenting yeast strains   总被引:15,自引:0,他引:15  
Production of bioethanol from forest and agricultural products requires a fermenting organism that converts all types of sugars in the raw material to ethanol in high yield and with a high rate. This review summarizes recent research aiming at developing industrial strains of Saccharomyces cerevisiae with the ability to ferment all lignocellulose-derived sugars. The properties required from the industrial yeast strains are discussed in relation to four benchmarks: (1) process water economy, (2) inhibitor tolerance, (3) ethanol yield, and (4) specific ethanol productivity. Of particular importance is the tolerance of the fermenting organism to fermentation inhibitors formed during fractionation/pretreatment and hydrolysis of the raw material, which necessitates the use of robust industrial strain background. While numerous metabolic engineering strategies have been developed in laboratory yeast strains, only a few approaches have been realized in industrial strains. The fermentation performance of the existing industrial pentose-fermenting S. cerevisiae strains in lignocellulose hydrolysate is reviewed. Ethanol yields of more than 0.4 g ethanol/g sugar have been achieved with several xylose-fermenting industrial strains such as TMB 3400, TMB 3006, and 424A(LNF-ST), carrying the heterologous xylose utilization pathway consisting of xylose reductase and xylitol dehydrogenase, which demonstrates the potential of pentose fermentation in improving lignocellulosic ethanol production.  相似文献   

15.
A recombinant Saccharomyces cerevisiae strain transformed with xylose reductase (XR) and xylitol dehydrogenase (XDH) genes from Pichia stipitis has the ability to convert xylose to ethanol together with the unfavorable excretion of xylitol, which may be due to cofactor imbalance between NADPH-preferring XR and NAD+-dependent XDH. To reduce xylitol formation, we have already generated several XDH mutants with a reversal of coenzyme specificity toward NADP+. In this study, we constructed a set of recombinant S. cerevisiae strains with xylose-fermenting ability, including protein-engineered NADP+-dependent XDH-expressing strains. The most positive effect on xylose-to-ethanol fermentation was found by using a strain named MA-N5, constructed by chromosomal integration of the gene for NADP+-dependent XDH along with XR and endogenous xylulokinase genes. The MA-N5 strain had an increase in ethanol production and decrease in xylitol excretion compared with the reference strain expressing wild-type XDH when fermenting not only xylose but also mixed sugars containing glucose and xylose. Furthermore, the MA-N5 strain produced ethanol with a high yield of 0.49 g of ethanol/g of total consumed sugars in the nonsulfuric acid hydrolysate of wood chips. The results demonstrate that glucose and xylose present in the lignocellulosic hydrolysate can be efficiently fermented by this redox-engineered strain.  相似文献   

16.
Wheat straw is an abundant agricultural residue which can be used as a raw material for bioethanol production. Due to the high xylan content in wheat straw, fermentation of both xylose and glucose is crucial to meet desired overall yields of ethanol. In the present work a recombinant xylose fermenting strain of Saccharomyces cerevisiae, TMB3400, cultivated aerobically on wheat straw hydrolysate, was used in simultaneous saccharification and fermentation (SSF) of steam pretreated wheat straw. The influence of fermentation strategy and temperature was studied in relation to xylose consumption, ethanol formation and by-product formation. In addition, model SSF experiments were made to further investigate the influence of temperature on xylose fermentation and by-product formation. In particular for SSF at the highest value of fibre content tested (9% water insoluble substance, WIS), it was found that a fed-batch strategy was clearly superior to the batch process in terms of ethanol yield, where the fed-batch gave 71% of the theoretical yield (based on all available sugars) in comparison to merely 59% for the batch. Higher ethanol yields, close to 80%, were obtained at a WIS-content of 7%. Xylose fermentation significantly contributed to the overall ethanol yields. The choice of temperature in the range 30-37 degrees C was found to be important, especially at higher contents of water insoluble solids (WIS). The optimum temperature was found to be 34 degrees C for the raw material and yeast strain studied. Model SSF experiments with defined medium showed strong temperature effects on the xylose uptake rate and xylitol yield.  相似文献   

17.
The ability of a recombinant Saccharomyces yeast strain to ferment the sugars glucose, xylose, arabinose and galactose which are the predominant monosaccharides found in corn fibre hydrolysates has been examined. Saccharomyces strain 1400 (pLNH32) was genetically engineered to ferment xylose by expressing genes encoding a xylose reductase, a xylitol dehydrogenase and a xylulose kinase. The recombinant efficiently fermented xylose alone or in the presence of glucose. Xylose-grown cultures had very little difference in xylitol accumulation, with only 4 to 5g/l accumulating, in aerobic, micro-aerated and anaerobic conditions. Highest production of ethanol with all sugars was achieved under anaerobic conditions. From a mixture of glucose (80g/l) and xylose (40g/l), this strain produced 52g/l ethanol, equivalent to 85% of theoretical yield, in less than 24h. Using a mixture of glucose (31g/l), xylose (15.2g/l), arabinose (10.5g/l) and galactose (2g/l), all of the sugars except arabinose were consumed in 24h with an accumulation of 22g ethanol/l, a 90% yield (excluding the arabinose in the calculation since it is not fermented). Approximately 98% theoretical yield, or 21g ethanol/l, was achieved using an enzymatic hydrolysate of ammonia fibre exploded corn fibre containing an estimated 47.0g mixed sugars/l. In all mixed sugar fermentations, less than 25% arabinose was consumed and converted into arabitol.  相似文献   

18.
E. coli has the ability to ferment both C5 and C6 sugars and produce mixture of acids along with small amount of ethanol. In our previous study, we reported the construction of an ethanologenic E. coli strain by modulating flux through the endogenous pathways. In the current study, we made further changes in the strain to make the overall process industry friendly; the changes being (1) removal of plasmid, (2) use of low-cost defined medium, and (3) improvement in consumption rate of both C5 and C6 sugars. We first constructed a plasmid-free strain SSY13 and passaged it on AM1–xylose minimal medium plate for 150 days. Further passaging was done for 56 days in liquid AM1 medium containing either glucose or xylose on alternate days. We observed an increase in specific growth rate and carbon utilization rate with increase in passage numbers until 42 days for both glucose and xylose. The 42nd day passaged strain SSK42 fermented 113 g/L xylose in AM1 minimal medium and produced 51.1 g/L ethanol in 72 h at 89% of maximum theoretical yield with ethanol productivity of 1.4 g/L/h during 24–48 h of fermentation. The ethanol titer, yield and productivity were 49, 40 and 36% higher, respectively, for SSK42 as compared to unevolved SSY13 strain.  相似文献   

19.
Thermo-tolerant yeast Kluyveromyces marxianus is able to utilize a wide range of substrates, including xylose; however, the xylose fermentation ability is weak because of the redox imbalance under oxygen-limited conditions. Alleviating the intracellular redox imbalance through engineering the coenzyme specificity of NADPH-preferring xylose reductase (XR) and improving the expression of XR should promote xylose consumption and fermentation. In this study, the native xylose reductase gene (Kmxyl1) of the K. marxianus strain was substituted with XR or its mutant genes from Pichia stipitis (Scheffersomyces stipitis). The ability of the resultant recombinant strains to assimilate xylose to produce xylitol and ethanol at elevated temperature was greatly improved. The strain YZB014 expressing mutant PsXR N272D, which has a higher activity with both NADPH and NADH as the coenzyme, achieved the best results, and produced 3.55 g l?1 ethanol and 11.32 g l?1 xylitol—an increase of 12.24- and 2.70-fold in product at 42 °C, respectively. A 3.94-fold increase of xylose consumption was observed compared with the K. marxianus YHJ010 harboring KmXyl1. However, the strain YZB015 expressing a mutant PsXR K21A/N272D, with which co-enzyme preference was completely reversed from NADPH to NADH, failed to ferment due to the low expression. So in order to improve xylose consumption and fermentation in K. marxianus, both higher activity and co-enzyme specificity change are necessary.  相似文献   

20.
Bioethanol is the most commonly used renewable biofuel as an alternative to fossil fuels. Many microbial strains can convert lignocellulosics into bioethanol. However, very few natural strains with a high capability of fermenting pentose sugars and simultaneously utilizing various sugars have been reported. In this study, fermentation of sugar by Fusarium oxysporum G was performed for the production of ethanol to improve the performance of the fermentation process. The influences of pH, substrate concentration, temperature, and rotation speed on ethanol fermentation are investigated. The three significant factors (pH, substrate concentration, and temperature) are further optimized by quadratic orthogonal rotation regression combination design and response surface methodology (RSM). The optimum conditions are pH 4, 40?g/L of xylose, 32?°C, and 110?rpm obtained through single factor experiment design. Finally, it is found that the maximum ethanol production (10.0?g/L) can be achieved after 7 d of fermentation under conditions of pH 3.87, 45.2?g/L of xylose, and 30.4?°C. Glucose is utilized preferentially for the glucose–xylose mixture during the initial fermentation stage, but glucose and xylose are synchronously consumed without preference in the second period. These findings are significant for the potential industrial application of this strain for bioethanol production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号