首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Rapid development in the glutamate fermentation industry has dictated the need for effective fermentation monitoring by rapid and precise methods that provide real-time information for quality control of the end-product. In recent years, near-infrared (NIR) spectroscopy and multivariate calibration have been developed as fast, inexpensive, non-destructive and environmentally safe techniques for industrial applications. The purpose of this study was to develop models for monitoring glutamate, glucose, lactate and alanine concentrations in the temperature-triggered process of glutamate fermentation. NIR measurements of eight batches of samples were analyzed by partial least-squares regression with several spectral pre-processing methods. The coefficient of determination (R 2), model root-mean square error of calibration (RMSEC), root-mean square error of prediction (RMSEP) and residual predictive deviation (RPD) of the test calibration for the glutamate concentration were 0.997, 3.11 g/L, 2.56 g/L and 19.81, respectively. For the glucose concentration, R 2, RMSEC, RMSEP and RPD were 0.989, 1.37 g/L, 1.29 g/L and 9.72, respectively. For the lactate concentration, R 2, RMSEC, RMSEP and RPD were 0.975, 0.078 g/L, 0.062 g/L and 6.29, respectively. For the alanine concentration, R 2, RMSEC, RMSEP and RPD were 0.964, 0.213 g/L, 0.243 g/L and 5.29, respectively. New batch fermentation as an external validation was used to check the models, and the results suggested that the predictive capacity of the models for the glutamate fermentation process was good.  相似文献   

2.
应用近红外光谱预测水稻叶片氮含量   总被引:4,自引:1,他引:3       下载免费PDF全文
以水稻(Oryza sativa)新鲜叶片和干叶粉末两种状态的样品为研究对象, 基于近红外光谱(NIRS)技术, 应用偏最小二乘法(PLS)、主成分回归(PCR)和逐步多元回归(SMLR), 建立并评价了水稻叶片氮含量(NC)近红外光谱模型。结果表明, 基于PLS建立的模型表现最好, 鲜叶氮含量近红外光谱校正模型校正决定系数RC2为0.940, 校正标准误差RMSEC为0.226; 干叶粉末氮含量的近红外光谱校正模型RC2为0.977, RMSEC为0.136。模型的内部交叉验证分析表明, 预测鲜叶氮含量内部验证决定系数RCV2为0.866, 内部验证标准误差RMSECV为0.243; 预测干叶粉末氮含量RCV2为0.900, RMSECV为0.202。模型的外部验证分析表明, 预测水稻鲜叶氮含量的外部验证决定系数RV2大于0.800, 外部验证标准误差RMSEP小于0.500, 预测干叶粉末氮含量的RV2为0.944, RMSEP为0.142。说明, 近红外光谱分析技术与化学分析方法一致性较好, 且基于干叶粉末建立的近红外光谱预测模型的准确性和精确度较新鲜叶片高。  相似文献   

3.
【目的】为准确快速地了解紫色红曲菌固态发酵中生物量的变化,【方法】采用理化方法测定菌体量和氨基葡萄糖含量,研究了不同培养时间、培养基组成、培养方式下菌体量与氨基葡萄糖含量的关系,建立生物量和氨基葡萄糖含量的换算关系式;构建关联该菌固态培养物近红外光谱数据与实测氨基葡萄糖含量的PLS模型。【结果】建立了可通过近红外光谱法测定氨基葡萄糖来快速预测固态发酵生物量的方法,其中最优近红外模型的校正集内部交叉验证均方根误差(RMSECV)为0.209 4,预测集相关系数(Rp)和均方根误差(RMSEP)分别为0.993 4和0.217 3;同时利用所建的换算关系式也大大提高了生物量计算的准确性。【结论】基于所建立的生物量和氨基葡萄糖的换算关系式,利用近红外光谱法可以快速并且较准确地测定紫色红曲菌固态发酵过程中生物量的变化。  相似文献   

4.
In this study, the potentiality of applying attenuated total reflectance near‐infrared (ATR‐NIR) and attenuated total reflectance mid‐infrared (ATR‐MIR) techniques combined with a partial least squares (PLS) regression technology to quantify the total polyphenols (TPs) in Dendrobium huoshanense (DHS) was investigated and compared. The real TP contents in the DHS samples were analysed using methods of reference. The capability of the two IR spectroscopic techniques to quantify the TPs in DHS was assessed by the root‐mean‐square error of calibration (RMSEC) and determination coefficients (R2). The results showed that both NIR and MIR might be used as a fast and simple tool to replace traditional chemical assays for the determination of the TP contents in DHS, and the best NIR model showed slightly better prediction performance [root‐mean‐square error of prediction (RMSEP): 0.307, R2: 0.9122, ratio performance deviation (RPD): 4.43] than the best MIR model (RMSEP: 0.440, R2: 0.9069, RPD: 3.09). Results from this study indicated that both the NIR and MIR models could be used to quantify the TP in DHS, and ATR‐NIR appeared to be the more predominant and more robust technique for the quantification of the TP in DHS.  相似文献   

5.
This article is the second of a series of articles detailing the development of near-infrared (NIR) methods for solid dosage-form analysis. Experiments were conducted at the Duquesne University Center for Pharmaceutical Technology to demonstrate a method for developing and validating NIR models for the analysis of active pharmaceutical ingredient (API) content and hardness of a solid dosage form. Robustness and cross-validation testing were used to optimize the API content and hardness models. For the API content calibration, the optimal model was determined as multiplicative scatter correction with Savitsky-Golay first-derivative preprocessing followed by partial least-squares (PLS) regression including 4 latent variables. API content calibration achieved root mean squared error (RMSE) and root mean square error of cross validation (RMSECV) of 1.48 and 1.80 mg, respectively. PLS regression and baseline-fit calibration models were compared for the prediction of tablet hardness. Based on robustness testing, PLS regression was selected for the final hardness model, with RMSE and RMSECV of 8.1 and 8.8 N, respectively. Validation testing indicated that API content and hardness of production-scale tablets is predicted with root mean square error of prediction of 1.04 mg and 8.5 N, respectively. Explicit robustness testing for high-flux noise and wavelength uncertainty demonstrated the robustness of the API concentration calibration model with respect to normal instrument operating conditions. Published: October 6, 2005 The views presented in this article do not necessarily reflect those of the Food and Drug Administration.  相似文献   

6.
Prediction of fat quality in pig carcasses by near-infrared spectroscopy   总被引:2,自引:0,他引:2  
This study was conducted to evaluate the potential of near-infrared (NIR) spectroscopy (NIRS) technology for prediction of the chemical composition (moisture content and fatty acid composition) of fat from fast-growing, lean slaughter pig samples coming from breeding programmes. NIRS method I: a total of 77 samples of intact subcutaneous fat from pigs were analysed with the FOSS FoodScan NIR spectrophotometer (850 to 1050 nm) and then used to predict the moisture content by using partial least squares (PLS) regression methods. The best equation obtained has a coefficient of determination for cross-validation (CV; R(2)(cv)) and a root mean square error of a CV (RMSECV) of 0.88 and 1.18%, respectively. The equation was further validated with (n = 15) providing values of 0.83 and 0.42% for the coefficient of determination for validation (R(2)(val)) and root mean square error of prediction (RMSEP), respectively. NIRS method II: in this case, samples of melted subcutaneous fat were analysed in an FOSS XDS NIR rapid content analyser (400 to 2500 nm). Equations based on modified PLS regression methods showed that NIRS technology could predict the fatty acid groups, the main fatty acids and the iodine value accurately with R(2)(cv), RMSECV, R(2)(val) and RMSEP of 0.98, 0.38%, 0.95 and 0.49%, respectively (saturated fatty acids), 0.94, 0.45%, 0.97 and 0.65%, respectively (monounsaturated fatty acids), 0.97, 0.28%, 0.99 and 0.34%, respectively (polyunsaturated fatty acids), 0.76, 0.61%, 0.84 and 0.87%, respectively (palmitic acid, C16:0), 0.75, 0.16%, 0.89 and 0.10%, respectively (palmitoleic acid, C16:1n-7), 0.93, 0.41%, 0.96 and 0.64%, respectively (steric acid, C18:0), 0.90, 0.51%, 0.94 and 0.44%, respectively (oleic acid, C18:1n-9), 0.97, 0.25%, 0.98 and 0.29% (linoleic acid, C18:2n-6), 0.68, 0.09%, 0.57 and 0.16% (α-linolenic acid, C18:3n-3) and 0.97, 0.57, 0.97 and 1.22, respectively (iodine value, calculated). The magnitude of this error showed quite good accuracy using these rapid methods in prediction of the moisture and fatty acid composition of fat from pigs involved in breeding schemes.  相似文献   

7.
This work presents the use of Raman spectroscopy and chemometrics for on‐line control of the fermentation process of glucose by Saccharomyces cerevisiae. In a first approach, an on‐line determination of glucose, ethanol, glycerol, and cells was accomplished using multivariate calibration based on partial least squares (PLS). The PLS models presented values of root mean square error of prediction (RMSEP) of 0.53, 0.25, and 0.02% for glucose, ethanol and glycerol, respectively, and RMSEP of 1.02 g L?1 for cells. In a second approach, multivariate control charts based on multiway principal component analysis (MPCA) were developed for detection of fermentation fault‐batch. Two multivariate control charts were developed, based on the squared prediction error (Q) and Hotelling's T2. The use of the Q control chart in on‐line monitoring was efficient for detection of the faults caused by temperature, type of substrate and contamination, but the T2 control chart was not able to monitor these faults. On‐line monitoring by Raman spectroscopy in conjunction with chemometric procedures allows control of the fermentative process with advantages in relation to reference methods, which require pretreatment, manipulation of samples and are time consuming. Also, the use of multivariate control charts made possible the detection of faults in a simple way, based only on the spectra of the system. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2012  相似文献   

8.
Visible (Vis) and near infrared (NIR) reflectance spectroscopy is a rapid and non-destructive technique that has found many applications in assessing the quality of agricultural commodities, including wool. In this study, Vis and NIR spectroscopy combined with multivariate data analysis was investigated regarding its feasibility in predicting a range of fibre characteristics in raw alpaca wool samples. Mid-side samples (n = 149) were taken from alpacas from a range of colours and ages at shearing time over 4 years (2000 to 2004) and subsequently analysed for fibre characteristics such as mean fibre diameter (MFD) and standard deviation (and coefficient of variation), spin fineness, curvature degree (and standard deviation), comfort factor, medullation percentage (by weight and number in white samples only) using traditional reference laboratory testing methods. Samples were scanned in a large cuvette using a FOSS NIRSystems 6500 monochromator instrument in reflectance mode in the Vis and NIR regions (400 to 2500 nm). Partial least squares (PLS) regression was used to develop a number of calibration models between the spectral and reference data. Mathematical pre-treatment of the spectra (second derivative) as well as various combinations of wavelength range were used in model development. The best calibration model was found when using the NIR region (1100 to 2500 nm) for the prediction of MFD, which had a coefficient of determination in cross-validation (R2) of 0.88 with a root mean square standard error of cross validation (RMSECV) of 2.62 μm. The results show the NIR technique to have promise as a semi-quantitative method for screening purposes. The lack of grease in alpaca wool samples suggests that the technique might find ready application as a rapid measurement technique for preliminary classing of shorn fleeces or, if used directly on the animal, the technology might offer an objective tool to assist in the selection of animals in breeding programmes or shows.  相似文献   

9.
本文以积分球漫反射模块采集113份不同等级不同年份的白茶近红外光谱图并进行预处理分析,采用蒽酮比色法对来自不同厂家的白茶进行含量测定,运用偏最小二乘法(PLS)建立了白茶可溶性糖总量快速测定模型并对模型进行验证。试验结果表明所建立模型的相关系数(R)为0. 963,校正均方根差(RMSEC)为0. 363 9,验证均方根差(RMSEP)为0. 349,验证集平均相对误差为3. 11%。通过NIRS快速测定白茶总糖含量具有较高的可行性,该方法预测结果较好,能够准确、快速、无损的对白茶可溶性糖总量进行快速定量分析。  相似文献   

10.
Moisture content and aerodynamic particle size are critical quality attributes for spray-dried protein formulations. In this study, spray-dried insulin powders intended for pulmonary delivery were produced applying design of experiments methodology. Near infrared spectroscopy (NIR) in combination with preprocessing and multivariate analysis in the form of partial least squares projections to latent structures (PLS) were used to correlate the spectral data with moisture content and aerodynamic particle size measured by a time of flight principle. PLS models predicting the moisture content were based on the chemical information of the water molecules in the NIR spectrum. Models yielded prediction errors (RMSEP) between 0.39% and 0.48% with thermal gravimetric analysis used as reference method. The PLS models predicting the aerodynamic particle size were based on baseline offset in the NIR spectra and yielded prediction errors between 0.27 and 0.48 μm. The morphology of the spray-dried particles had a significant impact on the predictive ability of the models. Good predictive models could be obtained for spherical particles with a calibration error (RMSECV) of 0.22 μm, whereas wrinkled particles resulted in much less robust models with a Q2 of 0.69. Based on the results in this study, NIR is a suitable tool for process analysis of the spray-drying process and for control of moisture content and particle size, in particular for smooth and spherical particles.KEY WORDS: moisture content, multivariate analysis, NIR, particle size, spray-drying  相似文献   

11.
本文旨在建立地黄叶片中总环烯醚萜苷及苯乙醇苷定量分析模型。利用紫外-可见分光光度法测定不同种质怀地黄生育期内的128份地黄叶片中总环烯醚萜苷及总苯乙醇苷的含量,并将其作为基础值,结合地黄叶片的近红外光谱图,利用TQ8.0分析软件结合偏最小二乘法(PLS),分别建立地黄叶片中总环烯醚萜苷及总苯乙醇苷的定量分析模型。地黄叶片中总苯乙醇苷定量校正模型决定系数(R2)为0.998 2,校正均方根偏差(RMSEC)为0.089 9,预测均方决定差(RMSEP)为0.142,交叉验证均方根偏差(RMSECV)为0.707 2;总环烯醚萜苷定量校正模型的内部交叉验证决定系数(R2)为0.972 1,校正均方差(RMSEC)为0.259,预测均方决定差(RMSEP)为0.095 4,交叉验证均方根偏差(RMSECV)为0.869 4。预测值与实测值差异无统计学意义。该定量模型可用于怀地黄叶片中总环烯醚萜苷及总苯乙醇苷含量的快速测定。  相似文献   

12.
Current endeavor was aimed towards monitoring percent weight build-up during functional coating process on drug-layered pellets. Near-infrared (NIR) spectroscopy is an emerging process analytical technology (PAT) tool which was employed here within quality by design (QbD) framework. Samples were withdrawn after spraying every 15-Kg cellulosic coating material during Wurster coating process of drug-loaded pellets. NIR spectra of these samples were acquired using cup spinner assembly of Thermoscientific Antaris II, followed by multivariate analysis using partial least squares (PLS) calibration model. PLS model was built by selecting various absorption regions of NIR spectra for Ethyl cellulose, drug and correlating the absorption values with actual percent weight build up determined by HPLC. The spectral regions of 8971.04 to 8250.77 cm?1, 7515.24 to 7108.33 cm?1, and 5257.00 to 5098.87 cm?1 were found to be specific to cellulose, where as the spectral region of 6004.45 to 5844.14 cm?1was found to be specific to drug. The final model gave superb correlation co-efficient value of 0.9994 for calibration and 0.9984 for validation with low root mean square of error (RMSE) values of 0.147 for calibration and 0.371 for validation using 6 factors. The developed correlation between the NIR spectra and cellulose content is useful in precise at-line prediction of functional coat value and can be used for monitoring the Wurster coating process.  相似文献   

13.
Rapid and efficient methods to evaluate variables associated with fibre quality are essential in animal breeding programs and fibre trade. Near-infrared reflectance spectroscopy (NIRS) combined with multivariate analysis was evaluated to predict textile quality attributes of alpaca fibre. Raw samples of fibres taken from male and female Huacaya alpacas (n = 291) of different ages and colours were scanned and their visible–near-infrared (NIR; 400 to 2500 nm) reflectance spectra were collected and analysed. Reference analysis of the samples included mean fibre diameter (MFD), standard deviation of fibre diameter (SDFD), coefficient of variation of fibre diameter (CVFD), mean fibre curvature (MFC), standard deviation of fibre curvature (SDFC), comfort factor (CF), spinning fineness (SF) and staple length (SL). Patterns of spectral variation (loadings) were explored by principal component analysis (PCA), where the first four PC's explained 99.97% and the first PC alone 95.58% of spectral variability. Calibration models were developed by modified partial least squares regression, testing different mathematical treatments (derivative order, subtraction gap, smoothing segment) of the spectra, with or without applying spectral correction algorithms (standard normal variate and detrend). Equations were selected through one-out cross-validation according to the proportion of explained variance (R2CV), root mean square error in cross-validation (RMSECV) and the residual predictive deviation (RPD), which relates the standard deviation of the reference data to RMSECV. The best calibration models were accomplished when using the NIR region (1100 to 2500 nm) for the prediction of MFD and SF, with R2CV = 0.90 and 0.87; RMSECV = 1.01 and 1.08 μm and RPD = 3.13 and 2.73, respectively. Models for SDFD, CVFD, MFC, SDFC, CF and SL had lower predictive quality with R2CV < 0.65 and RPD < 1.5. External validation performed for MFD and SF on 91 samples was slightly poorer than cross-validation, with R2 of 0.86 and 0.82, and standard error of prediction of 1.21 and 1.33 μm, for MFD and SF, respectively. It is concluded that NIRS can be used as an effective technique to select alpacas according to some important textile quality traits such as MFD and SF.  相似文献   

14.
Anisotropy of electrical polarizability in Clostridium acetobutylicum cells during pH 5 controlled acetone butanol ethanol fermentations was observed. Cell length was determined from the electrooptical data. Mean length was determined as being 2.5 microm in the growth phase and 3.5 microm in the early stationary phase. Based on the obtained frequency dispersion of polarizability anisotropy (FDPA) in the range of 190 to 2,100 kHz, the switch from the acidogenic to the solventogenic phase could be monitored. The slope of polarizability versus the frequency made it possible to differentiate between phases of dominating acid and solvent production. Metabolite fluxes determined from concentration measurements correlated well to the polarizability. A partial least-squares (PLS) model was established and validated by applying data from several fermentations. The root mean square error of calibration (RMSEC) was 0.09 for the acid fluxes and 0.11 for the solvent fluxes. The root mean square error of prediction (RMSEP) was 0.20 for acid fluxes and 0.24 for solvent fluxes. The ratio of polarizability at high and low frequencies correlated to the ongoing sporulation process. At ratios below 0.25, spore formation in the cells became visible under the microscope. The advantage of using electrooptical measurements is the ability to observe metabolite fluxes rather than concentrations, which provides useful information on productivity during a bioprocess.  相似文献   

15.
During cell cultivation processes for the production of biopharmaceuticals, good process performance and good product quality can be ensured by online monitoring of critical process parameters (e.g. temperature, pH, or dissolved oxygen). These data can be used in real‐time for process control, as suggested by the process analytical technology (PAT) initiative. Today, solutions for real‐time monitoring of parameters such as concentrations of cells, main nutrients, and metabolism by‐products are developing, but applications of these more complex tools in industrial settings are still limited. Here, we evaluated the use of dielectric spectroscopy (DS) and near‐infrared spectroscopy (NIRS) as PAT tools for a perfusion PER.C6® cultivation process. We showed that DS enabled predictions of viable cell density from the cultivation vessel, with a root mean square error of prediction (RMSEP) of 4.4% of the calibration range. Additionally, predictions of glucose and lactate concentrations from the cultivation vessel (RMSEP of 10 and 14%, respectively) and from the perfusion stream (RMSEP of 12 and 10%, respectively) were achieved with NIRS. We also showed that the perfusion stream offers great opportunities for noninvasive, yet frequent process monitoring. Accurate online monitoring of critical process parameters with PAT tools is the essential first step toward increased control of process output.  相似文献   

16.
A transmission near infrared (NIR) spectroscopic method has been developed for the nondestructive determination of drug content in tablets with less than 1% weight of active ingredient per weight of formulation (m/m) drug content. Tablets were manufactured with drug concentrations of ∼0.5%, 0.7%, and 1.0% (m/m) and ranging in drug content from 0.71 to 2.51 mg per tablet. Transmission NIR spectra were obtained for 110 tablets that constituted the training set for the calibration model developed with partial least squares regression. The reference method for the calibration model was a validated UV spectrophotometric method. Several data preprocessing methods were used to reduce the effect of scattering on the NIR spectra and base the calibration model on spectral changes related to the drug concentration changes. The final calibration model included the spectral range from 11 216 to 8662 cm−1 the standard normal variate (SNV), and first derivative spectral pretreatments. This model was used to predict an independent set of 48 tablets with a root mean standard error of prediction (RMSEP) of 0.14 mg, and a bias of only −0.05 mg per tablet. The study showed that transmission NIR spectroscopy is a viable alternative for nondestructive testing of low drug content tablets, available for the analysis of large numbers of tablets during process development and as a tool to detect drug agglomeration and evaluate process improvement efforts. Published: March 24, 2006  相似文献   

17.
Validation methods for chemometric models are presented, which are a necessity for the evaluation of model performance and prediction ability. Reference methods with known performance can be employed for comparison studies. Other validation methods include test set and cross validation, where some samples are set aside for testing purposes. The choice of the testing method mainly depends on the size of the original dataset. Test set validation is suitable for large datasets (>50), whereas cross validation is the best method for medium to small datasets (<50). In this study the K-nearest neighbour algorithm (KNN) was used as a reference method for the classification of contaminated and blank corn samples. A Partial least squares (PLS) regression model was evaluated using full cross validation. Mid-Infrared spectra were collected using the attenuated total reflection (ATR) technique and the fingerprint range (800–1800 cm−1) of 21 maize samples that were contaminated with 300 – 2600 μg/kg deoxynivalenol (DON) was investigated. Separation efficiency after principal component analysis/cluster analysis (PCA/CA) classification was 100%. Cross validation of the PLS model revealed a correlation coefficient of r=0.9926 with a root mean square error of calibration (RMSEC) of 95.01. Validation results gave an r=0.8111 and a root mean square error of cross validation (RMSECV) of 494.5 was calculated. No outliers were reported. Presented at the 25th Mykotoxin Workshop in Giessen, Germany, May 19–21, 2003  相似文献   

18.
Peng X  Chen H 《Bioresource technology》2008,99(18):8869-8872
Calibration model using near-infrared reflectance spectroscopy (NIRS) for estimation of SCO content in solid-state fermented mass was established. The NIRS calibration model was derived by partial least-squares (PLS) regression and prediction of SCO contents of independent solid-state fermented mass samples fermented by different oleaginous fungi showed the model to be rapid and accurate, giving R(2)-value higher than 0.9552 and root mean standard error of prediction (RMSEP) value lower than 0.5772%. The established NIRS calibration model could be used to estimate the SCO contents of the solid-state fermented masses and will provide much convenience to the research of SCO production in solid-state fermentation.  相似文献   

19.
Aims Studies of the climatic responses of plant assemblages via vegetation-based environmental reconstructions by weighted averaging (WA) regression and calibration are a recent development in modern vegetation ecology. However, the performance of this technique for plot-based vegetation datasets has not been rigorously tested. We assess the estimation accuracy of the WA approach by comparing results, mainly the root mean square error of prediction (RMSEP) of WA regressions for six different vegetation datasets (total species, high-frequency species and low-frequency species as both abundance and incidence) each from two sites.  相似文献   

20.
应用近红外光谱估测小麦叶片氮含量   总被引:4,自引:0,他引:4       下载免费PDF全文
研究利用近红外光谱(near-infrared, NIR)和化学计量学方法估测小麦(Triticum aestivum)新鲜叶片和粉末状干叶中全氮含量的可行性, 并建立小麦叶片氮含量估测模型, 以期为小麦氮素营养的精确管理提供理论依据。以3个小麦田间试验观测资料为基础, 分别运用偏最小二乘法(partial least squares, PLS)、反向传播神经网络(back-propagation neural network, BPNN)和小波神经网络(wavelet neural network, WNN), 建立小麦叶片氮含量的鲜叶和粉末状干叶近红外光谱估测模型, 用随机选择的样品集对所建模型进行测试和检验。结果显示, 利用PLS、BPNN和WNN 3种方法构建的近红外光谱模型均能准确地估测小麦叶片氮含量, 其中基于BPNN和WNN的模型优于基于PLS的模型, 且以基于WNN的模型表现最好。对模型进行检验的结果显示, 粉末状干叶模型的预测均方根误差(RMSEP)分别为0.147、0.101和0.094, 鲜叶模型的RMSEP分别为0.216、0.175和0.169, 模型的相关系数均在0.84以上。因此, 利用近红外光谱估算小麦叶片氮素营养精确可行, 对其他作物的氮素营养估测提供了借鉴和参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号