首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Upon treatment of beef heart mitochondrial oligomycin sensitivity conferring protein (OSCP) with [14C]-N-ethylmaleimide ( [14C]NEM) or dithiobis(nitro[14C] benzoate), 1 mol of either SH reagent was incorporated per mol of OSCP. Radiolabeling occurred at the level of the only cysteine residue, Cys-118, present in the OSCP sequence reported by Ovchinnikov et al. [Ovchinnikov, Y. A., Modyanov, N. N., Grinkevich, V. A., Aldanova, N. A., Trubetskaya, O. E., Nazimov, I. V., Hundal, T., & Ernster, L. (1984) FEBS Lett. 166, 19-22]; it did not alter the biological activity of OSCP tested in a reconstituted F0-F1 system that catalyzed oligomycin-sensitive ATPase activity or ATP-Pi exchange. The parameters of [14C]NEM-OSCP binding to isolated beef heart mitochondrial F1 were assessed by equilibrium dialysis. Addition of trace amounts of Tween 20 prevented unspecific adsorption of OSCP. The binding curves showed that each F1 possesses a high-affinity OSCP binding site (Kd = 0.08 microM) and two low-affinity OSCP binding sites (Kd = 6-8 microM). Binding of OSCP to the high-affinity site on F1 is probably responsible for the ability of OSCP to confer oligomycin sensitivity to F1 in the ATPase complex.  相似文献   

2.
Interactions between oligomycin sensitivity conferring protein (OSCP) and subunits of beef heart mitochondrial F1-ATPase have been explored by cross-linking at an OSCP/F1 molar ratio close to 1 to ensure specific high-affinity binding of OSCP to F1 [see Dupuis et al. [Dupuis, A., Issartel, J.-P., Lunardi, J., Satre, M., & Vignais, P.V. (1985) Biochemistry (preceding paper in this issue)]]. Cross-links between F1 subunits and OSCP were established by means of two zero length cross-linkers, 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide and N-(ethoxycarbonyl)-2-ethoxydihydroquinoline. The cross-linked products were separated by sodium dodecyl suflate-polyacrylamide gel electrophoresis. Coomassie blue staining revealed two cross-linked products of Mr 75 000 and 80 000 which could result from the binding of OSCP to the alpha and beta subunits of F1. Definite identification of the cross-linked products was achieved by chemical labeling with specific radiolabeled reagents and by blotting on nitrocellulose filters followed by immunocharacterization with anti-alpha, anti-beta, and anti-OSCP antibodies. OSCP was found to cross-link with the alpha and beta subunits of F1.  相似文献   

3.
Proteolytic digestion of F1-depleted submitochondrial particles (USMP), reconstitution with isolated subunits and titration with inhibitors show that the nuclear-encoded PVP protein, previously identified as an intrinsic component of bovine heart F0 (F01) (Zanotti, F. et al. (1988) FEBS Lett. 237, 9-14), is critically involved in maintaining the proper H+ translocating configuration of this sector and its correct binding to the F1 catalytic moiety. Trypsin digestion of USMP, under conditions leading to cleavage of the carboxyl region of the PVP protein and partial inhibition of transmembrane H+ translocation, results in general loss of sensitivity of this process to F0 inhibitors. This is restored by addition of the isolated PVP protein. Trypsin digestion of USMP causes also loss of oligomycin sensitivity of the catalytic activity of membrane reconstituted soluble F1, which can be restored by the combined addition of PVP and OSCP, or PVP and F6. Amino acid sequence analysis shows that, in USMP, modification by [14C] N,N'-dicyclohexylcarbodiimide of subunit c of F0 induces the formation of a dimer of this protein, which retains the 14C-labelled group. Chemical modification of cysteine-64 of subunit c results in inhibition of H+ conduction by F0. The results indicate that proton conduction in mitochondrial F0 depends on interaction of subunit c with the PVP protein.  相似文献   

4.
Yeast Saccharomyces cerevisiae oligomycin sensitivity conferring proteins (OSCP) have been expressed in Escherichia coli. Heterologous expression results in production of a protein that is identical to yeast mature OSCP, including the absence of the initiating methionine residue. Yeast OSCP expressed in E. coli has been purified to homogeneity and it is able to reconstitute oligomycin-sensitive ATPase using purified F1- and F1/OSCP-depleted membranes (electron transport particles (ETP). Binding of F1 to ETP is dependent on the addition of OSCP. Binding studies using 35S-OSCP indicated that OSCP binds to ETP with a Kd of 200 nM and a capacity of 420 pmol/mg particle protein, whereas OSCP does not interact with F1 in the absence of ETP. These data indicate that yeast OSCP must first form a specific complex with F0, which then binds F1 forming the functional complex. To identify functional domains in yeast OSCP, two deletion mutants have been made. Antibodies directed to these deletion products do not inhibit OSCP-dependent binding of F1 to ETP. However, antibodies directed against the last one-third of OSCP greatly reduce the oligomycin sensitivity of the reconstituted ATPase. These data suggest that OSCP is involved in a functional role in energy transduction or proton translocation and serves a structural role in the yeast mitochondrial ATP synthase.  相似文献   

5.
Bovine heart submitochondrial particles depleted of F1, OSCP (oligomycin sensitivity-conferring protein), and F6 require the presence of cations to rebind F1. Among the cations tested, NH4+, Cs+, and Rb+ were most efficient, followed by K+, Na+, Li+, Ca2+, and Mg2+. The extent of F1 binding approached that occurring upon supplementation with F6 and/or OSCP, and was similar to the F1 content of particles prior to depletion. In the absence of cations, F6 and/or OSCP were ineffective in promoting the binding of F1 to the depleted particles. The F1 bound to the particles in the presence of cations alone was completely insensitive to oligomycin. It remained bound to the particles after removal of the cation, and could be rendered partially (approximately 50%) or maximally (less than 80%) oligomycin-sensitive upon the subsequent addition of OSCP or of F6 and OSCP, respectively. The surface potential of the particles, as determined by microelectrophoresis, was screened by all cations tested, regardless of their ability to promote the binding of F1; this was in contrast to earlier findings with particles depleted of F1 only, where the ability of cations to promote the rebinding of F1 paralleled their efficiency to neutralize the surface charge of the particle membrane. It is concluded that the effect of cations on the binding of F1 to F1-, F6-, and OSCP-depleted particles is due to a specific interaction of the cations with certain segments or components of the membrane. The results suggest the existence of a binding site for F1 on F0 in addition to the binding site(s) provided by F6 and OSCP.  相似文献   

6.
1. Isolated F1 (mitochondrial ATPase) binds to urea-treated submitochondrial particles suspended in sucrose/Tris/EDTA with a dissociation constant of 0.1 muM. 2. About one-third of the F1 and the oligomycin-sensitivity conferring protein (OSCP) are lost during preparation of submitochondrial particles prepared at high pH (A particles). None is lost from particles treated with trypsin (T particles). 3. After further treatment with alkali of urea-treated particles, binding of F1 requires the addition of OSCP. Maximum binding is reached when both OSCP and Fc2 are added. The concentration of F1-binding sites in the presence of both OSCP and Fc2 is about the same as that in TU particles. 4. After further extraction with silicotungstate of urea- and alkali-treated particles, OSCP no longer induces binding of F1, unless Fc2 is also present. Fc2 induces binding in the absence of OSCP but with a lower binding constant and, in contrast to results under all the other conditions studied in this paper, the ATPase activity is oligomycin insensitive. 5. It is tentatively concluded that OSCP is the binding site for F1 and Fc2 is the binding site for OSCP.  相似文献   

7.
[14C]Malonyl-CoA bound to intact mitochondria isolated from rat liver and heart in a manner consistent with the presence of two independent classes of binding sites in each tissue. The binding characteristics for mitochondria obtained from fed male rats were: for heart, KD(1) = 11-18nM, KD(2) = 30 microM, N1 = 7pmol/mg of protein, N2 = approx. 660pmol/mg of protein; for liver, KD(1) = 0.1 microM, KD(2) = 5.6 microM, N1 = 11pmol/mg of protein, N2 = 165pmol/mg of protein. In the presence of 40 microM-palmitoyl-CoA the characteristics of binding at the high-affinity sites were changed, so that for heart KD(1) = 0.26 microM, with no change in N1 and for liver KD(1) = approx. 2 microM, with N1 increased to approx. 40pmol/mg of protein. Differences between the two tissues in tightness of malonyl-CoA binding at the high-affinity sites explains the considerably greater sensitivity of heart CPT1 (overt form of carnitine palmitoyltransferase) to inhibition by malonyl-CoA [Saggerson & Carpenter, (1981) FEBS Lett. 129, 229-232; McGarry, Mills, Long & Foster (1983) Biochem. J. 214, 21-28]. Starvation (24h) did not change the characteristics of [14C]malonyl-CoA binding to liver mitochondria and did not alter the I50 (concentration giving 50% inhibition) for displacement of [14C]malonyl-CoA by palmitoyl-CoA. Therefore the decreased sensitivity of liver CPT1 to inhibition by malonyl-CoA in starvation [Saggerson & Carpenter (1981) FEBS Lett. 129, 225-228; Bremer (1981) Biochim. Biophys. Acta 665, 628-631] is not explained by differences in malonyl-CoA binding. Percentage occupancy of the high-affinity sites in heart mitochondria by malonyl-CoA correlated closely with percentage inhibition of CPT1 measured under similar conditions. This finding supports the proposal that the high-affinity binding sites are the functional sites mediating inhibition of CPT1 by malonyl-CoA. Similar experiments with liver mitochondria also suggested that the occupancy of high-affinity sites by malonyl-CoA regulates CPT1 activity. 5,5'-Dithiobis-(2-nitrobenzoic acid), which decreased the sensitivity of heart or liver CPT1 to inhibition by malonyl-CoA [Saggerson & Carpenter (1982) FEBS Lett. 137, 124-128], also decreased [14C]malonyl-CoA binding to the high-affinity sites of heart mitochondria. N1 values for [14C]malonyl-CoA binding to high-affinity sites in liver mitochondria were determined in various physiological states which encompassed a 7-fold range of CPT1 maximal activity (fed, starved, pregnant, hypothyroid, foetal). The N1 value did not change in these states.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
The binding parameters of the oligomycin-sensitivity conferring protein (OSCP) in inside-out particles from beef heart mitochondria have been tested by means of two assays, the oligomycin-sensitive ATP-Pi exchange, and the oligomycin-sensitive ATP hydrolysis. The total number of OSCP binding sites in A particles was equal to 220 pmol/mg particle protein. Each mole of ATPase active site was able to bind 1.1 +/- 0.5 mol OSCP with Kd 1.7 nM.  相似文献   

9.
In order to assess the role of thiol groups in the Fo part of the ATP synthase in the coupling mechanism of ATP synthase, we have treated isolated Fo, extracted from beef heart Complex V with urea, with thiol reagents, primarily with diazenedicarboxylic acid bis-(dimethylamide) (diamide) but also with Cd2+ and N-ethylmaleimide. FoF1 ATP synthase was reconstituted by adding isolated F1 and the oligomycin-sensitivity-conferring-protein (OSCP) to Fo. The efficiency of reconstitution was assessed by determining the sensitivity to oligomycin of the ATP hydrolytic activity of the reconstituted enzyme. Contrary to Cd2+, incubation of diamide with Fo, before the addition of F1 and OSCP, induced a severe loss of oligomycin sensitivity, due to an inhibited binding of F1 to Fo. This effect was reversed by dithiothreitol. Conversely, if F1 and OSCP were added to Fo before diamide, no effect could be detected. These results show that F1 (and/or OSCP) protects Fo thiols from diamide and are substantiated by the finding that the oligomycin sensitivity of ATP hydrolysis activity of isolated Complex V was also unaltered by diamide. Gel electrophoresis of FoF1 ATP synthase, reconstituted with diamide-treated Fo, revealed that the loss of oligomycin sensitivity was directly correlated with diminution of band Fo 1 (or subunit b). Concomitantly a band appeared of approximately twice the molecular weight of subunit Fo 1. As this protein contains only 1 cysteine residue (Walker, J. E., Runswick, M. J., and Poulter, L. (1987) J. Mol. Biol. 197, 89-100), the effect of diamide is attributed to the formation of a disulfide bridge between two of these subunits. These results offer further evidence for the proposal, based on aminoacid sequence and structural analysis, that subunit Fo 1 of mammalian Fo is involved in the binding with F1 (Walker et al. (1987]. N-Ethylmaleimide affects oligomycin sensitivity to a lesser extent than diamide, suggesting that the mode of action of these reagents (and the structural changes induced in Fo) is different.  相似文献   

10.
The F0F1-ATPase of the inner mitochondrial membrane catalyzes the conversion of a proton electrochemical energy into the chemical bond energy of ATP (Boyer, P.D., Chance, B., Ernster, L., Mitchell, P., Racker, E., and Slater, E.C. (1977) Annu. Rev. Biochem. 46, 955-1026). To assess the role of the membrane potential (delta psi) in this process and to study the effect of very short pulses on ATP synthesis, we employed a high voltage pulsation method (Kinosita, K., and Tsong, T.Y. (1977) Proc. Natl. Acad. Sci. U.S.A. 74, 1923-1927) to induce a delta psi of controlled magnitude and duration in a suspension of submitochondrial particles and F0F1-ATPase vesicles. Cyanide-treated submitochondrial particles were exposed to electric pulses of 10-30 kV/cm of magnitude (generating a peak delta psi of 150-450 mV) and 1-100 microseconds duration. Net [32P]ATP synthesis from [32P]Pi and ADP was observed with maximal values of 410 pmol/mg X pulse for a 30 kV/cm-100-microseconds pulse. This corresponds to a yield of 10-12 mol of ATP per mol of F0F1 complex per pulse. As many as 4 nmol/mg were produced after pulsing the same sample 8 times. By varying the ionic strength of the suspending medium, and consequently the pulse width, it is clearly shown that the synthesis was electrically driven and did not correlate with Joule heating of the sample. Titrations using specific inhibitors and ionophores were performed. The voltage-induced ATP synthesis was 50% inhibited by 0.11 microgram/mg of oligomycin and 2.4 nmol/mg of N,N'-dicyclohexylcarbodiimide. Ionophores and uncouplers had varying degrees of inhibition. The dependence of ATP synthesis on pulse width was nonlinear, exhibiting a threshold at 10 microseconds and a biphasic behavior above this value. Isolated F0F1-ATPase reconstituted into asolectin vesicles also synthesized ATP when pulsed with electric fields. A 35 kV/cm pulse induced the synthesis of 115 pmol of ATP per mg of protein, which corresponds to approximately 0.34 mol of ATP per mol of F0F1-ATPase. This synthesis was also sensitive to oligomycin and dicyclohexylcarbodiimide. The possibility of turnover of the ATPase in microseconds is considered.  相似文献   

11.
Oligomycin Sensitivity Conferral Protein (OSCP) and an F1-ATPase Binding Protein were isolated from F1-depleted rat liver mitochondrial membrane. Their molecular weights on polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate and urea were 22,500 and 8,500 respectively. When incubated with liver TUA (trypsin, urea and ammonia-treated) submitochondrial particles, the binding protein was effective in the binding of F1 to the particles with the resultant particle-bound ATPase activity not oligomycin sensitive. When OSCP was then incubated with the reconstituted membrane-bound ATPase, its activity became oligomycin sensitive. These results suggest that, first; the binding protein, but not OSCP, connects F1-ATPase to the membrane of rat liver mitochondria and maybe to the “stalk”, if indeed there is a stalk in mitochondrial membrane ATPase complex; and second; the function of OSCP is solely to render the ATPase activity sensitive to oligomycin and other similar inhibitors.  相似文献   

12.
J Duszynski  A Dupuis  B Lux  P V Vignais 《Biochemistry》1988,27(17):6288-6296
In order to study the kinetics and the nature of the interactions between the oligomycin sensitivity conferring protein (OSCP) and the F0 and F1 sectors of the mitochondrial ATPase complex, fluorescent derivatives of OSCP, which are fully biologically active, have been prepared by reaction of OSCP with the following fluorescent thiol reagents: 6-acryloyl-2-(dimethylamino)naphthalene (acrylodan), 2-(4-maleimidylanilino)naphthalene-6-sulfonic acid (Mal-ANS), N-(1-pyrenyl)maleimide (Mal-pyrene), 7-(diethylamino)-3-(4-maleimidylphenyl)-4-methylcoumarin (Mal-coumarin), and fluorescein 5-maleimide (Mal-fluorescein). The preparation of these derivatives was based on the previous finding that the single cysteinyl residue of OSCP, Cys 118, can be covalently modified by alkylating reagents without loss of biological activity [Dupuis, A., Issartel, J. P., Lunardi, J., Satre, M., & Vignais, P. V. (1985) Biochemistry 24, 728-733]. For all fluorescent probes used, except Mal-pyrene and Mal-fluorescein, the emission spectra of conjugated OSCP were blue-shifted relative to those of the corresponding mercaptoethanol adducts, indicating that the fluorophores attached to Cys 118 were located in a hydrophobic pocket. These results were consistent with the high quantum yields and the increased fluorescence lifetimes of conjugated OSCP compared to mercaptoethanol adducts in aqueous buffer. They also fit with quenching data obtained with potassium iodide which showed that the fluorophore is shielded from the aqueous medium when it is attached to Cys 118 of OSCP. Especially noticeable was the wide half-width of the OSCP-acrylodan emission peak compared to that of mercaptoethanol-acrylodan.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Phosphorescence and fluorescence energy transfer measurements have been used to locate the epsilon-subunit within the know structural frame of the mitochondrial soluble part of F-type H(+)-ATPase complex (F1). The fluorescence probe 2'-O-(trinitrophenyl)adenosine-5'-triphosphate was bound to the nucleotide binding sites of the enzyme, whereas the probe 7-diethylamino-3'-(4'-maleimidylphenyl)-4-methylcoumarin was attached to the single sulfhydryl residue of isolated oligomycin sensitivity-conferring protein (OSCP), which was then reconstituted with F1. Fluorescence and phosphorescence resonance energy transfer yields from the lone tryptophan residue of F1 present in the epsilon-polypeptide and the fluorescence labels attached to the F1 complex established that tryptophan is separated by 3.7 nm from Cys-118 of OSCP in the reconstituted OSCP-F1 complex, by 4.9 nm from its closest catalytic site and by more than 6.4 nm from the two other catalytic sites, including the lowest affinity ATP site. These separations together with the crystallographic coordinates of the F1 complex (Abrahams, J.P., A. G. W. Leslie, R. Lutter, and J.E. Walker. 1994. Structure at 2.8 A resolution of F1-ATPase from bovine heart mitochondria. Nature. 370:621-628) place the epsilon-subunit in the stem region of the F1 molecule in a unique asymmetrical position relative to the catalytic sites of the enzyme.  相似文献   

14.
The topographical organization of oligomycin sensitivity conferring protein (OSCP) in the mitochondrial adenosinetriphosphatase (ATPase)-ATP synthase complex has been studied. The accessibility of OSCP to monoclonal antibodies has been qualitatively visualized by using the protein A-gold electron microscopy immunocytochemistry or quantitatively estimated by immunotitration of OSCP in depolymerized or intact membranes. Besides, OSCP cannot be labeled by 3-(trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine ([125I]TID) which selectively labels the hydrophobic core of membrane proteins. These observations demonstrate an external location of OSCP on the inner face of the inner mitochondrial membrane. The position of OSCP relative to other peptides of the complex has been analyzed by cross-linking experiments using either zero length N-(ethoxycarbonyl)-2-ethoxydihydroquinoline or 11-A span dimethyl suberimidate cross-linkers in the ATPase-ATP synthase complex. The OSCP cross-linked products were identified either by immunocharacterization with anti-alpha, anti-beta, or anti-OSCP monoclonal antibodies or by their molecular weight. OSCP was cross-linked with either the alpha- or beta-subunits of F1 or to a subunit of Mr 24 000. Other types of cross-linking were obtained by the labeling of OSCP with [cysteamine-35S]-N-succinimidyl 3-[[2-((2-nitro-4-azidophenyl)amino)ethyl]dithio]propionate ([35S]SNAP) and reconstitution of SNAP-OSCP with F1 in urea-treated submitochondrial particles. Under these conditions, OSCP is found to be adjacent to two other peptides of molecular weight close to 30 000. A comparison is made between the topology and the organization of the b-subunit of Escherichia coli and OSCP, suggesting an analogy between OSCP and the hydrophilic part of the b-subunit.  相似文献   

15.
Pig heart mitochondrial membranes depleted of F1 and OSCP by various treatments were analyzed for their content in alpha and beta subunits of F1 and in OSCP using monoclonal antibodies. Membrane treatments and conditions of rebinding of F1 and OSCP were optimized to reconstitute efficient NADH- and ATP-dependent proton fluxes, ATP synthesis and oligomycin-sensitive ATPase activity. F1 and OSCP can be rebound independently to depleted membranes but to avoid unspecific binding of F1 to depleted membranes (ASUA) which is not efficient for ATP synthesis, F1 must be rebound before the addition of OSCP. The rebinding of OSCP to depleted membranes reconstituted with F1 inhibits the ATPase activity of rebound F1, while it restores the ATP-driven proton flux measured by the quenching of ACMA fluorescence. The rebinding of OSCP also renders the ATPase activity of bound F1 sensitive to uncouplers. The rebinding of OSCP alone or F1 alone, does not modify the NADH-dependent proton flux, while the rebinding of both F1 and OSCP controls this flux, inducing an inhibition of the rate of NADH oxidation. Similarly, oligomycin, which seals the F0 channel even in the absence of F1 and OSCP, inhibits the rate of NADH oxidation. OSCP is required to adjust the fitting of F1 to F0 for a correct channelling of protons efficient for ATP synthesis. All reconstituted energy-transfer reactions reach their optimal value for the same amount of OSCP. This amount is consistent with a stoichiometry of two OSCP per F1 in the F0-F1 complex.  相似文献   

16.
Isolated, intact rat liver nuclei have high-affinity (Kd = 10(-9) M) binding sites that are highly specific for nonsteroidal antiestrogens, especially for compounds of the triphenylethylene series. Nuclear [3H]tamoxifen binding capacity is thermolabile, being most stable at 4 degrees C and rapidly lost at 37 degrees C. More [3H]tamoxifen, however, is specifically bound at incubation temperatures of 25 degrees C and 37 degrees C than at 4 degrees C although prewarming nuclei has no effect, suggesting exchange of [3H]tamoxifen for an unidentified endogeneous ligand. Nuclear antiestrogen binding sites are destroyed by trypsin but not by deoxyribonuclease I or ribonuclease A. The nuclear antiestrogen binding protein is not solubilized by 0.6 M potassium chloride, 2 M sodium chloride, 0.6 M sodium thiocyanate, 3 M urea, 20 mM pyridoxal phosphate, 1% (w/v) digitonin or 2% (w/v) sodium cholate but is extractable by sonication, indicating that it is tightly bound within the nucleus. Rat liver nuclear matrix contains high-affinity (Kd = 10(-9) M) [3H]tamoxifen binding sites present in 5-fold higher concentrations (4.18 pmol/mg DNA) than in intact nuclei (0.78 +/- 0.10 (S.D.) pmol/mg DNA). Low-speed rat liver cytosol (20 000 X g, 30 min) contains high-capacity (955 +/- 405 (S.D.) fmol/mg protein), low-affinity (Kd = 10.9 +/- 4.5 (S.D.) nM) antiestrogen binding sites. In contrast, high-speed cytosol (100 000 X g, 60 min) contains low-capacity (46 +/- 15 (S.D.) fmol/mg protein), high-affinity (Kd = 0.61 +/- 0.20 (S.D.) nM) binding sites. Low-affinity cytosolic sites constitute more than 90% of total liver binding sites, high-affinity cytosolic sites 0.3%-3.2%, and nuclear sites less than 0.5% of total sites.  相似文献   

17.
A. Vdineanu  J.A. Berden  E.C. Slater 《BBA》1976,449(3):468-479
1. Isolated F1 (mitochondrial ATPase) binds to urea-treated submitochondrial particles suspended in sucrose/Tris/EDTA with a dissociation constant of 0.1 μM.

2. About one-third of the F1 and the oligomycin-sensitivity conferring protein (OSCP) are lost during preparation of submitochondrial particles prepared at high pH (A particles). None is lost from particles treated with trypsin (T particles).

3. After further treatment with alkali of urea-treated particles, binding of F1 requires the addition of OSCP. Maximum binding is reached when both OSCP and Fc2 are added. The concentration of F1-binding sites in the presence of both OSCP and Fc2 is about the same as that in TU particles.

4. After further extraction with silicotungstate of urea- and alkali-treated particles, OSCP no longer induces binding of F1, unless Fc2 is also present. Fc2 induces binding in the absence of OSCP but with a lower binding constant and, in contrast to results under all the other conditions studied in this paper, the ATPase activity is oligomycin insensitive.

5. It is tentatively concluded that OSCP is the binding site for F1 and Fc2 is the binding site for OSCP.  相似文献   


18.
The ox heart mitochondrial inhibitor protein may be iodinated with up to 0.8 mol 125I per mol inhibitor with no loss of inhibitory activity, with no change in binding affinity to submitochondrial particles, and without alteration in the response of membrane-bound inhibitor to energisation. Tryptic peptide maps reveal a single labelled peptide, consistent with modification of the single tyrosine residue of the protein. A single type of high-affinity binding site (Kd=96 . 10 (-9)M) for the inhibitor protein has been measured in submitochondrial particles. The concentration of this site is proportional to the amount of membrane-bound F1, and there appears to be one such site per F1 molecule. The ATp hydrolytic activity of submitochondrial particles is inversely proportional to the occupancy of the high-affinity binding site for the inhibitor protein. No evidence is found for a non-inhibitory binding site on the membrane or on other mitochondrial proteins. In intact mitochondria from bovine heart, the inhibitor protein is present in an approx. 1:1 ratio with F1. Submitochondrial particles prepared by sonication of these mitochondria with MgATP contain about 0.75 mol inhibitor protein per mol F1, and show about 25% of the ATPase activity of inhibitor-free submitochondrial particles. Additional inhibitor protein can be bound to these particles to a level of 0.2 mol/mol F1, with consequent loss of ATPase activity. If MgATP is omitted from the medium, or inhibitors of ATP hydrolysis are present, the rate of combination between F1 and its inhibitor protein is very much reduced. The equilibrium level of binding is, however, unaltered. These results suggest the presence of a single, high-affinity, inhibitory binding site for inhibitor protein on membrane-bound F1. The energisation of coupled submitochondrial particles by succinate oxidation or by ATP hydrolysis results in both the dissociation of inhibitor protein into solution, and the activation of ATP hydrolysis. At least 80% of the membrane-bound F1-inhibitor complex responds to this energisation by participating in a new equilibrium between bound and free inhibitor protein. This finding suggests that a delocalised energy pool is important in promoting inhibitor protein release from F1. Dissipation of the electrochemical gradient by uncouplers, or the binding of oligomycin or efrapetin effectively blocks energised release of the inhibitor protein. Conversely, the addition of aurovertin or adenosine 5'--[beta, lambda--imido]triphosphate enhances energy-driven release. The mode of action of various inhibitors on binding and energised release of the protein inhibitor is discussed.  相似文献   

19.
A study is presented on the effect of chemical modification of thiol groups on proton conduction by the H+-ATPase complex in 'inside out' submitochondrial particles, before and after removal of the F1 moiety, and by F0 liposomes. The results obtained show that modification with monofunctional reagents [N-ethylmaleimide, 2,2'-dithiobispyridine, mersalyl and N-(7-dimethylamino-4-methyl-coumarinyl)-maleimide] of thiol residues in membrane integral proteins of F0 results in inhibition of proton conduction. Comparison of the inhibitory effects with the binding of [14C]N-ethylmaleimide to the various F0 polypeptides indicates that the inhibition of proton conduction by thiol reagents was correlated with modification of the 25-kDa, 11-kDa and 9-kDa (N,N'-dicyclohexylcarbodiimide-binding protein) proteins. Involvement of the last component is supported by the observation that modification by thiol reagents depressed the binding of N,N'-dicyclo[14C]hexylcarbodiimide to the 9-kDa protein.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号