首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A number of intracellular lipase/esterase have been reported in adipose tissue either by functional assays of activity or through proteomic analysis. In the current work, we have studied the relative expression level of 12 members of the lipase/esterase family that are found in white adipose tissue. We found that the relative mRNA levels of ATGL and HSL are the most abundant, being 2-3 fold greater than TGH or ADPN; whereas other intracellular neutral lipase/esterases were expressed at substantially lower levels. High fat feeding did not alter the mRNA expression levels of most lipase/esterases, but did reduce CGI-58 and WBSCR21. Likewise, rosiglitazone treatment did not alter the mRNA expression levels of most lipase/esterases, but did increase ATGL, TGH, CGI-58 and WBSCR21, while reducing ADPN. WAT from HSL-/- mice showed no compensatory increase in any lipase/esterases, rather mRNA levels of most lipase/esterases were reduced. In contrast, BAT from HSL-/- mice showed an increase in ATGL expression, as well as a decrease in ES-1, APEH and WBSCR21. Analysis of the immunoreactive protein levels of some of the lipases confirmed the results seen with mRNA. In conclusion, these data highlight the complexity of the regulation of the expression of intracellular neutral lipase/esterases involved in lipolysis.  相似文献   

2.
A psychrotrophic bacterium producing a cold-adapted lipase was isolated from the deep-sea sediment of Prydz Bay, Antarctic and identified as a Pseudomonas strain. Determination of the nucleotide sequence of the gene encoding a lipase from Pseudomonas sp. 7323 (lipA) revealed that LipA is composed of 617 amino acid residues with a calculated molecular weight of 64,466 Da. LipA has a GXSXG motif, which is conserved in lipases/esterases and generally contains the active-site serine. The lipase purified from the Escherichia coli transformant (rLipA) by metal-chelating chromatography exhibited the same electrophoretic mobility as did the wild-type lipase (wLipA) purified from strain 7323, and both enzymes were quite similar in physicochemical properties. The optimal temperature and pH value for the lipases activity were 30 degrees C and 9.0, respectively. They were unstable at temperatures above 25 degrees C and only retained half of their highest activity after incubation at 60 degrees C for 5 min. These results indicated that the enzymes were typical alkaline cold-adapted enzymes. Both enzymes were particularly activated by Ca(2+). Additionally, the enzymes hydrolyzed p-nitrophenyl caprate and tributyrin at the highest velocity among the other p-nitrophenyl esters and triglycerides.  相似文献   

3.
4.
The functional aspect of several mycobacterium proteins annotated as hypothetical are yet to be discovered. In the present investigation, in silico approaches were used to predict the biological function of some of the unknown Mtb proteins, which were further validated by wet lab experiments. After screening thousands of Mtb proteins, functionally unknown hypothetical proteins Rv0421c, Rv0519c, Rv0774c, Rv1191, Rv1592c, and Rv3591c were chosen on the basis of their importance in Mtb life cycle. All these proteins posses the α/β-hydrolase topological fold, characteristic of lipases/esterases, with serine, aspartate, and histidine as the putative members of the catalytic triad. The catalytic serine is located in pentapeptide motif “GXSXG” and oxyanion residue is in dipeptide motif HG. To further support our observation, molecular docking was performed with conventional synthetic lipolytic substrates (pNP-esterss) and specific lipase/esterase inhibitors (tetrahydrolipstatin and phenylmethanesulfonyl fluoride (PMSF)). Significant docking score and strong interaction of substrates/inhibitors with these proteins revealed that these could be possible lipases/esterases. To validate the in silico studies, these genes were cloned from Mtb genome and the proteins were over-expressed in pQE-30/Escherichia coli M15 system. The expressed proteins were purified to homogeneity and enzymatic activity was determined using pNP esters as substrate. The enzyme activity of recombinant proteins was inhibited by tetrahydrolipstatin and PMSF pre-treatment. Outcome of the present investigation provided a basic platform to analyze and characterize unknown hypothetical proteins.  相似文献   

5.
Determination of the nucleotide sequence of the gene encoding a lipase from Pseudomonas sp. MIS38 (PML) revealed that PML is a member of the lipase family I.3 and is composed of 617 amino acid residues with a calculated molecular weight of 64510. Recombinant PML (rPML) was overproduced in Escherichia coli in an insoluble form, solubilized in the presence of 8 M urea, purified in a urea-denatured form and refolded by removing urea in the presence of the Ca(2+) ion. Gel filtration chromatography suggests that this refolded protein is monomeric. rPML showed relatively broad substrate specificities and hydrolyzed glyceryl tributyrate and olive oil with comparable efficiencies. rPML was active only in the form of a holo-enzyme, in which at least 12 Ca(2+) ions bound. These Ca(2+) ions bound too tightly to be removed from the protein upon dialysis, but were removed from it upon EDTA treatment. The resultant apo-enzyme was fully active in the presence of 10 mM CaCl(2), but was inactive in the absence of the Ca(2+) ion. PML has a GXSXG motif, which is conserved in lipases/esterases and generally contains the active-site serine. The mutation of Ser(207) within this motif to Ala completely inactivated PML, suggesting that Ser(207) is the active-site serine of PML.  相似文献   

6.
The gene for esterase (rEst1) was isolated from a new species of genus Rheinheimera by functional screening of E. coli cells transformed with the pSMART/HaeIII genomic library. E. coli cells harboring the esterase gene insert could grow and produce clear halo zones on tributyrin agar. The rEst1 ORF consisted of 1,029 bp, corresponding to 342 amino acid residues with a molecular mass of 37 kDa. The signal P program 3.0 revealed the presence of a signal peptide of 25 amino acids. Esterase activity, however, was associated with a homotrimeric form of molecular mass 95 kDa and not with the monomeric form. The deduced amino acid sequence showed only 54% sequence identity with the closest lipase from Cellvibrio japonicus strain Ueda 107. Conserved domain search and multiple sequence alignment revealed the presence of an esterase/ lipase conserved domain consisting of a GXSXG motif, HGGG motif (oxyanion hole) and HGF motif, typical of the class IV hormone sensitive lipase family. On the basis of the sequence comparison with known esterases/ lipases, REst1 represents a new esterase belonging to class IV family. The purified enzyme worked optimally at 50 degrees C and pH 8, utilized pNP esters of short chain lengths, and showed best catalytic activity with p-nitrophenyl butyrate (C?), indicating that it was an esterase. The enzyme was completely inhibited by PMSF and DEPC and showed moderate organotolerance.  相似文献   

7.
8.
In this work, a metagenomic library was generated from peat-swamp forest soil obtained from Narathiwat Province, Thailand. From a fosmid library of approximately 15,000 clones, six independent clones were found to possess lipolytic activity at acidic pH. Analysis of pyrosequencing data revealed six ORFs, which exhibited 34–71% protein similarity to known lipases/esterases. A fosmid clone, designated LP8, which demonstrated the highest level of lipolytic activity under acidic conditions and demonstrated extracellular activity, was subsequently subcloned and sequenced. The full-length lipase/esterase gene, estPS2, was identified. Its deduced amino acid was closely related to a lipolytic enzyme of an uncultured bacterium, and contained the highly conserved motif of a hormone-sensitive family IV lipase. The EstPS2 enzyme exhibited highest activity toward p-nitrophenyl butyrate (C4) at 37 °C at pH 5, indicating that it was an esterase with activity and secretion characteristics suitable for commercial development.  相似文献   

9.
The gene encoding a 23 kDA serine esterase from the cyanobacterium Spirulina platensis has been identified, cloned, characterized and expressed in Escherichia coli. The primary structure of the esterase deduced from the DNA sequence displayed 32% sequence identity with the carboxylesterase (esterase II) encoded by estB of Pseudomonas fluorescens; the highest degree of homology is found in a stretch of 11 identical or highly conserved amino acid residues corresponding to the GXSXG consensus motif found in the catalytic site of many serine proteases, lipases and esterases.  相似文献   

10.
11.
Mammalian gastric lipases are stable and active under acidic conditions and also in the duodenal lumen. There has been considerable interest in acid stable lipases owing to their potential application in the treatment of pancreatic exocrine insufficiency. In order to gain insights into the domain movements of these enzymes, molecular dynamics simulations of human gastric lipase was performed at an acidic pH and under neutral conditions. For comparative studies, simulation of dog gastric lipase was also performed at an acidic pH. Analyses show, that in addition to the lid region, there is another region of high mobility in these lipases. The potential role of this novel region is discussed.  相似文献   

12.
Juvenile hormone (JH) III esterase and JH III epoxide hydrolase activity was found in the integument, midgut, fat body, and brain during last instar development of the tobacco hornworm, Manduca sexta. JH esterase activity was primarily located in the cytosol in these tissues while the majority of the JH epoxide hydrolase activity was found in the microsomes. A prewandering (on day 3) and postwandering (on day 8) peak in plasma JH III esterase activity occurs in the last instar of gate I M. sexta. The JH esterase activity profile in integument, midgut, fat body, and brain followed a similar pattern to that of the plasma. The only exception to this was the absence of the postwandering, prepupal (on day 8) JH esterase peak in the fat body. The topical application of the juvenoid, (RS)-methoprene, failed to induce fat body JH esterase activity but increased activity in the plasma, integument, midgut, and brain in M. sexta prepupae. These results indicate that the source of plasma JH esterase activity is not always the fat body as previously hypothesized. The developmental profile of tissue JH epoxide hydrolase activity was also similar to that of JH esterase suggesting that both enzymes may be regulated partly by the same factors and that JH epoxide hydrolase may also have an important, previously unrecognized functional role in JH regulation and insect metamorphosis. Multiple isoelectric forms of tissue-specific JH esterases and JH epoxide hydrolases were found in integument, midgut, fat body, and brain. The JH esterases in these tissues had isoelectric points more acidic than that for plasma. Tissue α-naphthyl acetate esterase, developmental profiles, and inhibitor sensitivity to 3-(octylthio)-1,1,1-trifluoropropan-2-one differed significantly from that for JH esterase, suggesting that they represent different enzymes. ©1992 Wiley-Liss, Inc.  相似文献   

13.
Knowledge of lipase mechanisms has increased significantly during the past year. The structural characterization of the opening mechanism of the active site of lipases, as first described for Rhizomucor miehei lipase, has now been extended to the pancreatic lipase-colipase system, and to the Geotrichum candidum/Candida rugosa lipases. In the latter two lipase families, lid opening is far more complicated than for R. miehei lipase. Resolution of the structure of cutinase, an esterase with lipase activity, and determination of the sequence of guinea pig pancreatic lipase showed that these lipases have no lid. The fact that both enzymes are not activated at the interface shows the importance of the lid in the latter phenomenon. On the basis of sequence analysis, cellulases have been divided into different families. Structural determinations of some members of a few of these families confirm that they have different folds. The active sites of these cellulases always seem to contain acidic catalytic groups. The relative spatial position of these groups and their accessibility varies considerably among the cellulases for which structural determinations have been made.  相似文献   

14.
Galego LG  Ceron CR  Carareto CM 《Genetica》2006,126(1-2):89-99
The aim of this study was to characterize esterases in Zaprionus indianus, a drosophilid recently introduced into Brazil. A further aim was study the variation of activity of esterases in the presence of inhibitors and their expression according to sex, sexual activity and age of individual flies. Polymorphisms were detected in two esterase loci (Est-2 and Est-3) and monomorphisms in four others (Est-1, Est-4, Est-5 and Est-6). Biochemical tests using α- and β-naphthyl acetate and the inhibitors malathion, eserine sulphate and PMSF allowed us to classify EST-2 and EST-5 as β-esterases, both carboxyl-esterases, and EST-1, EST-3, EST-4 and EST-6 as α-esterases. EST-1 and EST-3 were classified as carboxyl-esterases and EST-4 and EST-6 as cholinesterases. EST-5 activity was more pronounced in males and EST-2 was restricted to them or to recently copulated females. EST-4, rarely detected, was not characterized. Based on their biochemical characteristics possible roles for these enzymes are suggested.  相似文献   

15.
Organisms of the microalgal genus Nannochloropsis produce high levels of triacylglycerols (TAGs), an efficient raw material for biofuels. A complete understanding of the TAG-breakdown pathway is critical for improving the productivity of TAGs to meet future needs. Among a number of lipases annotated as TAG lipase in the genomes of every organism, Arabidopsis SUGAR-DEPENDENT 1 (AtSDP1) lipases are characterized as a type of crucial TAG lipase in plants, similar to ScTgl3–5 in Saccharomyces cerevisiae. Homologs of the AtSDP1 TAG lipases are universally found in the genomes of plants, fungi, and algae. Here we identified two homologs of AtSDP1 TAG lipases in the oleaginous microalga species Nannochloropsis oceanica, NoTGL1 and NoTGL2. We generated single- and double-knockout strains for these lipases by homologous recombination. Whereas overall TAG content in the NoTGL2 single-knockout mutant was identical to that of wild type, the NoTGL1 knockout showed a two-fold increase in TAG content per cell in early log phase under nutrient-sufficient conditions without affecting growth. Homologs of AtSDP1 in S. cerevisiae are localized to the surface of lipid droplets, and AtSDP1 is transported from peroxisomes to the surface of lipid droplets. In contrast, NoTGL1 localized to the endoplasmic reticulum in both Nannochloropsis and yeast. We suggest that homologs of AtSDP1 lipases in Nannochloropsis modulate de novo TAG biosynthesis in the endoplasmic reticulum, unlike the roles of these lipases in other organisms. These results provide important insights into the mechanisms of TAG metabolism catalyzed by homologs of AtSDP1 lipase, which are highly conserved across species.  相似文献   

16.
Two lipase-encoding genes (LIP1 and LIP2) have been isolated from a SacI genomic library of the yeast Candida cylindracea and their nucleotide sequences have been determined. Comparison with the sequence of a cDNA ruled out the presence of introns in the two genes. Both ORFs encode for mature proteins of 534 residues with putative signal peptides of 15 and 14 amino acids, respectively. When compared with other lipase sequences, the two C. cylindracea lipases showed homology only with the Geotrichum candidum lipase, whereas they shared a significant similarity with several esterases.  相似文献   

17.
The subcellular distributions of acidic (pH 4.5) and neutral (pH 7.5) longchain triacylglycerol lipases (glycerol ester hydrolase, EC 3.1.1.3) of pig liver have been determined. The distribution of the acidic lipase closely paralleled that of the lysosomal marker enzyme, cathepsin D. Approx. 60% of the neutral lipolytic activity resided in the soluble fraction;the distribution of this activity failed to parallel that of marker enzymes for mitochondria, lysosomes, microsomes, or plasma membranes. A method has been developed for purification of the neutral lipase from the soluble fraction by ultracentrifugation. An approximate 90-fold purification was achieved, with recovery of 16% of the initial activity. The partially purified neutral lipase exhibited a pH optimum between 7.25 and 7.5. It required 30 mM emulsified triolein for optimal activity and ceased to liberate fatty acids after 30 min of incubation. The enzymatic activity was destroyed by heating at 60 degrees C. Neutral lipase was inhibited by sodium deoxycholate, Triton X-100 and iodoacetamide. The activity was not inhibited by sodium taurocholate, EDTA, heparin and diethyl-p-nitrophenyl phosphate. Neutral lipase failed to exhibit activity in assay systems specific for lipoprotein lipase, monoolein hydrolase, tributyrinase, and methyl butyrate esterase and showed little or no capacity to hydrolyze chyle chylomicrons or plasma very low density lipoproteins. It is suggested that the function of neutral lipase may be to supply the liver with fatty acids liberated from endogenously synthesized or stored triacylglycerols.  相似文献   

18.
Kynurenine formamidase (KFase) (EC 3.5.1.9) hydrolyzes N-formyl-L-kynurenine, an obligatory step in the conversion of tryptophan to nicotinic acid. Low KFase activity in chicken embryos, from inhibition by organophosphorus insecticides and their metabolites such as diazoxon, leads to marked developmental abnormalities. While KFase was purportedly isolated previously, the structure and residues important for catalysis and inhibition were not established. KFase was isolated here from mouse liver cytosol by (NH4)2SO4 precipitation and three FPLC steps (resulting in 221-fold increase in specific activity for N-formyl-L-kynurenine hydrolysis) followed by conversion to [3H]diethylphosphoryl-KFase and finally isolation by C4 reverse-phase high-performance liquid chromatography. Determination of tryptic fragment amino acid sequences and cDNA cloning produced a new 305-amino-acid protein sequence. Although an amidase by function, the primary structure of KFase lacks the amidase signature sequence and is more similar to esterases and lipases. Sequence profile analysis indicates KFase is related to the esterase/lipase/thioesterase family containing the conserved active-site serine sequence GXSXG. The alpha/beta-hydrolase fold is suggested for KFase by its primary sequence and predicted secondary conformation. A three-dimensional model based on the structures of homologous carboxylesterase EST2 and brefeldin A esterase implicates Ser162, Asp247 and His279 as the active site triad.  相似文献   

19.
Lipases and esterases are frequently used in dairy production processes to enhance the buttery flavour of the end product. Short chain fatty acids, and especially butanoic acid, play a key role in this and different enzymes with specificity towards short chain fatty acids are commercially available as potent flavouring tools. We have compared six lipases/esterases associated with buttery flavour production. Although specificity to short chain fatty acids was ascribed to each enzyme, clear differences in free fatty acid profiles were found when these enzymes were applied on cream. Candida cylindraceae lipase was the most useful enzyme for buttery flavour production in cream with the highest yield of free fatty acids (57 g oleic acid 100 g−1 fat), no release of long chain fatty acids and specificity towards butanoic acid.  相似文献   

20.
We report on the determination of active enzyme components in pure and crude lipases, using fluorescent inhibitors for covalent modification and visualization of the enzymatically active proteins. Lipase-specific compounds are triacylglycerol analogs, namely 1,2(2, 3)-di-O-alkylglyceroalkylphosphonic acid-p-nitrophenyl esters, containing a fluorescent substituent bound to the omega-end of an alkyl chain. Inhibitors derived from single-chain alcohols, such as p-nitrophenyl esters of fluorescent alkyl phosphonates, react with lipases and esterases. The p-nitrophenyl ester bond is susceptible toward nucleophilic attack by the active serine of the lipolytic enzyme. This reaction is stoichiometric, specific, and irreversible. Stable lipid-protein complexes are formed which can be analyzed on the basis of their fluorescent signal. From fluorescence intensity the moles of active serine (enzyme) were accurately determined. A lipase-specific inhibitor was used for the analysis of a commercial lipase preparation from Rhizomucor miehei. After incubation of the enzyme with the fluorescent lipid, a single fluorescence band was observed after SDS-gel electrophoresis, indicating the presence of a single lipase in the crude enzyme material. A linear correlation was obtained between fluorescence intensity and the amount of enzyme. Using a combination of different inhibitors, we were able to discriminate between lipases and esterases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号