首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Wang IN 《Genetics》2006,172(1):17-26
The effect of lysis timing on bacteriophage (phage) fitness has received little theoretical or experimental attention. Previously, the impact of lysis timing on phage fitness was studied using a theoretical model based on the marginal value theorem from the optimal foraging theory. An implicit conclusion of the model is that, for any combination of host quantity and quality, an optimal time to lyse the host would exist so that the phage fitness would be the highest. To test the prediction, an array of isogenic lambda-phages that differ only in their lysis times was constructed. For each phage strain, the lysis time, burst size, and fitness (growth rate) were determined. The result showed that there is a positive linear relationship between lysis time and burst size. Moreover, the strain with an intermediate lysis time has the highest fitness, indicating the existence of an optimal lysis time. A mathematical model is also constructed to describe the population dynamics of phage infection. Computer simulations using parameter values derived from phage lambda-infection also showed an optimal lysis time. However, both the optimum and the fitness are different from the experimental result. The evolution of phage lysis timing is discussed from the perspectives of multiple infection and life-history trait evolution.  相似文献   

2.
A model is proposed for enzymatic lysis of microbial cells based on number balances over the distribution of cell-wall mass in a population of cells. Analytical solutions to the population balance equations were obtained by the method of characteristics for simple reaction kinetics. The model has been used to analyze the following cases of lysis in a nonhomogeneous cell population: wall hydrolysis with cell rupture and product release, the effect of a distribution of lysis rates, and lysis of two-layer cell walls. Rate expressions for the reactions of lysis can be derived from bulk-phase experiments; the distributions of cell size and product content can be measured independently by flow cytometric techniques. The population model also provides an explanation for the initial lag seen in lysis kinetics for virtually any initial distribution. The model demonstrates patterns of lysis and product recovery for heterogeneous populations of cells and also applies to the more general problem of soluble-enzyme reactions with heterogeneous solid substrates.  相似文献   

3.
Phage lambda lyses the host Escherichia coli at a precisely scheduled time after induction. Lysis timing is determined by the action of phage holins, which are small proteins that induce hole formation in the bacterium's cytoplasmic membrane. We present a two-stage nucleation model of lysis timing, with the nucleation of condensed holin rafts on the inner membrane followed by the nucleation of a hole within those rafts. The nucleation of holin rafts accounts for most of the delay of lysis after induction. Our simulations of this model recover the accurate lysis timing seen experimentally and show that the timing accuracy is optimal. An enhanced holin-holin interaction is needed in our model to recover experimental lysis delays after the application of membrane poison, and such early triggering of lysis is possible only after the inner membrane is supersaturated with holin. Antiholin reduces the delay between membrane depolarization and lysis and leads to an earlier time after which triggered lysis is possible.  相似文献   

4.
The kinetics of colloid osmotic hemolysis. II. Photohemolysis   总被引:1,自引:0,他引:1  
Many of the known features of photohemolysis have been organized in a kinetic model that simulates the lytic time-course in a variety of conditions. The model combines Nernst-Planck flux principles, the osmotic equilibrium model of Freedman and Hoffman, equations relating illumination parameters to ion permeability, and an empirical relation between cell volume and lysis. Model simulations are compared with experiments showing the dependence of lysis kinetics on sensitizer concentration and on the osmotic content of the reaction medium. Additional experiments demonstrate that the inherent osmotic fragility of erythrocytes is not altered by illumination conditions that cause major delayed lysis 23 h later. The successful simulations support the hypothesis that photohemolysis is a colloid osmotic lysis occurring in cells behaving as imperfect osmometers.  相似文献   

5.
A simple model has been developed which accurately predicts the time course of complement mediated lysis of sensitized red cells. The model assumes that the one hit theory of immune hemolysis is applicable and that the rate of lysis is directly proportional to the concentration of a complement component present in rate limiting amounts. It also assumes that the rate of lysis is dependent on the fraction of cells lysed. The model can be related to the classical von Krogh equation for end point complement analyses and can be used to estimate the rate constant for the critical step in hemolysis, as well as the efficiency of the critical complement component in the rate limiting step. Parameters derived from the model can be quantitatively related to complement concentration and can be used as the basis for a quantitative assay of complement activity. The model can also be used to calculate, for a particular sample, the concentration at which complement activity becomes undectable, the complement activity of the pure, undiluted sample, and the time required for the sample to produce complete lysis of the available cells.  相似文献   

6.
A kinetic model of colloid osmotic hemolysis for cation-permeable cells has been developed. The model consists of three essential components. The first is a set of flux equations, under the assumption that the membrane potential is equal to the chloride equilibrium potential and that cation fluxes are described by the Goldman flux equation. The second is the osmotic equilibrium model of Freedman and Hoffman that takes into account the non-ideal osmotic behavior of erythrocytes. The third is an empirical relation between hemolysis and cell volume, developed from the lysis behavior in hypoosmotic media. Model simulations are compared with lysis experiments using the antibiotic nystatin to raise cation permeability. The form of the kinetics and inhibition of lysis by sucrose are described well by the model. In additional lysis experiments at different external pH the small pH dependence is accounted for by the model.  相似文献   

7.
8.
Patwa Z  Wahl LM 《Genetics》2008,180(1):459-470
The fixation probability of a beneficial mutation is extremely sensitive to assumptions regarding the organism's life history. In this article we compute the fixation probability using a life-history model for lytic viruses, a key model organism in experimental studies of adaptation. The model assumes that attachment times are exponentially distributed, but that the lysis time, the time between attachment and host cell lysis, is constant. We assume that the growth of the wild-type viral population is controlled by periodic sampling (population bottlenecks) and also include the possibility that clearance may occur at a constant rate, for example, through washout in a chemostat. We then compute the fixation probability for mutations that increase the attachment rate, decrease the lysis time, increase the burst size, or reduce the probability of clearance. The fixation probability of these four types of beneficial mutations can be vastly different and depends critically on the time between population bottlenecks. We also explore mutations that affect lysis time, assuming that the burst size is constrained by the lysis time, for experimental protocols that sample either free phage or free phage and artificially lysed infected cells. In all cases we predict that the fixation probability of beneficial alleles is remarkably sensitive to the time between population bottlenecks.  相似文献   

9.
Variations in the size of vesicles formed by extrusion through small pores are discussed in terms of a simple model. Our model predicts that the radius should decrease as the square root of the applied pressure, consistent with data for vesicles extruded under various conditions. The model also predicts dependencies on the pore size used and on the lysis tension of the vesicles being extruded that are consistent with our data. The pore size was varied by using track-etched polycarbonate membranes with average pore diameters ranging from 50 to 200 nm. To vary the lysis tension, vesicles made from POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine), mixtures of POPC and cholesterol, and mixtures of POPC and C(16)-ceramide were studied. The lysis tension, as measured by an extrusion-based technique, of POPC:cholesterol vesicles is higher than that of pure POPC vesicles whereas POPC:ceramide vesicles have lower lysis tensions than POPC vesicles.  相似文献   

10.
Viral lysis of specific bacterial populations has been suggested to be an important factor for structuring marine bacterioplankton communities. In the present study, the influence of bacteriophages on the diversity and population dynamics of four marine bacterial phage-host systems was studied experimentally in continuous cultures and theoretically by a mathematical model. By use of whole genome DNA hybridization toward community DNA, we analyzed the dynamics of individual bacterial host populations in response to the addition of their specific phage in continuous cultures of mixed bacterial assemblages. In these experiments, viral lysis had only temporary effects on the dynamics and diversity of the individual bacterial host species. Following the initial lysis of sensitive host cells, growth of phage-resistant clones of the added bacteria resulted in a distribution of bacterial strains in the phage-enriched culture that was similar to that in the control culture without phages after about 50-60 h incubation. Consequently, after a time frame of 5-10 generations after lysis, it was the interspecies competition rather than viral lysis of specific bacterial strains that was the driving force in the regulation of bacterial species composition in these experiments. The clonal diversity, on the other hand, was strongly influenced by viral activity, since the clonal composition of the four species in the phage-enriched culture changed completely from phage-sensitive to phage-resistant clones. The model simulation predicted that viral lysis had a strong impact on the population dynamics, the species composition, and the clonal composition of the bacterial community over longer time scales (weeks). However, according to the model, the overall density of bacteria in the system was not affected by phages, since resistant clones complemented the fluctuations caused by viral lysis. Based on the model analysis, we therefore suggest that viral lysis can have a strong influence on the dynamics of bacterial populations in planktonic marine systems.  相似文献   

11.
The cytochalasins are known secretogogues. Their function as such is examined in light of the granule exocytosis model for lymphocyte-mediated cytotoxicity. Cytochalasin B is found to enhance target cell lysis by cytotoxic T lymphocytes when antibody-coated polystyrene beads are used to bridge the cells. The pattern of lysis is found to be biphasic in its dependence on cytochalasin B. Secretion of the enzyme BLT-esterase from the effector cells parallels the cytochalasin concentration-dependent pattern of lysis. Cytochalasin D is also able to enhance lysis but at concentrations less than cytochalasin B. Cytochalasin B does not inhibit binding of breads to the effector cell. This is shown by the ability of fluorescent beads coated with antibody to bind with an appropriate specificity to cells. These studies indicate that cytochalasin B is not strictly inhibitory for the induction of target cell lysis but can enhance lymphocyte-mediated lysis at low drug concentrations. These results are compatible with the interpretation that target cell lysis is mediated through a secretion process from cytotoxic T lymphocytes.  相似文献   

12.
Lethal action of bacteriophage lambda S gene.   总被引:22,自引:3,他引:19       下载免费PDF全文
The functions of the bacteriophage lambda lysis genes S, R, and Rz were investigated. Different combinations of wild-type and inactive alleles of all three lysis genes were cloned into the plasmid pBH20 and were expressed under the control of a lac operator-promoter. The involvement of the Rz gene in lysis was proposed in our previous work and was confirmed by the Mg2+-dependent lysis defect of clones in which part of the Rz gene is deleted. Membrane vesicles prepared from induced S+ cells were shown to have a severely reduced capacity for active transport of glucose; this defect was detectable at least 20 min before lysis. Cell viability was also shown to decrease very soon after induction, long before physiological death and lysis; this decrease in viability is absolutely dependent on S expression and independent of R and Rz. The nonviable fraction of cells at any time after induction was demonstrated to be equal to the fraction committed to eventual lysis. Induction of an Sts clone showed that the S gene product is stable and capable of inducing lysis long after the cessation of synthesis of S gene product. A model for S action is proposed.  相似文献   

13.
《Biophysical journal》2021,120(18):4091-4106
It has been observed in vitro that complete clot lysis is generally preceded by a slow phase of lysis during which the degradation seems to be inefficient. However, this slow regime was merely noticed, but not yet quantitatively discussed. In our experiments, we observed that the lysis ubiquitously occurred in two distinct regimes, a slow and a fast lysis regime. We quantified extensively the duration of these regimes for a wide spectrum of experimental conditions and found that on average, the slow regime lasts longer than the fast one, meaning that during most of the process, the lysis is ineffective. We proposed a computational model in which the properties of the binding of the proteins change during the lysis: first, the biochemical reactions take place at the surface of the fibrin fibers, then in the bulk, resulting in the observed fast lysis regime. This simple hypothesis appeared to be sufficient to reproduce with a great accuracy the lysis profiles obtained experimentally.  相似文献   

14.
Optimality models collapse the vagaries of genetics into simple trade-offs to calculate phenotypes expected to evolve by natural selection. Optimality approaches are commonly criticized for this neglect of genetic details, but resolution of this disagreement has been difficult. The importance of genetic details may be tested by experimental evolution of a trait for which an optimality model exists and in which genetic details can be studied. Here we evolved lysis time in bacteriophage T7, a virus of Escherichia coli. Lysis time is equivalent to the age of reproduction in an organism that reproduces once and then dies. Delaying lysis increases the number of offspring but slows generation time, and this trade-off renders the optimum sensitive to environmental conditions: earlier lysis is favored when bacterial hosts are dense, later lysis is favored when hosts are sparse. In experimental adaptations, T7 evolved close to the optimum in conditions favoring early lysis but not in conditions favoring late lysis. One of the late lysis adaptations exhibited no detectable phenotypic evolution despite genetic evolution; the other evolved only partly toward the expected optimum. Overall, the lysis time of the adapted phages remained closer to their starting values than predicted by the model. From the perspective of the optimality model, the experimental conditions were expected to select changes only along the postulated trade-off, but a trait outside the trade-off evolved as well. Evidence suggests that the model's failure ultimately stems from a violation of the trade-off, rather than a paucity of mutations.  相似文献   

15.
The number of microbial pathogens resistant to antibiotics continues to increase even as the rate of discovery and approval of new antibiotic therapeutics steadily decreases. Many researchers have begun to investigate the therapeutic potential of naturally occurring lytic enzymes as an alternative to traditional antibiotics. However, direct characterization of lytic enzymes using techniques based on synthetic substrates is often difficult because lytic enzymes bind to the complex superstructure of intact cell walls. Here we present a new standard for the analysis of lytic enzymes based on turbidity assays which allow us to probe the dynamics of lysis without preparing a synthetic substrate. The challenge in the analysis of these assays is to infer the microscopic details of lysis from macroscopic turbidity data. We propose a model of enzymatic lysis that integrates the chemistry responsible for bond cleavage with the physical mechanisms leading to cell wall failure. We then present a solution to an inverse problem in which we estimate reaction rate constants and the heterogeneous susceptibility to lysis among target cells. We validate our model given simulated and experimental turbidity assays. The ability to estimate reaction rate constants for lytic enzymes will facilitate their biochemical characterization and development as antimicrobial therapeutics.  相似文献   

16.
PtK1 cells lysed late in cell division in a medium containing the nonionic detergent Brij 58 and polyethylene glycol with continue to undergo cleavage after lysis. Maintenance of cleavage after lysis is dependent on the composition of the lysis medium; the pH must be around neutrality, MgATP must be present, and the free Ca++ concentration should be 1 microM for optimal constriction to occur. Cleavage can be stopped and reinitiated by raising and lowering the Ca++ levels in the lysis medium. Cleavage in the permeabilized cell is blocked by addition of phalloidin, cytochalasin B, and N-ethylmaleimide-modified myosin subfragment-1 to the lysis medium. This represents the first cell model system for studying cleavage since the pioneering studies of Hoffman- Berling in 1954.  相似文献   

17.
18.
Bacteriophage adsorption rate and optimal lysis time   总被引:1,自引:1,他引:0       下载免费PDF全文
Shao Y  Wang IN 《Genetics》2008,180(1):471-482
The first step of bacteriophage (phage) infection is the attachment of the phage virion onto a susceptible host cell. This adsorption process is usually described by mass-action kinetics, which implicitly assume an equal influence of host density and adsorption rate on the adsorption process. Therefore, an environment with high host density can be considered as equivalent to a phage endowed with a high adsorption rate, and vice versa. On the basis of this assumption, the effect of adsorption rate on the evolution of phage optimal lysis time can be reinterpreted from previous optimality models on the evolution of optimal lysis time. That is, phage strains with a higher adsorption rate would have a shorter optimal lysis time and vice versa. Isogenic phage lambda-strains with different combinations of six different lysis times (ranging from 29.3 to 68 min), two adsorption rates (9.9 x 10(-9) and 1.3 x 10(-9) phage(-1) cell(-1) ml(-1) min(-1)), and two markers (resulting in "blue" or "white" plaques) were constructed. Various pairwise competitions among these strains were conducted to test the model prediction. As predicted by the reinterpreted model, the results showed that the optimal lysis time is shorter for phage strains with a high adsorption rate and vice versa. Competition between high- and low-adsorption strains also showed that, under current conditions and phenotype configurations, the adsorption rate has a much larger impact on phage relative fitness than the lysis time.  相似文献   

19.
The viscoelastic behavior of rat 9L cellular DNA was studied as a function of the detergent used for lysis, the pH and duration of lysis, and gamma ray dose. For nondenaturing lysis conditions, a model of the DNA was proposed to account for the effects of these agents on the viscoelastic retardation time. It was concluded that these agents affect the hydrodynamic radius of the DNA rather than its molecular weight. For denaturing lysis conditions, molecular weights calculated from the relaxation time were consistent with those calculated from alkaline sucrose sedimentation profiles.  相似文献   

20.
During thrombolytic therapy and after recanalization is achieved, reduction in the volume of mural thrombi is desirable. Mural thrombi are known to contribute to rethrombosis and reocclusion. The lysis rate of mural thrombi has been demonstrated to increase with fluid flow in different experimental models, but the mechanisms responsible are unknown. An experimental and a theoretical study were developed to determine the contribution of outer convective transport to the lysis of mural fibrin clots. Normal human plasma containing recombinant tissue-type plasminogen activator (tPA; 0.5 microg/mL) was (re)perfused over mural fibrin clots with fluorescently labeled fibrin at low arterial, arterial, or higher wall shear stresses (4, 18, or 41 dyn/cm(2), respectively) and lysis was monitored in real time. Flow accelerated lysis, but significantly only at the highest shear stress: The average lysis front velocity was 3 x 10(-5) cm/s at 41 dyn/cm(2) vs. almost half of that at the lower shear stresses. Confocal microscopy showed fibrin fibers dissolving only in a narrow region close to the surface when permeation velocity was predicted to be low. A heterogeneous transport-reaction finite element model was used to describe mural fibrinolysis. After scaling the effects of outer and inner convection, inner diffusion, and chemical reactions, a simplified inner diffusion/reaction model was used. Correlation to fibrin lysis data in purified systems dictated higher rates of plasmin(ogen) and tPA adsorption onto fibrin and a decreased catalytic rate of plasmin-mediated fibrin degradation, compared with published parameters. At each shear stress, the model predicted a temporal pattern of lysis of mural fibrin (similar to that observed experimentally), and protease accumulation in a narrow fibrin region and significant lysis inhibition by plasma alpha(2)-antiplasmin (according to the literature). Increasing outer convection accelerated mural fibrinolysis, but the model did not predict the big increase in lysis rate at the highest shear stress. At higher than arterial flows, additional mechanisms not accounted for in the current model, such as fibrin collapse at the fibrin front, may regulate the lysis of mural clots and determine the outcome of thrombolytic therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号