首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Saccharomyces cerevisiae was transformed with the Pichia stipitis CBS 6054 XYL1 and XYL2 genes encoding xylose reductase (XR) and xylitol dehydrogenase (XDH) respectively. The XYL1 and XYL2 genes were placed under the control of the alcohol dehydrogenase 1 (ADH1) and phosphoglycerate kinase (PGK1) promoters in the yeast vector YEp24. Different vector constructions were made resulting in different specific activities of XR and XDH. The XR:XDH ratio (ratio of specific enzyme activities) of the transformed S. cerevisiae strains varied from 17.5 to 0.06. In order to enhance xylose utilisation in the XYL1-, XYL2-containing S. cerevisiae strains, the native genes encoding transketolase and transaldolase were also overexpressed. A strain with an XR:XDH ratio of 17.5 formed 0.82 g xylitol/g consumed xylose, whereas a strain with an XR:XDH ratio of 5.0 formed 0.58 g xylitol/g xylose. The strain with an XR:XDH ratio of 0.06, on the other hand, formed no xylitol and less glycerol and acetic acid compared with strains with the higher XR:XDH ratios. In addition, the strain with an XR:XDH ratio of 0.06 produced more ethanol than the other strains. Received: 12 March 1997 / Received revision: 17 April 1997 / Accepted: 27 April 1997  相似文献   

3.
In order to better understand the differences in xylose metabolism between natural xylose-utilizing Pichia stipitis and metabolically engineered Saccharomyces cerevisiae, we constructed a series of recombinant S. cerevisiae strains with different xylose reductase/xylitol dehydrogenase/xylulokinase activity ratios by integrating xylitol dehydrogenase gene (XYL2) into the chromosome with variable copies and heterogeneously expressing xylose reductase gene (XYL1) and endogenous xylulokinase gene (XKS1). The strain with the highest specific xylose uptake rate and ethanol productivity on pure xylose fermentation was selected to compare to P. stipitis under oxygen-limited condition. Physiological and enzymatic comparison showed that they have different patterns of xylose metabolism and NADPH generation.  相似文献   

4.
Production of ethanol and xylitol from lignocellulosic hydrolysates is an alternative to the traditional production of ethanol in utilizing biomass. However, the conversion efficiency of xylose to xylitol is restricted by glucose repression, causing a low xylitol titer. To this end, we cloned genes CDT-1 (encoding a cellodextrin transporter) and gh1-1 (encoding an intracellular β-glucosidase) from Neurospora crassa and XYL1 (encoding a xylose reductase that converts xylose into xylitol) from Scheffersomyces stipitis into Saccharomyces cerevisiae, enabling simultaneous production of ethanol and xylitol from a mixture of cellobiose and xylose (main components of lignocellulosic hydrolysates). We further optimized the expression levels of CDT-1 and XYL1 by manipulating their promoters and copy-numbers, and constructed an engineered S. cerevisiae strain (carrying one copy of PGK1p-CDT1 and two copies of TDH3p-XYL1), which showed an 85.7% increase in xylitol production from the mixture of cellobiose and xylose than that from the mixture of glucose and xylose. Thus, we achieved a balanced co-fermentation of cellobiose (0.165 g/L/h) and xylose (0.162 g/L/h) at similar rates to co-produce ethanol (0.36 g/g) and xylitol (1.00 g/g).  相似文献   

5.
Xylose fermentation performance was studied of a previously developed Saccharomyces cerevisiae strain TMB 3057, carrying high xylose reductase (XR) and xylitol dehydrogenase (XDH) activity, overexpressed non-oxidative pentose phosphate pathway (PPP) and deletion of the aldose reductase gene GRE3. The fermentation performance of TMB 3057 was significantly improved by increased ethanol production and reduced xylitol formation compared with the reference strain TMB 3001. The effects of the individual genetic modifications on xylose fermentation were investigated by comparing five isogenic strains with single or combined modifications. All strains with high activity of both XR and XDH had increased ethanol yields and significantly decreased xylitol yields. The presence of glucose further reduced xylitol formation in all studied strains. High activity of the non-oxidative PPP improved the xylose consumption rate. The results indicate that ethanolic xylose fermentation by recombinant S. cerevisiae expressing XR and XDH is governed by the efficiency by which xylose is introduced in the central metabolism.  相似文献   

6.
The inability oft Saccharomyces cerevisiae to utilize xylose is attributed to its inability to convert xylose to xylulose. Low xylose reductase (XR) and xylitol dehydrogenase (XDH) activities in S. cerevisiae are regarded as the reason of blocking the pathway from xylose to xylulose. We had found that Candida shehatae could also be another source for XR gene except Pichia stipitis in the previous study. In this study, we tried to investigate if the expressed XR from C. shehatae could work with the over-expressed endogenous XDH together to achieve the same goal of converting xylose to ethanol in S. cerevisiae. The XR gene (XYL1) from C. shehatae and endogenous XDH gene (XYL2) were both cloned and over-expressed in host S. cerevisiae cell. The specific enzyme activities of XR and XDH were measured and the result of fermentation revealed that the new combination of two enzymes from different sources other than P. stipitis could also coordinate and work with each other and confer xylose utilization ability to S. cerevisiae.  相似文献   

7.
The absence of pentose-utilizing enzymes in Saccharomyces cerevisiae is an obstacle for efficiently converting lignocellulosic materials to ethanol. In the present study, the genes coding xylose reductase (XYL1) and xylitol dehydrogenase (XYL2) from Pichia stipitis were successfully engineered into S. cerevisae. As compared to the control transformant, engineering of XYL1 and XYL2 into yeasts significantly increased the microbial biomass (8.1 vs. 3.4 g/L), xylose consumption rate (0.15 vs. 0.02 g/h) and ethanol yield (6.8 vs. 3.5 g/L) after 72 h fermentation using a xylose-based medium. Interestingly, engineering of XYL1 and XYL2 into yeasts also elevated the ethanol yield from sugarcane bagasse hydrolysate (SUBH). This study not only provides an effective approach to increase the xylose utilization by yeasts, but the results also suggest that production of ethanol by this recombinant yeasts using unconventional nutrient sources, such as components in SUBH deserves further attention in the future.  相似文献   

8.

Background

Ethanolic fermentation of lignocellulosic biomass is a sustainable option for the production of bioethanol. This process would greatly benefit from recombinant Saccharomyces cerevisiae strains also able to ferment, besides the hexose sugar fraction, the pentose sugars, arabinose and xylose. Different pathways can be introduced in S. cerevisiae to provide arabinose and xylose utilisation. In this study, the bacterial arabinose isomerase pathway was combined with two different xylose utilisation pathways: the xylose reductase/xylitol dehydrogenase and xylose isomerase pathways, respectively, in genetically identical strains. The strains were compared with respect to aerobic growth in arabinose and xylose batch culture and in anaerobic batch fermentation of a mixture of glucose, arabinose and xylose.

Results

The specific aerobic arabinose growth rate was identical, 0.03 h-1, for the xylose reductase/xylitol dehydrogenase and xylose isomerase strain. The xylose reductase/xylitol dehydrogenase strain displayed higher aerobic growth rate on xylose, 0.14 h-1, and higher specific xylose consumption rate in anaerobic batch fermentation, 0.09 g (g cells)-1 h-1 than the xylose isomerase strain, which only reached 0.03 h-1 and 0.02 g (g cells)-1h-1, respectively. Whereas the xylose reductase/xylitol dehydrogenase strain produced higher ethanol yield on total sugars, 0.23 g g-1 compared with 0.18 g g-1 for the xylose isomerase strain, the xylose isomerase strain achieved higher ethanol yield on consumed sugars, 0.41 g g-1 compared with 0.32 g g-1 for the xylose reductase/xylitol dehydrogenase strain. Anaerobic fermentation of a mixture of glucose, arabinose and xylose resulted in higher final ethanol concentration, 14.7 g l-1 for the xylose reductase/xylitol dehydrogenase strain compared with 11.8 g l-1 for the xylose isomerase strain, and in higher specific ethanol productivity, 0.024 g (g cells)-1 h-1 compared with 0.01 g (g cells)-1 h-1 for the xylose reductase/xylitol dehydrogenase strain and the xylose isomerase strain, respectively.

Conclusion

The combination of the xylose reductase/xylitol dehydrogenase pathway and the bacterial arabinose isomerase pathway resulted in both higher pentose sugar uptake and higher overall ethanol production than the combination of the xylose isomerase pathway and the bacterial arabinose isomerase pathway. Moreover, the flux through the bacterial arabinose pathway did not increase when combined with the xylose isomerase pathway. This suggests that the low activity of the bacterial arabinose pathway cannot be ascribed to arabitol formation via the xylose reductase enzyme.  相似文献   

9.
Metabolic engineering of Saccharomyces cerevisiae for xylose fermentation has often relied on insertion of a heterologous pathway consisting of nicotinamide adenine dinucleotide (phosphate) NAD(P)H-dependent xylose reductase (XR) and NAD+-dependent xylitol dehydrogenase (XDH). Low ethanol yield, formation of xylitol and other fermentation by-products are seen for many of the S. cerevisiae strains constructed in this way. This has been ascribed to incomplete coenzyme recycling in the steps catalyzed by XR and XDH. Despite various protein-engineering efforts to alter the coenzyme specificity of XR and XDH individually, a pair of enzymes displaying matched utilization of NAD(H) and NADP(H) was not previously reported. We have introduced multiple site-directed mutations in the coenzyme-binding pocket of Galactocandida mastotermitis XDH to enable activity with NADP+, which is lacking in the wild-type enzyme. We describe four enzyme variants showing activity for xylitol oxidation by NADP+ and NAD+. One of the XDH variants utilized NADP+ about 4 times more efficiently than NAD+. This is close to the preference for NADPH compared with NADH in mutants of Candida tenuis XR. Compared to an S. cerevisiae-reference strain expressing the genes for the wild-type enzymes, the strains comprising the gene encoding the mutated XDH in combination a matched XR mutant gene showed up to 50% decreased glycerol yield without increase in ethanol during xylose fermentation.  相似文献   

10.
Accumulation of xylitol in xylose fermentation with engineered Saccharomyces cerevisiae presents a major problem that hampers economically feasible production of biofuels from cellulosic plant biomass. In particular, substantial production of xylitol due to unbalanced redox cofactor usage by xylose reductase (XR) and xylitol dehydrogenase (XDH) leads to low yields of ethanol. While previous research focused on manipulating intracellular enzymatic reactions to improve xylose metabolism, this study demonstrated a new strategy to reduce xylitol formation and increase carbon flux toward target products by controlling the process of xylitol secretion. Using xylitol-producing S. cerevisiae strains expressing XR only, we determined the role of aquaglyceroporin Fps1p in xylitol export by characterizing extracellular and intracellular xylitol. In addition, when FPS1 was deleted in a poorly xylose-fermenting strain with unbalanced XR and XDH activities, the xylitol yield was decreased by 71% and the ethanol yield was substantially increased by nearly four times. Experiments with our optimized xylose-fermenting strain also showed that FPS1 deletion reduced xylitol production by 21% to 30% and increased ethanol yields by 3% to 10% under various fermentation conditions. Deletion of FPS1 decreased the xylose consumption rate under anaerobic conditions, but the effect was not significant in fermentation at high cell density. Deletion of FPS1 resulted in higher intracellular xylitol concentrations but did not significantly change the intracellular NAD+/NADH ratio in xylose-fermenting strains. The results demonstrate that Fps1p is involved in xylitol export in S. cerevisiae and present a new gene deletion target, FPS1, and a mechanism different from those previously reported to engineer yeast for improved xylose fermentation.  相似文献   

11.
12.
To enhance metabolite transfer in the two initial sequential steps of xylose metabolism in yeast, two structural genes of Pichia stipitis, XYL1 and XYL2 encoding xylose reductase (XR) and xylitol dehydrogenase (XDH), respectively, were fused in frame. Four chimeric genes were constructed, encoding fusion proteins with different orders of the enzymes and different linker lengths. These genes were expressed in Saccharomyces cerevisiae. The fusion proteins exhibited both XR and XDH activity when XYL1 was fused downstream of XYL2. The specific activity of the XDH part of the complexes increased when longer peptide linkers were used. Bifunctional enzyme complexes, analyzed by gel filtration, were found to be tetramers, hexamers, and octamers. No degradation products were detected by Western blot analysis. S. cerevisiae strains harboring the bifunctional enzymes grew on minimal-medium xylose plates, and oxygen-limited xylose fermentation resulted in xylose consumption and ethanol formation. When a fusion protein, containing a linker of three amino acids, was coexpressed with native XR and XDH monomers in S. cerevisiae, enzyme complexes consisting of chimerical and native subunits were formed. The total activity of these complexes showed XR and XDH activities similar to the activities obtained when the monomers were expressed individually. Strains which coexpressed chimerical subunits together with native XR and XDH monomers consumed less xylose and produced less xylitol. However, the xylitol yield was lower in these strains than in strains expressing only native XR and XDH monomers, 0.55 and 0.62, respectively, and the ethanol yield was higher. The reduced xylitol yield was accompanied by reduced glycerol and acetate formation suggesting enhanced utilization of NADH in the XR reaction.  相似文献   

13.
A recombinant Saccharomyces cerevisiae strain transformed with xylose reductase (XR) and xylitol dehydrogenase (XDH) genes from Pichia stipitis has the ability to convert xylose to ethanol together with the unfavorable excretion of xylitol, which may be due to cofactor imbalance between NADPH-preferring XR and NAD+-dependent XDH. To reduce xylitol formation, we have already generated several XDH mutants with a reversal of coenzyme specificity toward NADP+. In this study, we constructed a set of recombinant S. cerevisiae strains with xylose-fermenting ability, including protein-engineered NADP+-dependent XDH-expressing strains. The most positive effect on xylose-to-ethanol fermentation was found by using a strain named MA-N5, constructed by chromosomal integration of the gene for NADP+-dependent XDH along with XR and endogenous xylulokinase genes. The MA-N5 strain had an increase in ethanol production and decrease in xylitol excretion compared with the reference strain expressing wild-type XDH when fermenting not only xylose but also mixed sugars containing glucose and xylose. Furthermore, the MA-N5 strain produced ethanol with a high yield of 0.49 g of ethanol/g of total consumed sugars in the nonsulfuric acid hydrolysate of wood chips. The results demonstrate that glucose and xylose present in the lignocellulosic hydrolysate can be efficiently fermented by this redox-engineered strain.  相似文献   

14.
Efficient conversion of xylose to ethanol is an essential factor for commercialization of lignocellulosic ethanol. To minimize production of xylitol, a major by-product in xylose metabolism and concomitantly improve ethanol production, Saccharomyces cerevisiae D452-2 was engineered to overexpress NADH-preferable xylose reductase mutant (XR(MUT)) and NAD?-dependent xylitol dehydrogenase (XDH) from Pichia stipitis and endogenous xylulokinase (XK). In vitro enzyme assay confirmed the functional expression of XR(MUT), XDH and XK in recombinant S. cerevisiae strains. The change of wild type XR to XR(MUT) along with XK overexpression led to reduction of xylitol accumulation in microaerobic culture. More modulation of the xylose metabolism including overexpression of XR(MUT) and transaldolase, and disruption of the chromosomal ALD6 gene encoding aldehyde dehydrogenase (SX6(MUT)) improved the performance of ethanol production from xylose remarkably. Finally, oxygen-limited fermentation of S. cerevisiae SX6(MUT) resulted in 0.64 g l?1 h?1 xylose consumption rate, 0.25 g l?1 h?1 ethanol productivity and 39% ethanol yield based on the xylose consumed, which were 1.8, 4.2 and 2.2 times higher than the corresponding values of recombinant S. cerevisiae expressing XR(MUT), XDH and XK only.  相似文献   

15.
The development of a xylose-fermentingSaccharomyces cerevisiae yeast would be of great benefit to the bioethanol industry. The conversion of xylose to ethanol involves a cascade of enzymatic reactions and processes. Xylose (aldose) reductases catalyse the conversion of xylose to xylitol. The aim of this study was to clone, characterise and express a cDNA copy of a novel aldose reductase (NCAR-X) from the filamentous fungusNeurospora crassa inS. cerevisiae. NCAR-X harbours an open reading frame (ORF) of 900 nucleotides. This ORF encodes a protein (NCAR-X, assigned NCBI protein accession ID: XP_956921) consisting of 300 amino acids, with a predicted molecular weight of 34 kDa. TheNCAR-X-encoded aldose reductase showed significant homology to the xylose reductases ofCandida tenuis andPichia stipitis. WhenNCAR-X was expressed under the control of phosphoglycerate kinase I gene (PGK1) regulatory sequences inS. cerevisiae, its expression resulted in the production of biologically active xylose reductase. Small-scale oxygen-limited xylose fermentation with theNCAR-X containingS. cerevisiae strains resulted in the production of less xylitol and at least 15% more ethanol than the strains transformed with theP. stipitis xylose reductase gene (PsXYL1). TheNCAR-X-encoded enzyme produced byS. cerevisiae was NADPH-dependent and no activity was observed in the presence of NADH. The co-expression of theNCAR-X andPsXYL1 gene constructs inS. cerevisiae constituted an important part of an extensive research program aimed at the development of xylolytic yeast strains capable of producing ethanol from plant biomass.  相似文献   

16.
The traditional ethanologenic yeast Saccharomyces cerevisiae cannot metabolize xylose, which is an abundant sugar in non-crop plants. Engineering this yeast for a practicable fermentation of xylose will therefore improve the economics of bioconversion for the production of fuels and chemicals such as ethanol. One of the most widely employed strategies is to express XYL1, XYL2, and XYL3 genes derived from Scheffersomyces stipitis (formerly Pichia stiptis) in S. cerevisiae. However, the resulting engineered strains have been reported to exhibit large variations in xylitol accumulation and ethanol yields, generating many hypotheses and arguments for elucidating these phenomena. Here we demonstrate that low expression levels of the XYL2 gene, coding for xylitol dehydrogenase (XDH), is a major bottleneck in efficient xylose fermentation. Through an inverse metabolic engineering approach using a genomic library of S. cerevisiae, XYL2 was identified as an overexpression target for improving xylose metabolism. Specifically, we performed serial subculture experiments after transforming a genomic library of wild type S. cerevisiae into an engineered strain harboring integrated copies of XYL1, XYL2 and XYL3. Interestingly, the isolated plasmids from efficient xylose-fermenting transformants contained XYL2. This suggests that the integrated XYL2 migrated into a multi-copy plasmid through homologous recombination. It was also found that additional overexpression of XYL2 under the control of strong constitutive promoters in a xylose-fermenting strain not only reduced xylitol accumulation, but also increased ethanol yields. As the expression levels of XYL2 increased, the ethanol yields gradually improved from 0.1 to 0.3g ethanol/g xylose, while the xylitol yields significantly decreased from 0.4 to 0.1g xylitol/g xylose. These results suggest that strong expression of XYL2 is a necessary condition for developing efficient xylose-fermenting strains.  相似文献   

17.
Xylose fermentation by Saccharomyces cerevisiae   总被引:1,自引:0,他引:1  
We have performed a comparative study of xylose utilization in Saccharomyces cerevisiae transformants expressing two key enzymes in xylose metabolism, xylose reductase (XR) and xylitol dehydrogenase (XDH), and in a prototypic xylose-utilizing yeast, Pichia stipitis. In the absence of respiration (see text), baker's yeast cells convert half of the xylose to xylitol and ethanol, whereas P. stipilis cells display rather a homofermentative conversion of xylose to ethanol. Xylitol production by baker's yeast is interpreted as a result of the dual cofactor dependence of the XR and the generation of NADPH by the pentose phosphate pathway. Further limitations of xylose utilization in S. cerevisiae cells are very likely caused by an insufficient capacity of the non-oxidative pentose phosphate pathway, as indicated by accumulation of sedoheptulose-7-phosphate and the absence of fructose-1,6-bisphosphate and pyruvate accumulation. By contrast, uptake at high substrate concentrations probably does not limit xylose conversion in S. cerevisiae XYL1/XYL2 transformants. Correspondence to: M. Ciriacy  相似文献   

18.
Xylose fermentation by Saccharomyces cerevisiae requires the introduction of a xylose pathway, either similar to that found in the natural xylose-utilizing yeasts Pichia stipitis and Candida shehatae or similar to the bacterial pathway. The use of NAD(P)H-dependent XR and NAD(+)-dependent XDH from P. stipitis creates a cofactor imbalance resulting in xylitol formation. The effect of replacing the native P. stipitis XR with a mutated XR with increased K(M) for NADPH was investigated for xylose fermentation to ethanol by recombinant S. cerevisiae strains. Enhanced ethanol yields accompanied by decreased xylitol yields were obtained in strains carrying the mutated XR. Flux analysis showed that strains harboring the mutated XR utilized a larger fraction of NADH for xylose reduction. The overproduction of the mutated XR resulted in an ethanol yield of 0.40 g per gram of sugar and a xylose consumption rate of 0.16 g per gram of biomass per hour in chemostat culture (0.06/h) with 10 g/L glucose and 10 g/L xylose as carbon source.  相似文献   

19.
AIMS: To determine the effects on xylitol accumulation and ethanol yield of expression of mutated Pichia stipitis xylitol dehydrogenase (XDH) with reversal of coenzyme specificity in recombinant Saccharomyces cerevisiae. METHODS AND RESULTS: The genes XYL2 (D207A/I208R/F209S) and XYL2 (S96C/S99C/Y102C/D207A/I208R/F209S) were introduced into S. cerevisiae, which already contained the P. stipitis XYL1 gene (encoding xylose reductase, XR) and the endogenously overexpressed XKS1 gene (encoding xylulokinase, XK). The specific activities of mutated XDH in both strains showed a distinct increase in NADP(+)-dependent activity in both strains with mutated XDH, reaching 0.782 and 0.698 U mg(-1). In xylose fermentation, the strain with XDH (D207A/I208R/F209S) had a large decrease in xylitol and glycerol yield, while the xylose consumption and ethanol yield were decreased. In the strain with XDH (S96C/S99C/Y102C/D207A/I208R/F209S), the xylose consumption and ethanol yield were also decreased, and the xylitol yield was increased, because of low XDH activity. CONCLUSIONS: Changing XDH coenzyme specificity was a sufficient method for reducing the production of xylitol, but high activity of XDH was also required for improved ethanol formation. SIGNIFICANCE AND IMPACT OF THE STUDY: The difference in coenzyme specificity was a vital parameter controlling ethanolic xylose fermentation but the XDH/XR ratio was also important.  相似文献   

20.
Three enzymes responsible for the transhydrogenase-like shunt, including malic enzyme (encoded by MAE1), malate dehydrogenase (MDH2), and pyruvate carboxylase (PYC2), were overexpressed to regulate the redox state in xylose-fermenting recombinant Saccharomyces cerevisiae. The YPH499XU/MAE1 strain was constructed by overexpressing native Mae1p in the YPH499XU strain expressing xylose reductase and xylitol dehydrogenase from Scheffersomyces stipitis, and native xylulokinase. Analysis of the xylose fermentation profile under semi-anaerobic conditions revealed that the ethanol yield in the YPH499XU/MAE1 strain (0.38?±?0.01 g g?1 xylose consumed) was improved from that of the control strain (0.31?±?0.01 g g?1 xylose consumed). Reduced xylitol production was also observed in YPH499XU/MAE1, suggesting that the redox balance was altered by Mae1p overexpression. Analysis of intracellular metabolites showed that the redox imbalance during xylose fermentation was partly relieved in the transformant. The specific ethanol production rate in the YPH499XU/MAE1–MDH2 strain was 1.25-fold higher than that of YPH499XU/MAE1 due to the additional overexpression of Mdh2p, whereas the ethanol yield was identical to that of YPH499XU/MAE1. The specific xylose consumption rate was drastically increased in the YPH499XU/MAE1–MDH2–PYC2 strain. However, poor ethanol yield as well as increased production of xylitol was observed. These results demonstrate that the transhydrogenase function implemented in S. cerevisiae can regulate the redox state of yeast cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号