首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The enthalpies of the hexokinase-catalyzed phosphorylation or glucose, mannose, and fructose by ATP to the respective hexose 6-phosphates have been measured calorimetrically in TRIS/TRIS HCl buffer at 25.0, 28.5, and 32.0°C. The effects on the measured enthalpy of the glucose/hexokinase reaction due to variation of pH (over the range 6.7 to 9.0) and ionic strength (over the range 0.02 to 0.25) have been examined. Correction for enthalpy of buffer protonation leads to δHo and δCpo values for the processes: eq-D-hexose + ATP4− = eq-D-hexose 6-phosphate2− + ADP3−+ H+. Results are δHo = −23.8 ± 0.7 kJ · mol−1 and δCpo = −156 ± 280 J·mol−1·K−1 for glucose. δHo = −21.9 ± 0.7 kJ·mol−1 and δCpo = 10 ± 140 J·mol−1·K−1 for mannose, and δHo = −15.0 ± 0.9 kJ·mol−1 and δCpo = −41 ± 160 J·mol−1·K−1 for fructose. Combination of these measured enthalpies with Gibbs energy data for hydrolysis of ATP4− and that for the hexose 6-phosphates lead to δSo values for the above hexokinase-catalyzed reactions.  相似文献   

2.
Epiphytic lichen diversity in a boggy stand of Norway spruce (Picea abies) was studied in the eastern Harz Mountains, northern Germany. Spruce trees at wet sites were affected by forest dieback, whereas trees on drier sites remained unaffected. Lichen diversity was higher on dieback-affected trees than on healthy ones. The foliose lichen Hypogymnia physodes was significantly more frequent on dead trees, whereas the crustose, extremely toxitolerant Lecanora conizaeoides occurred more frequently on healthy trees. Stemflow concentrations of NH4+, NO3, PO3, and SO42− were lower on affected trees. This is attributed to reduced interception from the atmosphere due to needle loss. Cover of H. physodes decreased with increasing mean SO42− concentration in stemflow. The total of lichen species per sample tree also decreased with increasing SO42− concentration in stemflow, indicating that most species reacted in a similar way as H. physodes. Cover of L. conizaeoides increased with increasing SO42− concentration, but decreased at higher SO42− concentrations. Bark chemistry had a minor influence on lichen diversity.  相似文献   

3.
Nuclear magnetic resonance line-widths data have been used to determine the rate of solvent exchange from the first coordination sphere of ferro-and ferriprotoporphyrin(IX) dimethylester (Fe-PPD) in pyridine/chloroform. The average values of kinetic parameters for pyridine (PY) exchange indicate an SN2 mechanism tor Fe(III)-PPD(ΔH&;#; = 36 kJ · mol−1 ; ΔS&;#; = −53 J·mol−1K−1; TM(298 K) = 0.07 msec) and an SNI mechanism for Fe(II)-PPD (ΔH&;#; = 67 kJ·mol−1; ΔS&;#; = 42 J · mol−1K−1; TM(298 K) = 0.06 msec). Parallel to the accelerated ligand exchange rate at rising temperatures a redistribution of the electrons causing a transition of the metal porphyrin from the low-spin state to the high-spin state is observed. Enthalpy and entropy of the thermodynamic equilibrium between low- and high-spin Fe-PPD have been determined from experimental values of the average magnetic moment. A mean lifetime of low-spin Fe(III)-PPD was estimated from line. widths changes (TL→H(298 K)≈ 20 msec) and the corresponding activation parameters have been obtained (ΔH&;#;L→H(298 K) = 26 kJ · mol−1; ΔS&;#;L→H(298K) = −125 J · mol−1K−1).  相似文献   

4.
Abstract:The lichen composition on wayside Quercus robur in the Netherlands was related to bark properties (pH, EC, NH4+, SO42−, NO3) and levels of air pollution (SO2and NH3). The pH of the bark and the susceptibility to toxic substances appear to be the two major primary factors affecting epiphytic lichen composition. These factors have independent effects on the lichen composition. Most of the so-called nitrophytic species appear to have a low sensitivity to toxic effects of SO2; their only requirement being a high bark pH. An increased bark pH appears to be the primary cause of the enormous increase in nitrophytic species and the disappearance of acidophytic species over the last decade in the Netherlands. Measurements of ambient NH3concentrations in air show that there is a nearly linear relationship between the NH3concentration and the abundance of nitrophytes on Quercus. The abundance of nitrophytes was not correlated with SO2concentrations. Most of the acidophytic species appear very sensitive to NH3since in areas with concentrations of 35 μg m−3or more, all acidophytic species have disappeared. Current methods using species diversity to estimate or monitor SO2air pollution need some modification, otherwise the air quality may be erroneously considered to be relatively good in areas with high NH3levels.  相似文献   

5.
《Ecological Engineering》1999,12(1-2):67-92
Nitrogen removal processes were investigated at three frequencies of water level fluctuation, static, low and high (0, 2 and 6 d−1), in duplicate gravel-bed constructed wetland mesocosms (0.145 m3) with and without plants (Schoenoplectus tabernaemontani). Fluctuation was achieved by temporarily pumping wastewater into a separate tank (total drain time ∼35 min). Intensive sampling of the mesocosms, batch-fed weekly with ammonium-rich (∼100 g m−3 NH4-N) farm dairy wastewaters, showed rates of chemical oxygen demand (COD) and total Kjeldahl nitrogen (TKN) removal increased markedly with fluctuation frequency and in the presence of plants. Nearly complete removal of NH4-N was recorded over the 7 day batch period at the highest level of fluctuation, with minimal enhancement by plants. Redox potentials (Eh) at 100 mm depth rose from initial levels of around −100 to >350 mV and oxidised forms of N (NO2 and NO3) increased to ∼40 g m−3, suggesting conditions were conducive to microbial nitrification at this level of fluctuation. In the unplanted mesocosms with low or zero fluctuation, mean NH4-N removals were only 28 and 10%, respectively, and redox potentials in the media remained low for a substantial part of the batch periods (mid-batch Eh ∼+100 and −100 mV, respectively). In the presence of wetland plants, mean NH4-N removal in the mesocosms with low or zero fluctuation rose to 71 and 54%, respectively, and COD removal (>70%) and redox potential (mid-batch Eh>200 mV) were markedly higher than in the unplanted mesocosms. Negligible increases in oxidised N were recorded at these fluctuation frequencies, but total nitrogen levels declined at mean rates of 2.4 and 1.8 g m−2 d−1, respectively. NH4-N removal from the bulk water in the mesocosms was well described (R2=0.97–0.99) by a sorption-plant uptake-microbial model. First-order volumetric removal rate constants (kv) rose with increasing fluctuation frequency from 0.026 to 0.46 d−1 without plants and from 0.042 to 0.62 d−1 with plants. As fluctuation frequency increased, reversible sorption of NH4-N to the media, and associated biofilms and organic matter, became an increasingly important moderator of bulk water concentrations during the batch periods. TN mass balances for the full batch periods suggested that measured plant uptake estimates of between 0.52 and 1.07 g N m−2 d−1 (inversely related to fluctuation frequency) could fully account for the increased overall removal of TN recorded in the planted systems. By difference, microbial nitrification-denitrification losses were therefore estimated to be approximately doubled by low-level fluctuation from 0.7 to 1.4 g N m−2 d−1 (both with and without plants), rising to a maximum rate of 2.1 g N m−2 d−1 at high fluctuation, in the absence of competitive uptake by plants.  相似文献   

6.
The adsorption properties of common gas molecules (NO, NH3, and SO2) on the surface of 3N-graphene and Al/3N graphene fragments are investigated using density functional theory. The adsorption energies have been calculated for the most stable configurations of the molecules on the surface of 3N-graphene and Al/3N graphene fragments. The adsorption energies of Al/3N graphene-gas systems are ?220.5 kJ mol?1 for Al/3NG-NO, ?111.9 kJ mol?1 for Al/3NG-NH3, and ?347.7 kJ mol?1 for Al/3NG-SO2, respectively. Compared with the 3N-graphene fragment, the Al/3N graphene fragment has significant adsorption energy. Furthermore, the molecular orbital, density of states, and electron densities distribution were used to explore the interaction between these molecules and the surface. We found that orbital hybridization exists between these molecules and the Al/3N graphene surface, which indicates that doping Al significantly increases the interaction between the gas molecules and Al/3N graphene. In addition, compared with Li, Al can more powerfully enhance adsorption of the 3N-graphene fragment. The results indicate that Al/3N graphene can be viewed as a new nanomaterial adsorbent for NO, NH3, and SO2.  相似文献   

7.
To investigate the influence of pH on methane and sulfide production, continuous cultures were done using a bio-reactor packed with pumice stone. Sulfate (1 g SO42−·l−1) in a methanol defined medium (10 g·l−1) was almost completely reduced to sulfide at pHs between 7.0 and 7.5 in methane fermentation, but at pHs between 6.2 and 6.8, sulfate reduction to sulfide was suppressed up to 40%. In addition, methane fermentation was not inhibited by 10 g sulfate·l−1.  相似文献   

8.
The epiphytic lichen flora of 25 European ICP-IM monitoring sites, all situated in areas remote from air pollution sources, was statistically related to measured levels of SO2in air, NH4+, NO3 and SO42− in precipitation, annual bulk precipitation, and annual average temperature. Significant regression models were calculated for eleven acidophytic species. Several species show a strong negative correlation with nitrogen compounds. At concentrations as low as 0·3 mg N l−1in precipitation, a decrease of the probability of occurrence is observed for Bryoria capillaris, B. fuscescens, Cetraria pinastri, Imshaugia aleurites and Usnea hirta. The observed pattern of correlations strongly suggests a key role of NH4+ in determining the species occurrence, but an additional role of NO3 cannot be ruled out. Some species show a distinct response to current levels of SO2as well. It may be concluded that long distance nitrogen air pollution has strong influence on the occurrence of acidophytic lichen species.  相似文献   

9.
The biogeochemical cycles of nitrogen (N) and base cations (BCs), (i.e., K+, Na+, Ca2+, and Mg2+), play critical roles in plant nutrition and ecosystem function. Empirical correlations between large experimental N fertilizer additions to forest ecosystems and increased BCs loss in stream water are well demonstrated, but the mechanisms driving this coupling remain poorly understood. We hypothesized that protons generated through N transformation (PPRN)—quantified as the balance of NH4+ (H+ source) and NO3 (H+ sink) in precipitation versus the stream output will impact BCs loss in acid-sensitive ecosystems. To test this hypothesis, we monitored precipitation input and stream export of inorganic N and BCs for three years in an acid-sensitive forested watershed in a granite area of subtropical China. We found the precipitation input of inorganic N (17.71 kg N ha−1 year−1 with 54% as NH4+–N) was considerably higher than stream exported inorganic N (5.99 kg N ha−1 year−1 with 83% as NO3–N), making the watershed a net N sink. The stream export of BCs (151, 1518, 851, and 252 mol ha−1 year−1 for K+, Na+, Ca2+, and Mg2+, respectively) was positively correlated (r = 0.80, 0.90, 0.84, and 0.84 for K+, Na+, Ca2+, and Mg2+ on a monthly scale, respectively, P < 0.001, n = 36) with PPRN (389 mol ha−1 year−1) over the three years, suggesting that PPRN drives loss of BCs in the acid-sensitive ecosystem. A global meta-analysis of 15 watershed studies from non-calcareous ecosystems further supports this hypothesis by showing a similarly strong correlation between ∑BCs output and PPRN (r = 0.89, P < 0.001, n = 15), in spite of the pronounced differences in environmental settings. Collectively, our results suggest that N transformations rather than anions (NO3 and/or SO42−) leaching specifically, are an important mediator of BCs loss in acid-senstive ecosystems. Our study provides the first definitive evidence that the chronic N deposition and subsequent transformation within the watershed drive stream export of BCs through proton production in acid-sensitive ecosystems, irrespective of their current relatively high N retention. Our findings suggest the N-transformation-based proton production can be used as an indicator of watershed outflow quality in the acid-sensitive ecosystems.  相似文献   

10.
Calorimetric studies of the reduction of free oxygen in solution by sodium dithionite are in agreement with a stoichiometry of 2 moles Na2S2O4 per mole of oxygen. The reaction is biphasic with ΔHt - 118±7 kcal mol?1 (?494 ± 29 kJ mol?1). The initial phase of the reaction proceeds with an enthalpy change of ca ?20 kcal (?84 kJ) and occurs when 0.5 moles of dithionite have been added per mole dioxygen present. This could be interpreted as the enthalpy change for the addition of a single electron to form the superoxide anion. Further reduction of the oxygen to water by one or more additional steps is accompanied by an enthalpy change of ca ?100 kcal (?418. 5 kJ). Neither of these reductive phases is consistent with the formation of hydrogen peroxide as an intermediate. The reduction of hydrogen peroxide by dithionite in 0.1 M phosphate buffer, pH 7.15, is a much slower process and with an enthalpy change of ca ? 74 kcal mol?1 (?314 kJ mol?1). Dissociation of oxyhemoglobin induced by the reduction of free oxygen tension with dithionite also shows a stoichiometry of 2 moles dithionite per mole oxygen present and an enthalpy change of ca. ?101 ±9 kcal mol?1 (?423± 38 kJ mol?1). The difference in the observed enthalpies (reduction of dioxygen vs. oxyhemoglobin) has been attributed to the dissociation of oxyhemoglobin, which is 17 kcal mol?1 (71 kJ mol?1).  相似文献   

11.
In this study, the plant node was dried in an oven (40, 50 and 60 °C), shade and temperature-controlled microwave (40, 50 and 60 °C) methods. Statistically (p<0.05), the values closest to the color values of fresh grass were determined in an oven at 40 °C drying temperature. Effective diffusion values varied between 8.85×10−8–5.65×10−6 m2 s−1. While the activation energy was 61.28 kJ mol−1 in the oven, it was calculated as 85.24 kJ mol−1 in the temperature-controlled microwave. Drying data was best estimated in the Midilli-Küçük (R2 0.9998) model oven at 50 °C. The highest SMER value was calculated as 0.0098 kg kWh−1 in the temperature-controlled microwave drying method. The lowest SEC value in the temperature-controlled microwave was determined as 24.03 kWh kg−1. It was determined that enthalpy values varied between −2484.66/−2623.38 kJ mol−1, entropy values between −162.04/−122.65 J mol−1 and Gibbs free energy values between 453335.22–362581.40 kJ mol−1. Drying rate values were calculated in the range of 0.0127–0.9820 g moisture g dry matter−1 in the temperature-controlled microwave, 0.0003–0.0762 g dry matter−1 in the oven, and 0.001–0.0058 g moisture g dry moisture matter−1 in the shade. Phenolic content 6957.79 μg GAE g−1 fw - 48322.27 μg GAE g−1 dw, flavonoid content 3806.67 mg KE L−1 fw - 22200.00 mg KE L−1 dw and antioxidant capacity 43.35 μmol TE g−1 fw - 323.47 μmol TE g−1 dw. The highest chlorophyll values were obtained from samples dried in an oven at 40 °C. According to the findings, it is recommended to dry the knotweed (Polygonum cognatum Meissn.) plant in a temperature-controlled microwave oven at low temperatures. In this study, in terms of drying kinetics and energy parameters, a temperature-controlled microwave dryer of 60 °C is recommended, while in terms of quality characteristics, oven 40 °C and shade methods are recommended.  相似文献   

12.
《Aquatic Botany》2005,81(4):326-342
The effects of NH4+ or NO3 on growth, resource allocation and nitrogen (N) uptake kinetics of two common helophytes Phragmites australis (Cav.) Trin. ex Steudel and Glyceria maxima (Hartm.) Holmb. were studied in semi steady-state hydroponic cultures. At a steady-state nitrogen availability of 34 μM the growth rate of Phragmites was not affected by the N form (mean RGR = 35.4 mg g−1 d−1), whereas the growth rate of Glyceria was 16% higher in NH4+-N cultures than in NO3-N cultures (mean = 66.7 and 57.4 mg g−1 d−1 of NH4+ and NO3 treated plants, respectively). Phragmites and Glyceria had higher S/R ratio in NH4+ cultures than in NO3 cultures, 123.5 and 129.7%, respectively.Species differed in the nitrogen utilisation. In Glyceria, the relative tissue N content was higher than in Phragmites and was increased in NH4+ treated plants by 16%. The tissue NH4+ concentration (mean = 1.6 μmol g fresh wt−1) was not affected by N treatment, whereas NO3 contents were higher in NO3 (mean = 1.5 μmol g fresh wt−1) than in NH4+ (mean = 0.4 μmol g fresh wt−1) treated plants. In Phragmites, NH4+ (mean = 1.6 μmol g fresh wt−1) and NO3 (mean = 0.2 μmol g fresh wt−1) contents were not affected by the N regime. Species did not differ in NH4+ (mean = 56.5 μmol g−1 root dry wt h−1) and NO3 (mean = 34.5 μmol g−1 root dry wt h−1) maximum uptake rates (Vmax), and Vmax for NH4+ uptake was not affected by N treatment. The uptake rate of NO3 was low in NH4+ treated plants, and an induction phase for NO3 was observed in NH4+ treated Phragmites but not in Glyceria. Phragmites had low Km (mean = 4.5 μM) and high affinity (10.3 l g−1 root dry wt h−1) for both ions compared to Glyceria (Km = 6.3 μM, affinity = 8.0 l g−1 root dry wt h−1). The results showed different plasticity of Phragmites and Glyceria toward N source. The positive response to NH4+-N source may participates in the observed success of Glyceria at NH4+ rich sites, although other factors have to be considered. Higher plasticity of Phragmites toward low nutrient availability may favour this species at oligotrophic sites.  相似文献   

13.
Antimicrobial peptide P34 is a promising biopreservative for utilization in the food industry. In this work, aqueous biphasic systems (ABS) and aqueous biphasic micellar systems (ABMS) were studied as prestep for purification of peptide P34. The ABS was prepared with polyethylene glycol (PEG) and inorganic salts and the ABMS with Triton X-114 was chosen as the phase-forming surfactant. Results indicate that peptide P34 partitions preferentially to PEG-rich phase and extraction with ammonium sulfate [(NH4)2SO4], yielding a 75% recovery of the antimicrobial activity, specific activity of 1,530 antimicrobial units per mg of protein, and purification fold of 2.48. Protein partition coefficient and partition coefficient for the biological activity with (NH4)2SO4 system were 0.48 and 64, respectively. Addition of sodium chloride did not affect recovery, but decreased protein amount in the PEG-rich phase, indicating a higher partition of biomolecules. ABMS did not yield good recovery of antimicrobial activity. Purification fold using PEG–(NH4)2SO4 and 1.0?mol l?1 sodium chloride was twice higher than that obtained by conventional protocol, indicating a successful utilization of ABS as a step for purification of peptide P34.  相似文献   

14.
《Biomass》1988,15(4):249-257
An experiment was conducted in the growth chamber to quantify the biomass production, N removal and N2 fixation from a synthetic medium by Chlamydomonas reinhardtii and Anabaena flos-aquae. Nitrogen was supplied at a concentration of 100 mg liter−1 of NO315N and NH4+15 (3·5 atom %), respectively. After 21 days Chlamydomonas reinhardtii removed an average of 83·8 and 78·7 mg N liter−1 as NO3 and NH4+, respectively. Averages of 0·89 and 0·71 g liter−1 (first batch), 1·63 and 0·95 g liter (second batch) algal biomass were collected from NO3 and NH4+ media, respectively. Uptake rates of 0·11 mg 15N g−1 algae day−1 from NO3 medium and 0·10 mg 15N g−1 algae day−1 from NH4+ medium were calculated. Algal cells grown in NO3 and NH4+ medium contained 71 and 65 g N kg−1 (first batch), 39 and 58 g N kg−1 (second batch), respectively. Anabaena flos-aquae produced averages of 0·58 and 0·46 g liter−1 (first batch), 0·55 and 0·48 g liter−1 (second batch) after 14 days of growth from NO3 and NH4+ media, respectively. Blue-green algal biomass contained higher N (81–98 g kg−1) than green algae. Isotope dilution method for determining N2 fixation indicated that 55% and 77% of total N of blue-green algae grown in NO3 and NH4+ media, respectively, was derived from the atmosphere.  相似文献   

15.
We have used two techniques to characterize the gelation of deoxyhemoglobin S, a high sensitivity heat-flow calorimeter to measure the heat of gelation and a simple light-transmission method to measure the optical birefringence resulting from the alignment of deoxyhemoglobin S fibers in the gel. A theory for the interpretation of the birefringence measurements is presented. We combine the results of the calorimetric and optical measurements with those of sedimentation experiments to obtain enthalpy changes for gelation. The enthalpy change obtained from scanning and isothermal calorimetric measurements (0.25 m-potassium phosphate, 0.05 m-sodium dithionite, pH 6.9) varies from 4000 to 2200 cal mol−1 hemoglobin between 16 and 25 °C. There is a large apparent heat capacity change of −130 to −190 cal deg.−1 mol−1. The apparent enthalpy change estimated from solubility measurements and birefringence melting experiments is 2200 ± 500 cal mol−1 in qualitative agreement with the calorimetric results. Analysis of the time dependence of the calorimetric and optical progress curves at 20 °C leads to a rough estimate of 1800 to 4000 and −800 to 1500 cal mol−1 hemoglobin for the enthalpies of polymerization and alignment of fibers, respectively. The small magnitude of the observed enthalpy change is in accord with the view that no large conformational change takes place in the deoxyhemoglobin S molecule upon gelation.  相似文献   

16.
The interception by crop canopies of radionuclides in rainfall can be important in determining radiation exposures to animals and man. Data were obtained on the sorption and desorption of radionuclides on the adaxial surfaces of fully expanded bean leaves by exposing them to ionic forms of caesium (Cs+), iodine (I) or sulphur (SO42−) over a six order of magnitude concentration range. The accumulation of each element was determined as a time course over a 48 h period using radioactive labels (137Cs, 125I or 35S, respectively). Time- and concentration-dependent sorption of each element to the leaf surface was analysed to determine: (a) the leaf surface-solution distribution coefficient (Kd) at equilibrium and (b) the sorption and desorption rate coefficients for each element over the range of concentrations investigated. It was expected that Cs+ would show a stronger tendency to sorb to the leaf surface than both I and SO42− because of the cation exchange properties of the cuticular membrane. The Kd for Cs+ was approximately 90× greater than that for SO42− but 5× less than that for I. This is thought to be due to either (a) the highly organophilic nature of iodide and the relatively high iodine number of cuticular waxes on plant leaf surfaces or (b) the possible oxidation of I to I0 or IO3, with consequently enhanced leaf surface sorption. Based on data obtained in this study, ranges and best estimates of sorption and desorption rate coefficients are presented for Cs+, I and SO42− for use in modelling the interception of radioactive Cs, I and S in rainfall by crops.  相似文献   

17.
《Process Biochemistry》2007,42(4):740-744
The conversion of glycerol to 1,3-propanediol (PDO) using Klebsiella pneumoniae M5al under anaerobic condition was scaled up from scale 5 to 5000 l in series. A simple strategy for scale-up was to transfer the optimized conditions of a lab scale bioreactor to pilot-scale fermentation. Multistage inocula were developed and their fermentation abilities were assessed in a small-scale fermenter. The experimental results showed that inoculum development in the early steps of a scale-up process could influence the outcomes of a large scale fermentation. Through three-stage liquid inoculum development and a pulse addition of (NH4)2SO4 and yeast extract at 30 h of fermentation, the best results in a 5000 l fermentation were achieved leading to 58.8 g l−1 1,3-propanediol with a yield of 0.53 mol mol−1 glycerol and productivity of 0.92 g l−1 h−1. This is the first report on pilot-scale 1,3-propanediol production using K. pneumoniae.  相似文献   

18.
Succinate- or oxygen-limited continuous cultures were used to study the influences of different concentrations of dissolved oxygen and ammonia on the growth, respiration, and polypeptide patterns of Bradyrhizobium sp. (Arachis) strain 3G4b20. During succinate-limited growth, molar growth yields on succinate (Ysucc) ranged from 38.9 to 44.4 g (dry weight) of cells mol of succinate−1 and were not greatly influenced by changes in dilution rates or changes in the oxygen concentrations that we tested. Succinate, malate, and fumarate induced the highest rates of oxygen uptake in all of the steady states in which the supply rates of (NH4)2SO4 ranged between 322 and 976 μmol h−1. However, the amino acids aspartate, asparagine, and glutamate could also be used as respiratory substrates, especially when the (NH4)2SO4 supply rate was decreased to 29 μmol h−1. Glutamine-dependent respiration was seen only when the (NH4)2SO4 supply rate was 29 μmol h−1 and thus appears to be under tight ammonia control. Nitrogenase activity was detected only when the culture was switched from a succinate-limited steady state to an oxygen-limited steady state. Comparison of major silver-stained proteins from three steady states by two-dimensional gel electrophoresis revealed that nearly 60% were affected by oxygen and 24% were affected by ammonia. These data are consistent with reports that oxygen has a major regulatory role over developmental processes in Rhizobium sp. and Bradyrhizobium sp.  相似文献   

19.
Root-knot nematode, Meloidogyne incognita is one of the most destructive nematodes worldwide. Essential oils (EOs) are being extensively utilized as eco-benign bionematicides, although the precise mechanism of action remains unclear. Pogostemon cablin Benth. is well-known as “Patchouli”. It is native to South East Asia and known for ethno-pharmacological properties. In this study, chemical composition and potential nematicidal effect of EOs hydrodistilled from the leaves of P. cablin grown at three different locations in India were comprehensively investigated to correlate their mechanism of action for target specific binding affinities toward nematode proteins. Aromatic volatile Pogostemon essential oils (PEO) from Northern India (PEO-NI), Southern India (PEO-SI) and North Eastern India (PEO-NEI) were analyzed by Gas Chromatography-Mass Spectrometry (GC/MS) to characterize forty volatile compounds. Maximum thirty-three components were identified in PEO-NEI. Sesquiterpenes were predominant with higher content of α-guaiene (2.3–24.4 %), patchoulol (6.1–32.7 %) and α-bulnesene (5.9–27.1 %). Patchoulol was the major component in PEO-SI (32.7±1.2 %) and PEO-NEI (29.2±1.1 %), while α-guaiene in PEO-NI (24.4±1.2 %). In vitro nematicidal assay revealed significant nematicidal action (LC50 44.6–87.0 μg mL−1) against juveniles of M. incognita within 24 h exposure. Mortality increases with increasing time to 48 h (LC50 33.6–71.6 μg mL−1) and 72 h (LC50 27.7–61.2 μg mL−1). Molecular modelling and in silico studies revealed multi-modal inhibitive action of α-bulnesene (−22 to −13 kJ mol−1) and α-guaiene (−22 to −12 kJ mol−1) against three target proteins namely, acetyl cholinesterase (AChE), odorant response gene-1 (ODR1), odorant response gene-3 (ODR3). Most preferable binding mechanism was observed against AChE due to pi-alkyl, pi-sigma, and hydrophobic interactions. Structure nematicidal activity relationship suggested the presence of hydroxy group for nematicidal activity is nonessential, rather highly depends on synergistic composition of sesquiterpene hydrocarbons.  相似文献   

20.
The spatial variability of soil chemistry and Ca/Al ratios of soil solution and fine roots were investigated in jack pine (Pinus banksiana) and trembling aspen (Populus tremuloides, aspen) stands to assess the impact of chronic acid deposition on boreal forest ecosystems in the Athabasca oil sands region (AOSR) in Alberta, Canada. Available SO42− (as the sum of soluble and adsorbed SO42−) accumulated in the soil near tree boles of both species, reflecting the influence of canopy intercepted SO42−. In jack pine stands, pH and soluble base cation concentrations decreased towards tree boles due to increased SO42− leaching; the reverse was found in aspen stands due to deposition of base cations leached from the canopy. As a result, Ca/Al ratios in the soluble fraction in soils near jack pine boles were 5–20 times lower than that near aspen boles. The Ca/Al ratio did not reach the critical limits of 1.0 for soil solution (ranged from 1.0 to 4.1) or 0.5 for fine roots (0.7–7.9) in the studied watersheds. However, Aln+ concentrations in the soil solution ranged from 0.2 to 4.1 mg L−1 in NE7 and from 0.1 to 8.5 mg L−1 in SM8 that can inhibit the growth of white spruce (Picea glauca) seedlings that commonly succeed aspen in upland sites in the AOSR. We suggest that the spatial variation caused by tree canopies/stems will affect forest regeneration and the effect of acid deposition on forest succession in the AOSR should be further studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号