首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Oligodeoxynucleotides designed to form intramolecular triple helices are widely used as model systems in thermodynamic and structural studies. We now report results from UV, Raman and NMR experiments demonstrating that the strand polarity, which also determines the orientation of the connecting loops, has a considerable impact on the formation and stability of pyr x pur x pyr triple helices. There are two types of monomolecular triplexes that can be defined by the location of their purine tract at either the 5'- or 3'-end of the sequence. We have examined four pairs of oligonucleotides with the same base composition but with reversed polarity that can fold into intramolecular triple helices with seven base triplets and two T4 loops under appropriate conditions. UV spectroscopic monitoring of thermal denaturation indicates a consistently higher thermal stability for the 5'-sequences at pH 5.0 in the absence of Mg2+ ions. Raman spectra provide evidence for the formation of triple helices at pH 5 for oligomers with purine tracts located at either the 5'- or 3'-end of the sequence. However, NMR measurements reveal considerable differences in the secondary structures formed by the two types of oligonucleotides. Thus, at acidic pH significant structural heterogeneity is observed for the 3'-sequences. Employing selectively 15N-labeled oligomers, NMR experiments indicate a folding pattern for the competing structures that at least partially changes both Hoogsteen and Watson-Crick base-base interactions.  相似文献   

2.
Recognition of a thymine-adenine base pair in DNA by triplex-forming oligonucleotides can be achieved by a guanine through the formation of a G.TA triad within the parallel triple helix motif. In the present work, we provide the first characterization of the stability of individual base pairs and base triads in a DNA triple helix containing a G.TA triad. The DNA investigated is the intramolecular triple helix formed by the 32mer d(AGATAGAACCCCTTCTATCTTATATCTGTCTT). The exchange rates of imino protons in this triple helix have been measured by nuclear magnetic resonance spectroscopy using magnetization transfer from water and real-time exchange. The exchange rates are compared with those in a homologous DNA triple helix in which the G.TA triad is replaced by a canonical C+.GC triad. The results indicate that, in the G.TA triad, the stability of the Watson–Crick TA base pair is comparable with that of AT base pairs in canonical T.AT triads. However, the presence of the G.TA triad destabilizes neighboring triads by 0.6–1.8 kcal/mol at 1°C. These effects extend to triads that are two positions removed from the site of the G.TA triad. Therefore, the lower stability of DNA triple helices containing G.TA triads originates, in large part, from the energetic effects of the G.TA triad upon the stability of canonical triads located in its vicinity.  相似文献   

3.
The stabilization of the poly(dA) x 2poly(dT) triple helix by neomycin is reported. Preliminary results indicate that neomycin stabilizes DNA triple helices and the double helical structures composed of poly(dA) x poly(dT) are virtually unaffected. This is the first report of the interaction of aminoglycoside antibiotics with DNA triple helices.  相似文献   

4.
5.
Oligodeoxynucleotides containing G and T can bind to homopurine.homopyrimidine sequences on double-stranded DNA by forming C.G x G and T.A x T base triplets. The orientation of the third strand in such triple helices depends on the number of GpT and TpG steps. Therefore a single oligonucleotide can be designed to bind to two consecutive homopurine.homopyrimidine sequences where the two homopurine stretches alternate on the two strands of DNA. The oligonucleotide switches from one homopurine strand to the other at the junction between the two sequences. This result shows that it is possible to extend the range of DNA sequences that can be recognized by a single oligonucleotide.  相似文献   

6.
The amino acid sequence of collagen is composed of GlyXaaYaa repeats. A prevailing paradigm maintains that stable collagen triple helices form when (2S)-proline (Pro) or Pro derivatives that prefer the C(γ)-endo ring pucker are in the Xaa position and Pro derivatives that prefer the C(γ)-exo ring pucker are in the Yaa position. Anomalously, an amino acid sequence in an invertebrate collagen has (2S,4R)-4-hydroxyproline (Hyp), a C(γ)-exo-puckered Pro derivative, in the Xaa position. In certain contexts, triple helices with Hyp in the Xaa position are now known to be hyperstable. Most intriguingly, the sequence (GlyHypHyp)(n) forms a more stable triple helix than does the sequence (GlyProHyp)(n). Competing theories exist for the physicochemical basis of the hyperstability of (GlyHypHyp)(n) triple helices. By synthesizing and analyzing triple helices with different C(γ)-exo-puckered proline derivatives in the Xaa and Yaa positions, we conclude that interstrand dipole-dipole interactions are the primary determinant of their additional stability. These findings provide a new framework for understanding collagen stability.  相似文献   

7.
M Chastain  I Tinoco 《Biochemistry》1992,31(51):12733-12741
An oligonucleotide modeled on a proposed base-triple domain of the Tetrahymena group I intron has been characterized by NMR. The oligonucleotide contains two double-helix regions with adjacent single-stranded nucleotides. The NMR data show that the two helices stack coaxially, although the rotation between the two helices is approximately twice as large as the rotation between normal base pairs. The rotation between the two helices allows the single-stranded nucleotides to form U.U.G and A.G.C base triples in the minor groove. The A.G.C base triple contains a hydrogen bond between the adenine N1 and a 2'-hydroxyl in the minor groove of the G.C pair. A similar hydrogen bond between an adenine and a 2'-hydroxyl in transfer RNA suggests that this could be a recurring tertiary interaction in RNA.  相似文献   

8.
C de los Santos  M Rosen  D Patel 《Biochemistry》1989,28(18):7282-7289
High-resolution exchangeable proton two-dimensional NMR spectra have been recorded on 11-mer DNA triple helices containing one oligopurine (R)n and two oligopyrimidine (Y)n strands at acidic pH and elevated temperatures. Our two-dimensional nuclear Overhauser effect studies have focused on an 11-mer triplex where the third oligopyrimidine strand is parallel to the oligopurine strand. The observed distance connectivities establish that the third oligopyrimidine strand resides in the major groove with the triplex stabilized through formation of T.A.T and C.G.C+ base triples. The T.A.T base triple can be monitored by imino protons of the thymidines involved in Watson-Crick (13.65-14.25 ppm) and Hoogsteen (12.9-13.55 ppm) pairing, as well as the amino protons of adenosine (7.4-7.7 ppm). The amino protons of the protonated (8.5-10.0 ppm) and unprotonated (6.5-8.3 ppm) cytidines in the C.G.C+ base triple provide distinct markers as do the imino protons of the guanosine (12.6-13.3 ppm) and the protonated cytidine (14.5-16.0 ppm). The upfield chemical shift of the adenosine H8 protons (7.1-7.3 ppm) establishes that the oligopurine strand adopts an A-helical base stacking conformation in the 11-mer triplex. These results demonstrate that oligonucleotide triple helices can be readily monitored by NMR at the individual base-triple level with distinct markers differentiating between Watson-Crick and Hoogsteen pairing. Excellent exchangeable proton spectra have also been recorded for (R+)n.(Y-)n.(Y+)n 7-mer triple helices with the shorter length permitting spectra to be recorded at ambient temperature.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
In order to form more stable triple helical structures or to prevent their degradation in cells, oligonucleotide analogs are routinely used, either in the backbone or among the bases. The target sequence chosen for this study is a 16-base-long oligopurine-oligopyrimidine region present in the human neurotrophin 4/5 gene. Seven different chemical modifications were tested for their effect on (i) triple helix formation and (ii) i-DNA stability. i-DNA is a tetrameric structure involving hemiprotonated C x C+ base pairs, which may act as a competing structure for triplex formation, especially in the case of a cytosine-rich third strand. At acid pH, oligophosphoramidates formed the most stable triple helix, whereas oligonucleotides including 5-propynyl-dU formed a stable i-motif which precluded triplex formation. Only two candidates stabilized triple helices at neutral pH: oligonucleotides with phosphoramidate linkage and phosphodiester oligonucleotides containing 5-methyl-dC and 5-propynyl-dU.  相似文献   

10.
A 30 nt RNA with a sequence designed to form an intramolecular triple helix was analyzed by one-and two-dimensional NMR spectroscopy and UV absorption measurements. NMR data show that the RNA contains seven pyrimidine-purine-pyrimidine base triples stabilized by Watson-Crick and Hoogsteen interactions. The temperature dependence of the imino proton resonances, as well as UV absorption data, indicate that the triple helix is highly stable at acidic pH, melting in a single sharp transition centered at 62 degrees C at pH 4.3. The Watson-Crick and Hoogsteen pairings are disrupted simultaneously upon melting. The NMR data are consistent with a structural model where the Watson-Crick paired strands form an A-helix. Results of model building, guided by NMR data, suggest a possible hydrogen bond between the 2' hydroxyl proton of the Hoogsteen strand and a phosphate oxygen of the purine strand. The structural model is discussed in terms of its ability to account for some of the differences in stability reported for RNA and DNA triple helices and provides insight into features that are likely to be important in the design of RNA binding compounds.  相似文献   

11.
We have stabilized the d(A)10.2d(T)10 and d(C+LT4C+3).d(G3A4G3).d(C3T4C3) triple helices with either NaCl or MgCl2 at pH 5.5. UV mixing curves demonstrate a 1:2 stoichiometry of purine to pyrimidine strands under the appropriate conditions of pH and ionic strength. Circular dichroic titrations suggest a possible sequence-independent spectral signature for triplex formation. Thermal denaturation profiles indicate the initial loss of the third strand followed by dissociation of the underlying duplex with increasing temperature. Depending on the base sequence and ionic conditions, the binding affinity of the third strand for the duplex at 25 degrees C is two to five orders of magnitude lower than that of the two strands forming the duplex. Thermodynamic parameters for triplex formation were determined for both sequences in the presence of 50 mM MgCl2 and/or 2.0 M NaCl. Hoogsteen base pairs are 0.22-0.64 kcal/mole less stable than Watson-Crick base pairs, depending on ionic conditions and base composition. C+.G and T.A Hoogsteen base pairs appear to have similar stability in the presence of Mg2+ ions at low pH.  相似文献   

12.
Theoretical calculations on double and triple helices containing 8-amino-2'-deoxyadenosine were made to analyze the possible differences in base pairing properties between 8-aminoadenine and adenine. These calculations indicate a strong preferential stabilization of the triplex over the duplex when adenine is replaced by 8-aminoadenine. In addition, a protected phosphoramidite derivative of 8-amino-2'-deoxyadenosine was prepared for the introduction of 8-aminoadenine into synthetic oligonucleotides using the phosphite-triester approach. DNA triple helical structures are normally observed at acidic pH. However, when oligonucleotides carrying 8-aminoadenine are used, very stable triple helical structures can be observed even at neutral pH. Biological applications of triple helices could benefit from the use of 8-aminoadenine derivatives.  相似文献   

13.
Conjugates obtained by linking the anthracycline intercalating chromophore to triple helix forming oligonucleotides (TFOs) have been used in a physicochemical study of the stability of triple helices with DNA sequences of pharmacological relevance. The intercalating moiety is represented by carminomycinone derivatives obtained upon O-demethylation and hydrolysis of the glycosidic linkage of daunomycin followed by the introduction of an alkylating residue at two different positions. Results of experiments with a polypurinic region present in the multidrug resistance (MDR) gene indicate that the stability of the triple helix is significantly enhanced by replacement of C's with (5-Me)C's in the TFO sequences tested. The stability is not changed when a 3'-TpT is present in place of a 3'-CpG at the presumed intercalation site of the anthraquinone chromophore. The same carminomycinone derivatives were used for the preparation of conjugates able to form triple helices with the polypurine tract (PPT) present in the human integrated genome of HIV-1 infected cells. Three different TFOs (T(4)(Me)CT(4)(Me)CC, C2; T(4)(Me)CT(4)(Me)CC(Me)CC(Me)CCT, C6; and T(4)(Me)CT(4)G(6), G6) were designed and linked to the anthraquinone moiety. These conjugates showed a significantly enhanced ability to bind the PPT region of HIV with respect to the nonconjugated TFOs.  相似文献   

14.
By means of molecular modelling, electrostatic interactions are shown to play an important role in the sequence-dependent structure of triple helices formed by a homopyrimidine oligonucleotide bound to a homopurine. homopyrimidine sequence on DNA. This is caused by the presence of positive charges due to the protonation of cytosines in the Hoogsteen-bonded strand, required in order to form C.GxC+ triplets. Energetic and conformational characteristics of triple helices with different sequences are analyzed and discussed. The effects of duplex mismatches on the triple helix stability are investigated via thermal dissociation using UV absorption.  相似文献   

15.
We have studied the formation of DNA triple helices at target sites that contain mismatches in the duplex target. Fluorescence melting studies were used to examine a series of parallel triple helices that contain all 64 N.XZ triplet combinations at the centre (where N, X and Z are each of the four natural DNA bases in turn). Similar experiments were also performed with N=bis-amino-U (BAU) (for stable recognition of AT base pairs) and N=S (for recognition of TA inversions). We find that the introduction of a duplex mismatch destabilises the C+.GZ, T.AZ and G.TZ triplets. A similar effect is seen with BAU.AZ triplets. In contrast, other base combinations, based on non-standard triplets such as C.AZ, T.TZ, G.CZ and A.CZ are stabilised by the presence of a duplex mismatch. In each case S binds to sites containing duplex mismatches better than the corresponding Watson-Crick base pairs.  相似文献   

16.
Powell SW  Jiang L  Russu IM 《Biochemistry》2001,40(37):11065-11072
Nuclear magnetic resonance spectroscopy has been used to characterize opening reactions and stabilities of individual base pairs in two related DNA structures. The first is the triplex structure formed by the DNA 31-mer 5'-AGAGAGAACCCCTTCTCTCTTTTTCTCTCTT-3'. The structure belongs to the YRY (or parallel) family of triple helices. The second structure is the hairpin double helix formed by the DNA 20-mer 5'-AGAGAGAACCCCTTCTCTCT-3' and corresponds to the duplex part of the YRY triplex. The rates of exchange of imino protons with solvent in the two structures have been measured by magnetization transfer from water and by real-time exchange at 10 degrees C in 100 mM NaCl and 5 mM MgCl2 at pH 5.5 and in the presence of two exchange catalysts. The results indicate that the exchange of imino protons in protonated cytosines is most likely limited by the opening of Hoogsteen C+G base pairs. The base pair opening parameters estimated from imino proton exchange rates suggest that the stability of individual Hoogsteen base pairs in the DNA triplex is comparable to that of Watson-Crick base pairs in double-helical DNA. In the triplex structure, the exchange rates of imino protons in Watson-Crick base pairs are up to 5000-fold lower than those in double-helical DNA. This result suggests that formation of the triplex structure enhances the stability of Watson-Crick base pairs by up to 5 kcal/mol. This stabilization depends on the specific location of each triad in the triplex structure.  相似文献   

17.
Abstract

By means of molecular modelling, electrostatic interactions are shown to play an important role in the sequence-dependent structure of triple helices formed by a homopyrimidine oligonucleotide bound to a homopurine, homopyrimidine sequence on DNA. This is caused by the presence of positive charges due to the protonation of cytosines in the Hoogsteen-bonded strand, required in order to form C.GxC+ triplets. Energetic and conformational characteristics of triple helices with different sequences are analyzed and discussed. The effects of duplex mismatches on the triple helix stability are investigated via thermal dissociation using UV absorption.  相似文献   

18.
Triple helices with G*G.C and A*A.T base triplets with third GA strands either parallel or antiparallel with respect to the homologous duplex strand have been formed in presence of Na (+) or Mg(2+) counterions. Antiparallel triplexes are more stable and can be obtained even in presence of only monovalent Na(+) counterions. A biphasic melting has been observed, reflecting third strand separation around 20 degrees C followed by the duplex -> coil transition around 63 degrees C. Parallel triplexes are far less stable than the antiparallel ones. Their formation requires divalent ions and is observed at low temperature and in high concentration conditions. Different FTIR signatures of G*G.C triplets in parallel and antiparallel triple helices with GA rich third strands have been obtained allowing the identification of such base triplets in triplexes formed by nucleic acids with heterogeneous compositions. Only S-type sugars are found in the antiparallel triplex while some N-type sugar conformation is detected in the parallel triplex.  相似文献   

19.
Sollogoub M  Darby RA  Cuenoud B  Brown T  Fox KR 《Biochemistry》2002,41(23):7224-7231
We have prepared oligonucleotides containing the novel base analogue 2'-aminoethoxy,5-propargylamino-U in place of thymidine and examined their ability to form intermolecular and intramolecular triple helices by DNase I footprinting and thermal melting studies. The results were compared with those for oligonucleotides containing 5-propargylamino-dU and 2'-aminoethoxy-T. We find that the bis-substituted derivative produces a large increase in triplex stability, much greater than that produced by either of the monosubstituted analogues, which are roughly equipotent with each other. Intermolecular triplexes with 9-mer oligonucleotides containing three or four base modifications generate footprints at submicromolar concentrations even at pH 7.5, in contrast to the unmodified oligonucleotide, which failed to produce a footprint at pH 5.0, even at 30 microM. UV- and fluorescence melting studies with intramolecular triplexes confirmed that the bis-modified base produces a much greater increase in T(m) than either modification alone.  相似文献   

20.
Fourier transform infrared (FTIR), UV absorption and exchangeable proton NMR spectroscopies have been used to study the formation and stability of two intramolecular pH-dependent triple helices composed by a chimeric 29mer DNA-RNA (DNA double strand and RNA third strand) or by the analogous 29mer RNA. In both cases decrease of pH induces formation of a triple helical structure containing either rU*dA.dT and rC+*dG.dC or rU*rA.rU and rC+*rG.rC triplets. FTIR spectroscopy shows that exclusively N-type sugars are present in the triple helix formed by the 29mer RNA while both N- and S-type sugars are detected in the case of the chimeric 29mer DNA-RNA triple helix. Triple helix formation with the third strand RNA and the duplex as DNA appears to be associated with the conversion of the duplex part from a B-form secondary structure to one which contains partly A-form sugars. Thermal denaturation experiments followed by UV spectroscopy show that a major stabilization occurs upon formation of the triple helices. Monophasic melting curves indicate a simultaneous disruption of the Hoogsteen and Watson-Crick hydrogen bonds in the intramolecular triplexes when the temperature is increased. This is in agreement with imino proton NMR spectra recorded as a function of temperature. Comparison with experiments concerning intermolecular triplexes of identical base and sugar composition shows the important role played by the two tetrameric loops in the stabilization of the intramolecular triple helices studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号