首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The activation/adaptive responses of human monocytes exposed to Bordetella pertussis parental or mutant strains were evaluated and correlated to the expression of two bacterial toxins: adenylate cyclase-hemolysin and pertussis toxin. The marked rise in intracellular cyclic adenosine monophosphate (cAMP) observed in monocytes infected by B. pertussis parental strain, inversely correlated with (1) the production of tumor necrosis factor alpha; (2) the release of superoxide anion; and (3) the expression of the 72-kDa heat shock/stress protein, Hsp70. Experiments performed with mutants deficient in adenylate cyclase-hemolysin or with purified bacterial toxins confirmed the key role of adenylate cyclase-hemolysin in the control of monocytes' response to infection by B. pertussis. This bacterial strategy primarily involves evasion from antimicrobial defenses and, eventually, the sacrifice of the host cell.  相似文献   

2.
Coxsackieviruses (CV) are important human pathogens that have been implicated in the pathogenesis of several diseases, including myocarditis and pancreatitis. How the human immune system recognizes and controls CV infections is not well understood. Studies in mice suggest that natural killer (NK) cells play a critical role in viral clearance and host survival, but the mechanism(s) by which human NK cells may contribute to the host anti-CV defence has not been investigated. Here we show that CVB3 infection markedly reduces HLA class I cell surface expression but does not increase the expression of the activating NK cell receptor ligands MICA/B and ULBP1-3 on human cells. We also demonstrate that the lowered target cell HLA class I surface expression does not correlate with an increased susceptibility to NK cell-mediated killing. However, NK cells responded with a robust production of interferon γ (IFN-γ) when peripheral blood mononuclear cells were cocultured with infected cells. In summary, this study shows that CVB3 interferes with the expression of NK cell receptor ligands on infected cells and indicates that IFN-γ production, rather than cytotoxicity, marks the early human NK cell response to CVB3 infection.  相似文献   

3.
Abstract CD-1 mice intravenously infected with the virulent Brucella abortus 2308 strain simultaneously produce significant levels of gamma interferon (IFN-γ) and interleukin-10 (IL-10) in their spleens between the second and eighth day post-infection with no production of interleukin-4 (IL-4). Endogenous synthesis of IL-10 does not affect the production of IFN-γ in this organ, while the production of both cytokines during this period of time is accompanied by a statistically significant increase ( P < 0.001) in the number of colony forming units (cfu) of B. abortus 2308 present in the organ. These findings suggest that although the endogenous synthesis of IL-10 apparently does not affect IFN-γ production, it may affect the effector functions of macrophages to control intracellular brucellae. Production of the Th1 cytokine IFN-γ during B. abortus 2308 infection is also associated with a specific IgG3 and IgG2a response against the B. abortus 2308 lipopolysaccharide (S-LPS) antigen.  相似文献   

4.
We synthesized and investigated the effect of formyl peptide receptor 2 (FPR2)-derived pepducins in human monocytes. The FPR2-based cell-penetrating lipopeptide, “pepducin” (F2pal-16), stimulated intracellular calcium increase in human monocytes via pertussis toxin (PTX)-sensitive G-protein and phospholipase C (PLC) activity. From a functional aspect, we showed that F2pal-16 stimulated monocyte chemotaxis. F2pal-16 also stimulated the generation of superoxide anion in human monocytes. Moreover, F2pal-16 dramatically increased the production of several kinds of pro-inflammatory cytokines (CXCL8, CCL2, IL-1β and TNF-α) in human monocytes via NF-κB activation. Since FPR2 plays an important role in immune responses, F2pal-16 can serve as a useful reagent for the study of FPR2-mediated immune modulation.  相似文献   

5.
Group B streptococci (GBS) are a major cause of meningitis and septicemia in neonates and numerous invasive diseases in adults. Host defense against GBS infections relies upon phagocytosis and killing by phagocytic cells. To better understand the importance of this defense mechanism a flow cytometric assay was developed to study phagocytosis and oxidative burst of leukocytes stimulated by bacteria. GBS labeled with fluorescein isothiocyanate were used for phagocytosis experiments and the extracellular fluorescence was quenched by ethidium bromide to differentiate intracellular from extracellular bacteria. The intracellular oxidative burst was determined by using 2',7'-dichlorofluorescein diacetate to measure hydrogen peroxide production and hydroethidine for superoxide anion production. We found that for GBS serotypes Ia, Ib/c, II, and III phagocytosis was greater in neutrophils than monocytes. Hydrogen peroxide production and superoxide anion production were also greater for neutrophils than monocytes in all serotypes tested. A comparison of seven type III strains revealed greater phagocytosis and superoxide anion production by neutrophils than monocytes but no difference in hydrogen peroxide production. Therefore, monocytes react similarly as neutrophils in response to GBS but at a reduced level. This methodology of measuring both phagocytosis of GBS and oxidative burst simultaneously in neutrophils and monocytes should be very useful in further studies on the importance of factors such as complement and IgG receptors for the killing of bacteria.  相似文献   

6.
Among the several killing mechanisms displayed by human neutrophils, the oxidative system is the most efficient. We have studied the influence of various antibiotics on the generation of superoxide by isolated human polymorphonuclear leukocytes (PMNL) stimulated by phorbol-myristate acetate. Among the antibiotics tested, only coumermycin significantly inhibited superoxide generation; this effect was dose-related, it depended on extracellular calcium concentration and was potentiated by sub-inhibitory concentrations of calcium channel-blocking agents. Coumermycin inhibited the influx of calcium produced by the ionophore A23187 as well as directed chemotaxis in agar and the intracellular killing of a highly susceptible strain of S. aureus. These inhibitory effects required at least 15 min of preincubation of the PMNL. Coumermycin, at clinically achievable serum concentrations, significantly impaired several PMNL functions. The mechanism could be a specific or a non-specific interaction with calcium-channels.  相似文献   

7.
Previous studies have shown that fibronectin (Fn) enhances phagocytosis and killing of antibody-coated bacteria by neutrophils and macrophages. In an attempt to understand the mechanism of this enhancement, we have investigated the effects of Fn on phagocytosis-related actin organization as well as respiratory burst activity in neutrophils, monocytes and culture-derived macrophages. Employing an NBD-phallacidin flow cytometric analysis of filamentous actin formation, we found that Fn promotes rapid actin polymerization within 30 seconds in neutrophils, monocytes, and macrophages, but not lymphocytes. Enhancement of actin polymerization by Fn was concentration-dependent and mediated by a pertussis toxin- but not cholera toxin- sensitive G protein. Inhibition of protein kinase C by sphingosine (20 μM), calcium influx by verapamil (0.1 mM), or intracellular calcium mobilization by 8-(N, N-diethyl-amino) octyl-3,4,5-trimethoxybenzoate HCI (TMB-8; 0.1 mM) did not block Fn-enhanced actin polymerization in phagocytes. Incubation of neutrophils and macrophages on microtiter plates precoated with Fn suppressed superoxide (O2?) production induced by IgG- and IgA- opsonized group B streptococci. In contrast, Fn significantly enhanced IgA- and IgG-mediated O2? production by freshly isolated monocytes. These data suggest that Fn enhances phagocytosis, presumably through G protein-coupled cytoskeleton reorganization and augments O2? production by circulating monocytes. In contrast, it appears to suppress O2? production by the active phagocytic cells, neutrophils and macrophages. This may result in enhanced phagocytosis and intracellular killing of microorganisms without damaging interstitial tissues. © 1994 Wiley-Liss, Inc.  相似文献   

8.
In comparative studies of f-met-Leu-Phe (FMLP) and methionine enkephalin (ME) induced polymorphonuclear leukocyte (PMNL) stimulation the following results were obtained: (i) both FMLP and ME increased the intracellular killing (IK) capability of human PMNLs probably through NADPH oxidase activation, (ii) the ME-induced respiratory burst (RB) differed from the chemotactic peptide FMLP-triggered superoxide generation because the former was not accompanied by the activation of the glutathione system and the duration of the superoxide production was prolonged. The reaction was dependent on lipoxygenation, was potentiated by indomethacin (IM) and was inhibited by nordihidro-guairetic acid (NDGA), (iii) both 14C-arachidonic acid (14C-AA) release and leukotriene B4 (LTB4) synthesis of ME-treated PMNLs were elevated as compared to those of FMLP triggered cells. Our results suggest that lipoxygenation and even an increased LTB4 synthesis are involved in the ME-induced RB of leukocytes.  相似文献   

9.
Human colostral macrophages stimulated by opsonized zymosan or phorbol myristate acetate (PMA) released superoxide anions (O2-) and hydrogen peroxide (H2O2) with activities comparable to those of monocytes and about one-fourth of those of polymorphonuclear leukocytes (PMNL) of blood. The O2- -forming oxidase in the macrophages stimulated by PMA was dependent on NADPH as an electron donor with an apparent Km value for NADPH of 27.6 +/- 4.0 microM, which is comparable to those obtained for the stimulated monocytes and PMNL of blood. The Vmax was 1.86 +/- 0.33 nmol O2/min/10(6) cells, which is essentially the same as that of monocytes and about half of that of PMNL. p-Chloromercuribenzoate or cetyltrimethylammonium bromide completely inhibited oxidases of all three types of phagocytes. A b-type cytochrome was identified in the macrophages but the concentrations in the macrophages and monocytes were less than half of that in PMNL. These results suggest that the differences in the O2- -forming activities of the three types of phagocytes are quantitative rather than qualitative. The macrophages and monocytes showed very low activities of myeloperoxidase [EC 1.11.1.7] in contrast to PMNL. The activity of beta-glucuronidase [EC 3.2.1.31] in the macrophages was much higher than those of the monocytes and PMNL, but little difference was observed in the activities of lysozyme [EC 3.2.1.17], catalase [EC 1.11.1.6] and superoxide dismutase [EC 1.15.1.1] among the three types of phagocytes examined. Electron micrographs of the macrophages showed little increase of vacuoles upon exposure to PMA, in contrast to the cases of monocytes and PMNL.  相似文献   

10.
LY 255283 [(1-(5-ethyl-2-hydroxy-4-(6-methyl-6-)1H-tetrazol-5-yl)-heptyloxy) phenyl)ethanone], a specific leukotriene B(4) (LTB(4)) receptor antagonist, inhibited the production of LTB(4) in human peripheral blood polymorphonuclear leukocytes (PMNL) and in monocytes activated by calcium ionophore A23187. In human monocytes activated by ionophore it inhibited also the production of thromboxane B(2) (TXB(2)). The effect of LY 255283 on 5-lipoxygenase (5-LO) and LTA(4) hydrolase activities which catalyse the production of LTB(4) and LTA(4) has not been studied yet. It is thought that LY 255283 may inhibit the production of LTB(4) and TXA(2) by antagonising the effect of ionophore-induced LTB(4) on 5-lipoxygenase and cyclooxygenase in human peripheral blood PMNL and monocytes.  相似文献   

11.
MyD88-dependent signalling is important for secretion of early inflammatory cytokines and host protection in response to Legionella pneumophila infection. Although toll-like receptor (TLR)2 contributes to MyD88-dependent clearance of L. pneumophila , TLR-independent functions of MyD88 could also be important. To determine why MyD88 is critical for host protection to L. pneumophila , the contribution of multiple TLRs and IL-18 receptor (IL-18R)-dependent interferon-gamma (IFN-γ) production in a mouse was examined. Mice deficient for TLR5 or TLR9, or deficient for TLR2 along with either TLR5 or TLR9, were competent for controlling bacterial replication and had no apparent defects in cytokine production compared with control mice. MyD88-dependent production of IFN-γ in the lung was mediated primarily by natural killer cells and required IL-18R signalling. Reducing IFN-γ levels did not greatly affect the kinetics of L. pneumophila replication or clearance in infected mice. Additionally, IFN-γ-deficient mice did not have a susceptibility phenotype as severe as the MyD88-deficient mice and were able to control a pulmonary infection by L. pneumophila . Thus, MyD88-dependent innate immune responses induced by L. pneumophila involve both TLR-dependent responses and IL-18R-dependent production of IFN-γ by natural killer cells, and these MyD88-dependent pathways can function independently to provide host protection against an intracellular pathogen.  相似文献   

12.
Bordetella pertussis must survive the defenses of the human respiratory tract including the complement system. The BrkA (Bordetella resistance to killing) protein prevents killing by the antibody-dependent classical pathway. In this study, the ability of B. pertussis to activate the human complement cascade by other pathways was examined. B. pertussis was not killed in serum depleted of C2, however serum depleted for factor B killed B. pertussis as efficiently as intact serum, suggesting complement activation occurred exclusively by the classical pathway. B. pertussis was not killed by serum depleted of antibody, suggesting the bacteria fail to activate the antibody-independent branches of the classical pathway, including the mannose binding lectin pathway. Mutants lacking the terminal trisaccharide of lipopolysaccharide retained the complement-resistant phenotype, suggesting this structure does not influence activation of complement.  相似文献   

13.
Changes in intracellular ionized free calcium ([Ca]i), inositol triphosphate (IP3), and sn-1,2-diacylglycerol (DAG) were determined in relation to agonist-induced human neutrophil superoxide (O2-) production. With 0.1 microM N-formyl-methionyl-leucyl-phenylalanine (fMLP) stimulation, generation of IP3 and a peak rise in [Cai] occurred at 30 sec, preceding maximal O2- production (1.5 min) and the maximal rise in DAG mass (4 min). FMLP-induced O2- production was inhibited by pertussis toxin. In cytochalasin B-primed, concanavalin A (Con A) stimulated neutrophils, a peak rise in [Ca]i but not IP3 proceeded O2- production, and pertussis toxin did not inhibit O2- production. EGTA inhibited the cytochalasin B/fMLP-induced increment in [Ca]i and O2- production by 75% and 50%, respectively, and completely ablated the response to cytochalasin B/Con A, suggesting a role for extracellular as well as intracellular calcium in the respiratory burst. However, three types of experiments indicate that an increase in [Ca]i is neither sufficient nor always required for O2- production. First, treatment with ionomycin resulted in a marked increase in [Ca]i but did not cause O2- production. Second, pertussis toxin inhibited both fMLP-induced IP3 generation and O2- production but did not inhibit the rise in [Ca]i. Third, following neutrophil priming with dioctanoylglycerol (diC8), maximal O2- production occurred in response to 0.015 microM fMLP or Con A without a rise in [Ca]i, and diC8/fMLP-induced O2- production was not inhibited by EGTA. Taken together, these data suggest that 1) an increment in [Ca]i is not strictly essential for neutrophil O2- production, 2) unlike fMLP, Con A-induced O2- production does not proceed through a pathway involving the pertussis toxin-sensitive G protein, and 3) regulation of neutrophil [Ca]i involves mechanisms independent of IP3 concentration.  相似文献   

14.
In vitro effect of actinomycin D on human neutrophil function   总被引:1,自引:0,他引:1  
The effect of actinomycin D (ACT-D) on human neutrophil chemotaxis, chemiluminescence (CL), superoxide (O2-) production, phagocytic uptake, and intracellular bacterial killing has been examined. The viability of the ACT-D-treated neutrophils was 98% even at a concentration of 10 micrograms/ml for 4 hr. Using fMLP as the chemotactic factor, depressed chemotaxis was demonstrated following ACT-D (1-10 micrograms/ml) pretreatment of neutrophils as compared with the non-treated controls. Similar ACT-D pretreatment produced the depressed responses in phorbol myristate acetate-induced CL and superoxide production by neutrophils. Moreover, using heat-inactivated human serum as an opsonin for Salmonella enteritidis (NCTC 6676), there was a significant difference in intracellular killing (P less than 0.01) but no difference in phagocytic uptake between ACT-D-treated and non-treated neutrophils. These studies indicate that ACT-D profoundly impairs both intracellular bacterial killing by human neutrophil through an effect on respiratory burst activity and directed cell migration of human neutrophils.  相似文献   

15.
Bordetella pertussis and the other Bordetella species produce a novel adenylate cyclase toxin which enters target cells to catalyze the production of supraphysiologic levels of intracellular cyclic adenosine monophosphate (cAMP). In these studies, dialyzed extracts from B. pertussis containing the adenylate cyclase toxin, a partially purified preparation of adenylate cyclase toxin, and extracts from transposon Tn5 mutants of B. pertussis lacking the adenylate cyclase toxin, were used to assess the effects of adenylate cyclase toxin on human peripheral blood monocyte activities. Luminol-enhanced chemiluminescence of monocytes stimulated with opsonized zymosan was inhibited greater than 96% by exposure to adenylate cyclase toxin-containing extract, but not by extracts from adenylate cyclase toxin-deficient mutants. The chemiluminescence responses to particulate (opsonized zymosan, Leishmania donovani, and Staphylococcus aureus) and soluble (phorbol myristate acetate) stimuli were inhibited equivalently. The superoxide anion generation elicited by opsonized zymosan was inhibited 92% whereas that produced by phorbol myristate acetate was inhibited only 32% by B. pertussis extract. Inhibition of oxidative activity was associated with a greater than 500-fold increase in monocyte cAMP levels, but treated monocytes remained viable as assessed by their ability to exclude trypan blue and continued to ingest particulate stimuli. The major role of the adenylate cyclase toxin in the inhibition of monocyte oxidative responses was demonstrated by: 1) little or no inhibition by extracts from B. pertussis mutants lacking adenylate cyclase toxin; 2) high level inhibition with extract from B. parapertussis, a related species lacking pertussis toxin; and 3) a reciprocal relationship between monocyte cAMP levels and inhibition of opsonized zymosan-induced chemiluminescence using both crude extract and partially purified adenylate cyclase toxin. Pertussis toxin, which has been shown to inhibit phagocyte responses to some stimuli by a cAMP-independent mechanism, had only a small (less than 20%) inhibitory effect when added at concentrations up to 100-fold in excess of those present in B. pertussis extract. These data provide strong support for the hypothesis that B. pertussis adenylate cyclase toxin can increase cAMP levels in monocytes without compromising target cell viability or impairing ingestion of particles and that the resultant accumulated cAMP is responsible for the inhibition of oxidative responses to a variety of stimuli.  相似文献   

16.
Differential survival of Leishmania donovani amastigotes in human monocytes   总被引:6,自引:0,他引:6  
Leishmania donovani is an important intracellular protozoal pathogen of man; it is found solely within macrophages in its amastigote stage in humans, and exists in its extracellular, flagellated promastigote stage in the sandfly, its arthropod vector. To determine if either stage of L. donovani was capable of surviving within monocytes--the oxidatively active precursors of tissue macrophages--interactions of the parasite with human monocytes were studied in vitro. Amastigotes and promastigotes were ingested to a comparable degree by monocytes; whereas 79% of promastigotes were killed within 48 hr, however, amastigotes survived and multiplied threefold over 5 days. Promastigotes, which have been shown to be sensitive to hydrogen peroxide-peroxidase-halide microbicidal mechanisms, elicited a phagocytic oxidative burst that was 49% of the response to serum-opsonized zymosan, as assessed by luminol-enhanced chemiluminescence. NBT was reduced to formazan in 71% of monocytes exposed to promastigotes. The death of promastigotes within monocytes could be attributed at least in part to oxidative microbicidal mechanisms because there was no significant decrease in the number of cell-associated parasites in monocytes from donors with chronic granulomatous disease of childhood. In contrast to promastigotes, amastigotes survived within monocytes, despite eliciting an oxidative response that was 27% of the response produced by serum-opsonized zymosan; this response was not significantly different from that produced by promastigotes. In a phagocyte-free system, amastigotes were found to be sevenfold more resistant than were promastigotes to the lethal effects of hydrogen peroxide. The survival of L. donovani in human monocytes is thus dependent on the parasite stage; promastigotes are ingested, they elicit an oxidative burst, and the majority are killed by oxidative microbicidal mechanisms, whereas amastigotes are ingested and survive to parasitize human monocytes successfully, despite eliciting a phagocytic oxidative burst.  相似文献   

17.
Abstract Trypan blue exclusion was used to estimate the viability of human polymorphonuclear leukocytes (PMNL) in the presence of Mycoplasma felis and two strains of M. fermentans (PG18 and incognitus). The competence of PMNL to mount a respiratory burst when challenged with the mycoplasmas was also monitored by luminol-dependent chemiluminescence (CL). Both un-opsonised and non-immune human serum opsonised M. felis cells had little effect on PMNL viability. In contrast, PMNL viability was reduced markedly by un-opsonised cells of M. fermentans strain incognitus and, to a lesser extent, strain PG18, and opsonisation of these mycoplasmas further enhanced killing. Death of PMNL in the presence of M. fermentans was not associated with the autonomous production of active oxygen species during the respiratory burst as M. felis induced a high CL response from PMNL, whereas that induced by M. fermentans strain incognitus was significantly lower. M. fermentans may invade mammalian cells and it is suggested that the mechanism of PMNL death could be related to the ability of M. fermentans to penetrate host cell membranes.  相似文献   

18.
Sultan N  Cirak MY  Erbaş D 《Microbios》2000,103(405):97-106
In this study the effect of cefepime on the phagocytosis and intracellular killing of Staphylococcus aureus by human polymorphonuclear leucocytes (PMNL) was determined. The opsonophagocytic killing of S. aureus was synergistically enhanced by cefepime at concentrations below 0.5 times the minimal inhibitory concentration (MIC), and four times the MIC at higher concentrations. The effect of cefepime on phagocytosis and the bactericidal activity of PMNL was also investigated by the measurement of nitrite levels using a Sievers analyser. According to the nitrite levels, cefepime enhanced not only the phagocytosis by PMNL 2.1-fold in the 0.5 MIC and 2.8-fold in the four MIC values but also the bactericidal activity of neutrophils 2.5-fold in the 0.5 MIC and 2.8-fold in the four MIC values, respectively. The beneficial cefepime-leucocyte interaction may explain the efficacy of cefepime against intracellular pathogens.  相似文献   

19.
Mechanism of human monocyte activation via the 40-kDa Fc receptor for IgG   总被引:5,自引:0,他引:5  
It is shown that a mAb specific for the human 40-kDa FcR (FcRII) leads to activation of human monocytic cells but that extensive cross-linking of the receptor is required. Calcium mobilization can be induced in immature monocytic cells (undifferentiated U937 cells) and peripheral blood monocytes with an intact IgG1 anti-FcRII antibody (CIKM5) but not by F(ab')2 fragments of this antibody. The intact antibody can bind in a tripartite manner by its two F(ab') sites and its Fc-binding site whereas the F(ab')2 fragments of this antibody can only bind in a divalent fashion. A rise in intracellular free calcium ion concentration occurs when F(ab')2 fragments are cross-linked with F(ab')2 anti-mouse Ig indicating that more extensive cross-linking of FcRII is required rather than an obligatory requirement for an Fc-FcRII interaction. Calcium mobilization in response to intact or cross-linked F(ab')2 fragments of CIKM5 is associated with superoxide production only in IFN-gamma-primed peripheral blood monocytes and IFN-gamma differentiated U937 cells indicating that the activation signal produced via FcRII is inadequate to fully stimulate non-"primed" cells. A second mAb reactive with FcRII (2E1) does not cause calcium mobilization in monocytes or U937 cells, and partially blocks the effects of CIKM5. 2E1 also blocks CIKM5 superoxide production in IFN-gamma-primed monocytes and differentiated U937 cells. This may be explained in part by the fact that 2E1 is an IgG2a antibody and can only participate in bipartite binding with FcRII. When 2E1 is cross-linked with F(ab')2 anti-mouse Ig there is a small calcium response. This does not cause superoxide generation in IFN-primed monocytes but does do so in IFN-gamma differentiated U937 cells. FcRII is also expressed on granulocytes and some B cells but the effects of cross-linking the receptor on these cells differ from those seen in monocytes.  相似文献   

20.
Abstract Whereas addition of 200 ng ml−1 exotoxin A (exoA) did not modify PMNL chemotaxis, 20 U ml−1 human recombinant interleukin-1β (hrIL-1β) primed polymorphonuclear leukocytes (PMNL) for migration towards Pseudomonas aeruginosa peptide chemotactins (PAPCs). Piroxicam (100 μg ml−1), a non-steroidal anti-inflammatory agent (NSAIA), inhibited PMNL chemotaxis and abolished the priming effect of hrIL-1β. Both PAPCs and exoA induced PMNL superoxide anion production, but neither hrIL-1β nor piroxicam modified significantly PMNL superoxide anion production induced by PAPCs. The fact that hrIL-1β can prime PMNL for chemotaxis towards PAPCs and that piroxicam can abolish activation by primed PMNL are findings relevant to the pharmacological control of lung tissue damage during P. aeruginosa pneumonia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号