首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Alveolar macrophages express many proteins important in iron homeostasis, including the iron importer divalent metal transport 1 (DMT1) and the iron exporter ferroportin 1 (FPN1) that likely participate in lung defense. We found the iron regulatory hormone hepcidin (HAMP) is also produced by alveolar macrophages. In mouse alveolar macrophages, HAMP mRNA was detected at a low level when not stimulated but at a high level when exposed to lipopolysaccharide (LPS). LPS also affected the mRNA levels of the iron transporters, with DMT1 being upregulated and FPN1 downregulated. However, iron had no effect on HAMP expression but was able to upregulate both DMT1 and FPN1 in alveolar macrophages. IL-1 and IL-6, which are important in HAMP augmentation in hepatocytes, also did not affect HAMP expression in alveolar macrophages. In fact, the LPS-induced alterations in the expression of HAMP as well as DMT1 and FPN1 were preserved in the alveolar macrophages isolated from IL-1 receptor or IL-6-deficient mice. When alveolar macrophages were loaded with transferrin-bound (55)Fe, the subsequent release of (55)Fe was inhibited significantly by LPS. In addition, treatment of these cells with either LPS or HAMP caused the diminishment of the surface FPN1. These findings are consistent with the current model that HAMP production leads to a decreased iron efflux. Our studies suggest that iron mobilization by alveolar macrophages can be affected by iron and LPS via several pathways, including HAMP-mediated degradation of FPN1, and that these cells may use unique regulatory mechanisms to cope with iron imbalance in the lung.  相似文献   

2.
Two iron transporters, divalent metal transporter1 (DMT1) and ferroportin1 (FPN1) have been identified; however, their role during infancy is unknown. We investigated DMT1, FPN1, ferritin, and transferrin receptor expression, iron absorption and tissue iron in iron-deficient rat pups, iron-deficient rat pups given iron supplements, and controls during early (day 10) and late infancy (day 20). With iron deficiency, DMT1 was unchanged and FPN1 was decreased (-80%) at day 10. Body iron uptake, mucosal iron retention, and total iron absorption were unchanged. At day 20, DMT1 increased fourfold and FPN1 increased eightfold in the low-Fe group compared with controls. Body iron uptake and total iron absorption were increased, and mucosal iron retention was decreased with iron deficiency. Iron supplementation normalized expression levels of the transporters, body iron uptake, mucosal iron retention, and total iron absorption of the low-Fe group to those of controls at day 20. In summary, the molecular mechanisms regulating iron absorption during early infancy differ from late infancy when they are similar to adult animals, indicating developmental regulation of iron absorption.  相似文献   

3.
目的:观察肥胖对小鼠十二指肠二价金属离子转运体(divalent metal transporter 1,DMT1)mRNA、膜铁转运蛋白(ferroportin1,FPN1)mRNA及蛋白表达的变化,探讨肥胖影响铁吸收的机制。方法 C57BL/6J小鼠随机分为正常对照组和肥胖模型组,每组6只,通过喂养高脂饲料喂养建立肥胖模型,对照组采用普通饲料饲养,实验干预期14周。建模完成后,采用实时荧光定量PCR方法检测小鼠十二指肠DMT1、FPN1 mRNA 的表达,用Western blot检测小鼠十二指肠FPN1蛋白表达。结果与对照组小鼠相比,肥胖模型组小鼠十二指肠DMT1、FPN1 mRNA表达以及FPN1蛋白表达水平降低,差异具有统计学意义( P <0.05)。结论肥胖会下调机体十二指肠DMT1、FPN1的表达,导致铁吸收不良,为进一步研究肥胖引起铁缺乏机制提供理论和实验依据。  相似文献   

4.
Ferroportin 1 (FPN1) is an iron export protein expressed in liver and duodenum, as well as in reticuloendothelial macrophages. Previously, we have shown that divalent metal transporter 1 (DMT1) is expressed in late endosomes and lysosomes of the kidney proximal tubule (PT), the nephron segment responsible for the majority of solute reabsorption. We suggested that following receptor mediated endocytosis of transferrin filtered by the glomerulus, DMT1 exports iron liberated from transferrin into the cytosol. FPN1 is also expressed in the kidney yet its role remains obscure. As a first step towards determining the role of renal FPN1, we localized FPN1 in the PT. FPN1 was found to be located in association with the basolateral PT membrane and within the cytosolic compartment. FPN1 was not expressed on the apical brush‐border membrane of PT cells. These data support a role for FPN1 in vectorial export of iron out of PT cells. Furthermore, under conditions of iron loading of cultured PT cells, FPN1 was trafficked to the plasma membrane suggesting a coordinated cellular response to export excess iron and limit cellular iron concentrations.  相似文献   

5.
Inflammation and iron accumulation are present in a variety of neurodegenerative diseases that include Alzheimer's disease and Parkinson's disease. The study of the putative association between inflammation and iron accumulation in central nervous system cells is relevant to understand the contribution of these processes to the progression of neuronal death. In this study, we analyzed the effects of the inflammatory cytokines tumor necrosis factor alpha (TNF‐α) and interleukin 6 (IL‐6) and of lipopolysaccharide on total cell iron content and on the expression and abundance of the iron transporters divalent metal transporter 1 (DMT1) and Ferroportin 1 (FPN1) in neurons, astrocytes and microglia obtained from rat brain. Considering previous reports indicating that inflammatory stimuli induce the systemic synthesis of the master iron regulator hepcidin, we identified brain cells that produce hepcidin in response to inflammatory stimuli, as well as hepcidin‐target cells. We found that inflammatory stimuli increased the expression of DMT1 in neurons, astrocytes, and microglia. Inflammatory stimuli also induced the expression of hepcidin in astrocytes and microglia, but not in neurons. Incubation with hepcidin decreased the expression of FPN1 in the three cell types. The net result of these changes was increased iron accumulation in neurons and microglia but not in astrocytes. The data presented here establish for the first time a causal association between inflammation and iron accumulation in brain cells, probably promoted by changes in DMT1 and FPN1 expression and mediated in part by hepcidin. This connection may potentially contribute to the progression of neurodegenerative diseases by enhancing iron‐induced oxidative damage.  相似文献   

6.
Previous studies have demonstrated an effect of estrogen on iron metabolism in peripheral tissues. The role of estrogen on brain iron metabolism is currently unknown. In this study, we investigated the effect and mechanism of estrogen on iron transport proteins. We demonstrated that the iron exporter ferroportin 1 (FPN1) and iron importer divalent metal transporter 1 (DMT1) were upregulated and iron content was decreased after estrogen treatment for 12 hr in primary cultured astrocytes. Hypoxia-inducible factor-1 alpha (HIF-1α) was upregulated, but HIF-2α remained unchanged after estrogen treatment for 12 hr in primary cultured astrocytes. In primary cultured neurons, DMT1 was downregulated, FPN1 was upregulated, iron content decreased, iron regulatory protein (IRP1) was downregulated, but HIF-1α and HIF-2α remained unchanged after estrogen treatment for 12 hr. These results suggest that the regulation of iron metabolism by estrogen in astrocytes and neurons is different. Estrogen increases FPN1 and DMT1 expression by inducing HIF-1α in astrocytes, whereas decreased expression of IRP1 may account for the decreased DMT1 and increased FPN1 expression in neurons.  相似文献   

7.
Elevated iron levels are considered to play a role in the neurodegenerative mechanisms that underlie Alzheimer's and Parkinson's disease. The linkage between hepcidin (Hepc) and ferroportin-1 (FPN1), the divalent metal transporter 1 (DMT1), and ceruloplasmin (CP) in the brain is unknown. To discern the role of Hepc in regulating the expression of these proteins, we investigated FPN1, DMT1, and CP protein and mRNA expression in the brain after the intracerebroventricular injection of Hepc. Our results show that after Hepc injection, expression of FPN1 mRNA and FPN1 protein was inhibited in the cerebral cortex and hippocampus. Furthermore, we showed a clear change of DMT1 and CP protein and mRNA levels in the brain. The immunohistochemical analysis revealed an increase of DMT1 and a decrease of CP levels. Semi-quantitative analysis using PCR methods showed an increase of DMT1(+IRE) mRNA, and a decrease of DMT1(−IRE) mRNA and CP mRNA levels. Since alterations in iron levels in the brain are causally linked to degenerative conditions such as Alzheimer's disease, an improved understanding of the regulation of iron transport protein expression such as FPN1, DMT1, and CP could lead to novel strategies for treatments.  相似文献   

8.
Molecular analysis of increased iron status in moderately exercised rats   总被引:5,自引:0,他引:5  
Although iron plays a critical role in exercise, the regulatory mechanism of iron metabolism remains poorly understood. The aims of the present study were to investigate the effects of different intensity exercise on body iron status and the regulatory mechanism of duodenal iron absorption. Thirty female Sprague-Dawley rats (90–100 g) were randomly divided into three groups: a control group (remained sedentary, CG), a moderately exercised group (swam 1.5 h/day, MG) and a strenuously exercised group (swam with different load, SG). Serum iron status, serum ferritin and Hct were examined after 10 weeks of swimming. Western blot was performed to detect the expression of iron transport proteins: divalent metal transporter1 (DMT1) and ferroportin 1 (FPN1) in duodenal epithelium. The expression of hepcidin mRNA in liver was examined by RT-PCR. The results showed: (1) the body iron status in MG was kept at a high level compared to that of CG and SG, (2) Western blot showed DMT1 with iron responsive element (IRE) and FPN1 in duodenal epithelium which were higher in MG than that of CG and (3) the expression of hepatic hepcidin mRNA was down regulated in MG (p < 0.05). The data suggested that moderate exercise improved iron status and that was likely regulated by increased DMT1 with IRE and FPN1 expression. Hepcidin signaling pathway may involve in the regulation of duodenal iron absorption proteins. Xiang Lin Duan and Yan Zhong Chang share Senior Authorship  相似文献   

9.
Patients with alcoholic liver disease (ALD) often display disturbed iron indices. Hepcidin, a key regulator of iron metabolism, has been shown to be down‐regulated by alcohol in cell lines and animal models. This down‐regulation led to increased duodenal iron transport and absorption in animals. In this study, we investigated gene expression of duodenal iron transport molecules and hepcidin in three groups of patients with ALD (with anaemia, with iron overload and without iron overload) and controls. Expression of DMT1, FPN1, DCYTB, HEPH, HFE and TFR1 was measured in duodenal biopsies by using real‐time PCR and Western blot. Serum hepcidin levels were measured by using ELISA. Serum hepcidin was decreased in patients with ALD. At the mRNA level, expressions of DMT1, FPN1 and TFR1 genes were significantly increased in ALD. This pattern was even more pronounced in the subgroups of patients without iron overload and with anaemia. Protein expression of FPN1 paralleled the increase at the mRNA level in the group of patients with ALD. Serum ferritin was negatively correlated with DMT1 mRNA. The down‐regulation of hepcidin expression leading to up‐regulation of iron transporters expression in the duodenum seems to explain iron metabolism disturbances in ALD. Alcohol consumption very probably causes suppression of hepcidin expression in patients with ALD.  相似文献   

10.
11.
The divalent metal transporter (DMT1, Slc11a2) is an important molecule for intestinal iron absorption. In the Belgrade (b/b) rat, the DMT1 G185R mutation markedly decreases intestinal iron absorption. We used b/b rats as a model to examine the genes that could be compensatory for decreased iron absorption. When tissue hypoxia was assayed by detecting pimonidazole HCl adducts, the b/b liver and intestine exhibited more adducts than the +/+ rats, suggesting that hypoxia might signal altered gene expression. Total RNA in the crypt-villus bottom (C-pole) and villus top (V-pole) of +/+, b/b, and iron-fed b/b rats was isolated for gene array analyses. In addition, hepatic hepcidin and intestinal hypoxia-inducible factor-α (Hifα) expression were examined. The results showed that expression of hepatic hepcidin was significantly decreased and intestinal Hif2α was significantly increased in b/b and iron-fed b/b than +/+ rats. In b/b rats, the expression of Tfrc mRNA in the C-pole and of DMT1, Dcytb, FPN1, Heph, Hmox1, and ZIP14 mRNAs in the V-pole were markedly enhanced with increases occurring even in the C-pole. After iron feeding, the increased expression found in b/b rats persisted, except for Heph and ZIP14, which returned to normal levels. Thus in b/b rats depressed liver hepcidin production and activated intestinal Hif2α starting at the C-pole resulted in increasing expression of iron transport genes, including DMT1 G185R, in an attempt to compensate for the anemia in Belgrade rats.  相似文献   

12.
氧和铁这两种元素对生命活动十分重要. 低氧诱导因子(hypoxia-inducible factors, HIFs)作为转录因子,参与一系列靶基因的表达调控以适应低氧. 铁参与 DNA合成、氧气运输、代谢反应等多种细胞活动,过量游离铁会通过Haber-Weiss或 Fenton反应产生毒性自由基. 细胞通过与铁吸收、存储和利用有关的多种铁代谢相 关蛋白之间的协同作用来维持铁稳态. 与铁稳态相关的一些基因是HIFs的靶基因或 者间接受低氧调控,包括转铁蛋白、转铁蛋白受体、二价金属转运体1、铁调素、膜 铁转运蛋白、血浆铜蓝蛋白、铁蛋白等,而胞内铁浓度的改变能影响HIFs的表达. 本文就低氧与铁代谢相关蛋白的关系,尤其是低氧对铁代谢相关蛋白的调节作一综 述.  相似文献   

13.
14.
Divalent metal transporter 1 (DMT1) is likely responsible for the release of iron from endosomes to the cytoplasm in placental syncytiotrophoblasts (STB). To determine the localization and the regulation of DMT1 expression by iron directly in placenta, the expression of DMT1 in human term placental tissues and BeWo cells (human placental choriocarcinoma cell line) was detected and the change in expression in response to different iron treatments on BeWo cells was observed. DMT1 was shown to be most prominent near the maternal side in human term placenta and predominantly in the cytoplasm of BeWo cells. BeWo cells were treated with desferrioxamine (DFO) and human holotransferrin (hTf-2Fe) and it was found that both DMT1 mRNA and protein increased significantly with DFO treatment and decreased with hTf-2Fe treatment. Further, DMT1 mRNA responded more significantly to treatments if it possessed an iron-responsive element than mRNA without this element. This study indicated that DMT1 is likely involved in endosomal iron transport in placental STB and placental DMT1 + IRE expression was primarily regulated by the IRE/IRP mechanism.  相似文献   

15.
单核巨噬细胞铁代谢相关蛋白的表达调控   总被引:2,自引:0,他引:2  
人类机体的铁代谢表现为受限制的对外界铁的吸收和有效的机体内的铁的再循环利用,单核巨噬细胞系统通过吞噬衰老的红细胞,储存和释放铁,在机体铁的循环再利用方面起到了重要的作用。因此,单核巨噬细胞系统对整个机体铁稳态的维持非常重要。近年来,随着转铁蛋白受体1(transferrin receptor1,TfR1)、铁蛋白(ferritin,Fn)、二价金属离子转运蛋白1(divalent metal transporter1,DMT1)、膜铁转运蛋白1(ferroportin1,FPN1),以及铁调素(hepcidin)等在单核巨噬细胞系统中功能和调控机制研究的不断深入,日益加深了人们对单核巨噬细胞系统的铁代谢过程和调控机制的了解。该文综述了铁水平、NO以及炎症等因素对单核巨噬细胞系统TfR1、Fn、DMT1、FPN1、hepcidin等蛋白表达的调控及其机制研究的最新进展。  相似文献   

16.
Abstract

Exposure to asbestos fiber is central to mesothelial carcinogenesis, for which iron overload in or near mesothelial cells is a key pathogenic mechanism. Alternatively, iron chelation therapy with deferasirox or regular phlebotomy was significantly preventive against crocidolite-induced mesothelial carcinogenesis in rats. However, the role of iron transporters during asbestos-induced carcinogenesis remains elusive. Here, we studied the role of divalent metal transporter 1 (DMT1; Slc11a2), which is a Fe(II) transporter, that is present not only on the apical plasma membrane of duodenal cells but also on the lysosomal membrane of every cell, in crocidolite-induced mesothelial carcinogenesis using DMT1 transgenic (DMT1Tg) mice. DMT1Tg mice show mucosal block of iron absorption without cancer susceptibility under normal diet. We unexpectedly found that superoxide production was significantly decreased upon stimulation with crocidolite both in neutrophils and macrophages of DMT1Tg mice, and the macrophage surface revealed higher iron content 1?h after contact with crocidolite. Intraperitoneal injection of 3?mg crocidolite ultimately induced malignant mesothelioma in ~50% of both wild-type and DMT1Tg mice (23/47 and 14/28, respectively); this effect was marginally (p?=?0.069) delayed in DMT1Tg mice, promoting survival. The promotional effect of nitrilotriacetic acid was limited, and the liver showed significantly higher iron content both in DMT1Tg mice and after crocidolite exposure. The results indicate that global DMT1 overexpression causes decreased superoxide generation upon stimulation in inflammatory cells, which presumably delayed the promotional stage of crocidolite-induced mesothelial carcinogenesis. DMT1Tg mice with low-stamina inflammatory cells may be helpful to evaluate the involvement of inflammation in various pathologies.  相似文献   

17.
ObjectiveAcupuncture is a commonly used method to provide motor-symptomatic relief for patients with Parkinson s disease (PD). Our objective was to evaluate protective effects of acupuncture treatment and potential underlying mechanisms according to the “gut-brain axis” theory.MethodsWe employed a 6-OHDA-induced PD rat model. The effects of acupuncture on disease development were assessed by behavioural tests and immunohistochistry (IHC). ELISA, qPCR and western blot (WB) were employed to measure inflammatory parameters and Fe metabolism in the substantia nigra (SN), striatum, duodenum and blood, respectively.ResultsOur data show that acupuncture can significantly increase the expression of tyrosine hydroxylase (TH), compared with untreated and madopa treated rats (P < 0.01 and P < 0.05, respectively). Furthermore we could observe significantly decreased levels of pro-inflammatory markers in the duodenum and serum (P < 0.05), reduced deposition of Fe in the substantia nigra (P < 0.05) and but no change in transferrin expression after acupuncture treatment. The mRNA ratio of DMT1/Fpn1 in the SN of acupuncture treated rats (1.1) was comparable to that of the sham group (1.0) which differed both significantly from the untreated and madopa treated groups (P < 0.05). Furthermore, after acupuncture expression of α-synuclein was decreased in the duodenum.ConclusionsAcupuncture can reduce iron accumulation in the SN and protect the loss of dopamine neurons by promoting balanced expression of the iron importer DMT1 and the iron exporter Fpn1. Furthermore CNS iron homeostasis may be affected by reduced systemic and intestinal inflammation.  相似文献   

18.
Divalent metal transporter 1 (DMT1) is the major iron transporter responsible for duodenal dietary iron absorption and is required for erythropoiesis. Recent studies suggest that loss of DMT1 activity could be involved in metal-related lung injury, but little is known about the effects of iron status and DMT1 function on pulmonary inflammation. To better define the role of DMT1 and iron status in pulmonary inflammatory responses, we performed bronchoalveolar lavage (BAL) following intratracheal instillation of lipopolysaccharide (LPS) to the Belgrade rat, an animal model deficient in DMT1 function. In the basal state, the BAL fluid of Belgrade rats had more macrophages and higher lactate dehydrogenase, myeloperoxidase, albumin, and hemoglobin levels compared with heterozygote control rats. Following LPS instillation, the macrophage fraction relative to total BAL cell content and levels of albumin and IgM were increased in Belgrade rats compared with controls. In contrast, heterozygote Belgrade rats made anemic by diet-induced iron deficiency exhibited attenuated inflammatory responses to LPS. These combined results show that pulmonary inflammation can be modified by both DMT1 and iron status. Loss of DMT1 alters pulmonary responses necessary for lung homeostasis in the basal state and enhances LPS-induced inflammation and therefore would contribute to progression of lung injury.  相似文献   

19.
Diabetes mellitus is associated with altered iron homeostasis in both human and animal diabetic models. Iron is a metal oxidant capable of generating reactive oxygen species (ROS) and has been postulated to contribute to diabetic nephropathy. Two proteins involved in iron metabolism that are expressed in the kidney are the divalent metal transporter, DMT1 (Slc11a2), and the Transferrin Receptor (TfR). Thus, we investigated whether renal DMT1 or TfR expression is altered in diabetes, as this could potentially affect ROS generation and contribute to diabetic nephropathy. Rats were rendered diabetic with streptozotocin (STZ-diabetes) and renal DMT1 and TfR expression studied using semi-quantitative immunoblotting and immunofluorescence. In STZ-diabetic Sprague-Dawley rats, renal DMT1 expression was significantly reduced and TfR expression increased after 2 weeks. DMT1 downregulation was observed in both proximal tubules and collecting ducts. Renal DMT1 expression was also decreased in Wistar rats following 12 weeks of STZ-diabetes, an effect that was fully corrected by insulin-replacement but not by cotreatment with the aldose reductase inhibitor, sorbinil. Increased renal TfR expression was also observed in STZ-diabetic Wistar rats together with elevated cellular iron accumulation. Together these data demonstrate renal DMT1 downregulation and TfR upregulation in STZ-diabetes. Whilst the consequence of altered DMT1 expression on renal iron handling and oxidant damage remains to be determined, the attenuation of the putative lysosomal iron exit pathway in proximal tubules could potentially explain lysosomal iron accumulation reported in human diabetes and STZ-diabetic animals.  相似文献   

20.
Like in other organs, iron in the brain plays an important role in various biological processes. Previous studies have shown that systemic iron homeostasis in mammalians was changed under specific stress conditions. The present study aimed to investigate effects of stress on brain iron homeostasis in rats using a foot-shock stress model. Young adult male Sprague-Dawley rats were randomly assigned to foot-shock stress group subjected to 30 min of cutaneous foot-shock (0.80 mA, 1 pulse/s, 300 ms duration) daily for 1 week or control group left undisturbed. Then, the rats were sacrificed and iron concentration in serum, liver, and some brain regions were measured using atomic absorption spectrophotometry. Expression of ferritin, Transferrin receptor (TfR), divalent metal transporter 1 (DMT1, with or without iron-responsive element), lactoferrin (Lf), and iron regulatory protein 1 (IRP1) in rat hippocampus were determined using western blot analysis. The results showed that stress induced decreased serum iron concentration, increased liver iron content, and elevated iron contents in specific brain regions including hippocampus, striatum, and frontal cortex. In the hippocampus, stress caused decreased expression of ferritin, increased expression of TfR and IRP1, and no change in expression of DMT1 or Lf. Results of this study demonstrated that foot-shock stress induced region specific iron accumulation and altered iron homeostatic mechanisms in the brain in addition to a changed systemic iron homeostasis characterized by decreased serum iron concentration and increased liver iron content. And, elevated IRP1 expression might be associated with the increased TfR and decreased ferritin expression, leading to subsequent iron accumulation and possible increased vulnerability to oxidative damage in hippocampus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号