共查询到5条相似文献,搜索用时 31 毫秒
1.
2.
生物多样性经济价值评估的基本方法 总被引:33,自引:1,他引:32
目前,生物多样性经济价值的基本评价方法包括三种类型,一种是基于个人支付意愿(WTP)的直接经济价值评估方法,再一种是利用实际或替代市场的间接经济价值评估方法,第三种是针对生物多样性价值在空间上流动的现象,基于定量分析的过程-效益评价法。 相似文献
3.
Summary We introduce a correction for covariate measurement error in nonparametric regression applied to longitudinal binary data arising from a study on human sleep. The data have been surveyed to investigate the association of some hormonal levels and the probability of being asleep. The hormonal effect is modeled flexibly while we account for the error‐prone measurement of its concentration in the blood and the longitudinal character of the data. We present a fully Bayesian treatment utilizing Markov chain Monte Carlo inference techniques, and also introduce block updating to improve sampling and computational performance in the binary case. Our model is partly inspired by the relevance vector machine with radial basis functions, where usually very few basis functions are automatically selected for fitting the data. In the proposed approach, we implement such data‐driven complexity regulation by adopting the idea of Bayesian model averaging. Besides the general theory and the detailed sampling scheme, we also provide a simulation study for the Gaussian and the binary cases by comparing our method to the naive analysis ignoring measurement error. The results demonstrate a clear gain when using the proposed correction method, particularly for the Gaussian case with medium and large measurement error variances, even if the covariate model is misspecified. 相似文献
4.
5.
It is widely believed that risks of many complex diseases are determined by genetic susceptibilities, environmental exposures, and their interaction. Chatterjee and Carroll (2005, Biometrika 92, 399-418) developed an efficient retrospective maximum-likelihood method for analysis of case-control studies that exploits an assumption of gene-environment independence and leaves the distribution of the environmental covariates to be completely nonparametric. Spinka, Carroll, and Chatterjee (2005, Genetic Epidemiology 29, 108-127) extended this approach to studies where certain types of genetic information, such as haplotype phases, may be missing on some subjects. We further extend this approach to situations when some of the environmental exposures are measured with error. Using a polychotomous logistic regression model, we allow disease status to have K+ 1 levels. We propose use of a pseudolikelihood and a related EM algorithm for parameter estimation. We prove consistency and derive the resulting asymptotic covariance matrix of parameter estimates when the variance of the measurement error is known and when it is estimated using replications. Inferences with measurement error corrections are complicated by the fact that the Wald test often behaves poorly in the presence of large amounts of measurement error. The likelihood-ratio (LR) techniques are known to be a good alternative. However, the LR tests are not technically correct in this setting because the likelihood function is based on an incorrect model, i.e., a prospective model in a retrospective sampling scheme. We corrected standard asymptotic results to account for the fact that the LR test is based on a likelihood-type function. The performance of the proposed method is illustrated using simulation studies emphasizing the case when genetic information is in the form of haplotypes and missing data arises from haplotype-phase ambiguity. An application of our method is illustrated using a population-based case-control study of the association between calcium intake and the risk of colorectal adenoma. 相似文献