首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
From the implications of the complement system in a large number of diseases, an urgent need for therapeutics effecting reduced complement activity in vivo has emerged. In this study we report the design of a novel class of enzymes of human origin that obliterate functional complement by a noninhibitory, catalytic mechanism. Combining the framework of human C3 and the enzymatic mechanism of cobra venom factor, a nontoxic snake venom protein, we established molecules capable of forming stable C3 convertase complexes. Although the half-life of naturally occurring C3 convertase complexes ranges between 1 and 2 min, these complexes exhibit a half-life of up to several hours. Because the overall identity to human C3 could be extended to >90%, the novel C3 derivatives can be assumed to exhibit low immunogenicity and, therefore, represent promising candidates for therapeutic reduction of complement activity in vivo.  相似文献   

2.
Snakes are equipped with their venomic armory to tackle different prey and predators in adverse natural world. The venomic composition of snakes is a mix of biologically active proteins and polypeptides. Among different components snake venom cytotoxins and short neurotoxin are non-enzymatic polypeptide candidates with in the venom. These two components structurally resembled to three-finger protein superfamily specific scaffold. Different non-toxin family members of three-finger protein superfamily are involved in different biological roles. In the present study we analyzed the snake venom cytotoxins, short neurotoxins and related non-toxin proteins of different chordates in terms of amino acid sequence level diversification profile, polarity profile of amino acid sequences, conserved pattern of amino acids and phylogenetic relationship of these toxin and nontoxin protein sequences. Sequence alignment analysis demonstrates the polarity specific molecular enrichment strategy for better system adaptivity. Occurrence of amino acid substitution is high in number in toxin sequences. In non-toxin body proteins there are less amino acid substitutions. With the help of conserved residues these proteins maintain the three-finger protein scaffold. Due to system specific adaptation toxin and non-toxin proteins exhibit a varied type of amino acid residue distribution in sequence stretch. Understanding of Natural invention scheme (recruitment of venom proteins from normal body proteins) may help us to develop futuristic engineered bio-molecules with remedial properties.  相似文献   

3.
Thrombin-like enzymes isolated from snake venoms comprise a group of serine proteinases responsible for many important coagulation disorders in the envenomed victims. Besides, these proteinases have great biotechnological interest as antithrombotic agents and as diagnostic tools. However, in spite of the recent overflow of snake venom thrombin-like enzymes (SVTLEs) on protein sequence databases, there is a lack of three-dimensional (3D) structural information on this family. Without such 3D structures available many aspects of the biological function and biochemical properties of these enzymes still remain obscure. Therefore, we have gone through a series of computational techniques, which enabled us to identify the set of residues involved in molecular recognition of inhibitors bound to the S1 subsite of snake venom thrombin-like enzymes (SVTLEs) and ultimately conclude that nonpolar (van der Waals) intermolecular interactions and ligand's hydrophobicity are the most important factors affecting binding affinities to the S1 subsite of a SVTLE isolated from the venom of Lachesis muta muta (Lmm-TLE). Consequently, we have proposed that S1 subsite lipophilicity may be used to sort binding affinities of trypsin-like enzymes to small molecules by showing that the inhibitory potency of several S1-directed compounds follows subsite lipophilicity among Lmm-TLE and other three homologous proteases. Noteworthy, in the course of our analyses we determined that thrombin's S1 subsite should, in fact, be considered less lipophilic than that of trypsin if we account for the presence of the sodium-controlled water channel communicating with the S1 subsite in the coagulant enzyme.  相似文献   

4.
5.
6.
Proteins involved in mitochondrial metabolic pathways engage in functionally relevant multi-enzyme complexes. We previously described an interaction between short-chain 3-hydroxyacyl-coenzyme A dehydrogenase (SCHAD) and glutamate dehydrogenase (GDH) explaining the clinical phenotype of hyperinsulinism in SCHAD-deficient patients and adding SCHAD to the list of mitochondrial proteins capable of forming functional, multi-pathway complexes. In this work, we provide evidence of SCHAD's involvement in additional interactions forming tissue-specific metabolic super complexes involving both membrane-associated and matrix-dwelling enzymes and spanning multiple metabolic pathways. As an example, in murine liver, we find SCHAD interaction with aspartate transaminase (AST) and GDH from amino acid metabolic pathways, carbamoyl phosphate synthase I (CPS-1) from ureagenesis, other fatty acid oxidation and ketogenesis enzymes and fructose-bisphosphate aldolase, an extra-mitochondrial enzyme of the glycolytic pathway. Most of the interactions appear to be independent of SCHAD's role in the penultimate step of fatty acid oxidation suggesting an organizational, structural or non-enzymatic role for the SCHAD protein.  相似文献   

7.

Background  

Starch accumulation and degradation in chloroplasts is accomplished by a suite of over 30 enzymes. Recent work has emphasized the importance of multi-protein complexes amongst the metabolic enzymes, and the action of associated non-enzymatic regulatory proteins. Arabidopsis At5g39790 encodes a protein of unknown function whose sequence was previously demonstrated to contain a putative carbohydrate-binding domain.  相似文献   

8.
Snake venom contains a diverse array of proteins and polypeptides. Cytotoxins and short neurotoxins are non-enzymatic polypeptide components of snake venom. The three-dimensional structure of cytotoxin and short neurotoxin resembles a three finger appearance of three-finger protein super family. Different family members of three-finger protein super family are employed in diverse biological functions. In this work we analyzed the cytotoxin, short neurotoxin and related non-toxin proteins of other chordates in terms of functional analysis, amino acid compositional (%) profile, number of amino acids, molecular weight, theoretical isoelectric point (pI), number of positively charged and negatively charged amino acid residues, instability index and grand average of hydropathy with the help of different bioinformatical tools. Among all interesting results, profile of amino acid composition (%) depicts that all sequences contain a conserved cysteine amount but differential amount of different amino acid residues which have a family specific pattern. Involvement in different biological functions is one of the driving forces which contribute the vivid amino acid composition profile of these proteins. Different biological system dependent adaptation gives the birth of enriched bio-molecules. Understanding of physicochemical properties of these proteins will help to generate medicinally important therapeutic molecules for betterment of human lives.  相似文献   

9.
DNA topoisomerases are the enzymes responsible for controlling and maintaining the topological states of DNA. Type IA enzymes work by transiently breaking the phosphodiester backbone of one strand to allow passage of another strand through the break. The protein has to perform complex rearrangements of the DNA, and hence it is likely that different regions of the enzyme bind DNA with different affinities. In order to identify some of the DNA binding sites in the protein, we have solved the structures of several complexes of the 67 kDa N-terminal fragment of Escherichia coli DNA topoisomerase I with mono- and trinucleotides. There are five different binding sites in the complexes, one of which is adjacent to the active site. Two other sites are in the central hole of the protein and may represent general DNA binding regions. The positions of these sites allow us to identify different DNA binding regions and to understand their possible roles in the catalytic cycle.  相似文献   

10.
It has long been believed that cells organize their cytoplasm so as to efficiently channel metabolites between sequential enzymes. This metabolic channeling has the potential to yield higher metabolic fluxes as well as better regulatory control over metabolism. One mechanism for achieving such channeling is to ensure that sequential enzymes in a pathway are physically close to each other in the cell. We present evidence that indirect protein interactions between related enzymes represent a global mechanism for achieving metabolic channeling; the intuition being that protein interactions between enzymes and non-enzymatic mediator proteins are a powerful means of physically associating enzymes in a modular fashion. By analyzing the metabolic and protein-protein interactions networks of Escherichia coli, yeast and humans, we are able to show that all three species have many more indirect protein interactions linking enzymes that share metabolites than would be expected by chance. Moreover, these interactions are distributed non-randomly in the metabolic network. Our analyses in yeast and E. coli show that reactions possessing such interactions also show higher flux than do those lacking them. On the basis of these observations, we suggest that an important role of protein interactions with mediator proteins is to contribute to the spatial organization of the cell. This hypothesis is supported by the fact that these mediator proteins are also enriched with annotations related to signal transduction, a system where scaffolding proteins are known to limit cross-talk by controlling spatial localization.  相似文献   

11.
Protein tyrosine phosphatases: structure-function relationships   总被引:1,自引:0,他引:1  
Structural analysis of protein tyrosine phosphatases (PTPs) has expanded considerably in the last several years, producing more than 200 structures in this class of enzymes (from 35 different proteins and their complexes with ligands). The small-medium size of the catalytic domain of approximately 280 residues plus a very compact fold makes it amenable to cloning and overexpression in bacterial systems thus facilitating crystallographic analysis. The low molecular weight PTPs being even smaller, approximately 150 residues, are also perfect targets for NMR analysis. The availability of different structures and complexes of PTPs with substrates and inhibitors has provided a wealth of information with profound effects in the way we understand their biological functions. Developments in mammalian expression technology recently led to the first crystal structure of a receptor-like PTP extracellular region. Altogether, the PTP structural work significantly advanced our knowledge regarding the architecture, regulation and substrate specificity of these enzymes. In this review, we compile the most prominent structural traits that characterize PTPs and their complexes with ligands. We discuss how the data can be used to design further functional experiments and as a basis for drug design given that many PTPs are now considered strategic therapeutic targets for human diseases such as diabetes and cancer.  相似文献   

12.
Ribonuclease enzymes (RNases) play key roles in the maturation and metabolism of all RNA molecules. Computational simulations of the processes involved can help to elucidate the underlying enzymatic mechanism and is often employed in a synergistic approach together with biochemical experiments. Theoretical calculations require atomistic details regarding the starting geometries of the molecules involved, which, in the absence of crystallographic data, can only be achieved from computational docking studies. Fortunately, docking algorithms have improved tremendously in recent years, so that reliable structures of enzyme–ligand complexes can now be successfully obtained from computation. However, most docking programs are not particularly optimized for nucleotide docking. In order to assist our studies on the cleavage of RNA by the two most important ribonuclease enzymes, RNase A and RNase H, we evaluated four docking tools—MOE2009, Glide 5.5, QXP-Flo+0802, and Autodock 4.0—for their ability to simulate complexes between these enzymes and RNA oligomers. To validate our results, we analyzed the docking results with respect to the known key interactions between the protein and the nucleotide. In addition, we compared the predicted complexes with X-ray structures of the mutated enzyme as well as with structures obtained from previous calculations. In this manner, we were able to prepare the desired reaction state complex so that it could be used as the starting structure for further DFT/B3LYP QM/MM reaction mechanism studies.  相似文献   

13.
Protein-protein interactions play a central role in numerous processes in the cell and are one of the main fields of functional proteomics. This review highlights the methods of bioinformatics and functional proteomics of protein-protein interaction investigation. The structures and properties of contact surfaces, forces involved in protein-protein interactions, kinetic and thermodynamic parameters of these reactions were considered. The properties of protein contact surfaces depend on their functions. The contact surfaces of permanent complexes resemble domain contacts or the protein core and it is reasonable to consider such complex formation as a continuation of protein folding. Characteristics of contact surfaces of temporary protein complexes share some similarities with active sites of enzymes. The contact surfaces of the temporary protein complexes have unique structure and properties and they are more conservative in comparison with active site of enzymes. So they represent prospective targets for a new generation of drugs. During the last decade, numerous investigations were undertaken to find or design small molecules that block protein dimerization or protein(peptide)-receptor interaction, or, on the contrary, to induce protein dimerization.  相似文献   

14.
A paradoxical task of the venom gland of snakes is the synthesis and storage of an instantly available suite of toxins to immobilize prey and the protection of the snake against its own venom components. Furthermore, autolysis of the venom constituents due to the action of venom metalloproteases is an additional problem, particularly among viperid venoms, which are typically rich in lytic enzymatic proteins. To address questions concerning these problems, the structure of the venom gland was investigated using light microscopy, SEM and TEM. The composition of the venom originating from the intact venom apparatus or from the main venom gland alone was analyzed by electrophoresis, and the pH of freshly expressed venom as well as pH optima of several representative enzymes was evaluated. Results from several species of rattlesnakes demonstrated that the venom gland is structurally complex, particularly in its small rostral portion called the accessory gland, which may be a site of activation of venom components. Secreted venom is stable in extremes of temperature and dilution, and several proximate mechanisms, including pH and endogenous inhibitors, exist which inhibit enzymatic activity of the venom during storage within the venom gland but allow for spontaneous activation upon injection into prey. Whereas acid secretion by the parietal cells activates digestive enzymes in the stomach, within the venom gland acidification inhibits venom enzymes. We propose that the mitochondria-rich cells of the main venom gland, which are morphologically and histochemically very similar to the parietal cells of the mammalian gastric pit, play a central role in the stabilization of the venom by secreting acidic compounds into the venom and maintaining the stored venom at pH 5.4. Hence, our results indicate yet another trophic link between the processes of venom production and of digestion, and demonstrate that the venom glands of snakes may represent an excellent model for the study of protein stability and maintenance of toxic proteins.  相似文献   

15.
NLDB (Natural Ligand DataBase; URL: http://nldb.hgc.jp) is a database of automatically collected and predicted 3D protein–ligand interactions for the enzymatic reactions of metabolic pathways registered in KEGG. Structural information about these reactions is important for studying the molecular functions of enzymes, however a large number of the 3D interactions are still unknown. Therefore, in order to complement such missing information, we predicted protein–ligand complex structures, and constructed a database of the 3D interactions in reactions. NLDB provides three different types of data resources; the natural complexes are experimentally determined protein–ligand complex structures in PDB, the analog complexes are predicted based on known protein structures in a complex with a similar ligand, and the ab initio complexes are predicted by docking simulations. In addition, NLDB shows the known polymorphisms found in human genome on protein structures. The database has a flexible search function based on various types of keywords, and an enrichment analysis function based on a set of KEGG compound IDs. NLDB will be a valuable resource for experimental biologists studying protein–ligand interactions in specific reactions, and for theoretical researchers wishing to undertake more precise simulations of interactions.  相似文献   

16.
Platelet aggregation inhibitor--"Blomus-B" from Agkistrodon blomhoffii ussuriensis venom has been isolated by affinity and ion-exchange chromatography. The purified inhibitor is a novel non-enzymatic single-chain protein with molecular weigth of 13 kDa. "Blomus-B" causes a change of platelets shape and takes effect on ADP- and adrenalin-induced platelet aggregation.  相似文献   

17.
Crotalus adamanteus snake venom adamalysin II is the structural prototype of the adamalysin or ADAM family comprising proteolytic domains of snake venom metalloproteinases, multimodular mammalian reproductive tract proteins, and tumor necrosis factor alpha convertase, TACE, involved in the release of the inflammatory cytokine, TNFalpha. The structure of adamalysin II in noncovalent complex with two small-molecule right-hand side peptidomimetic inhibitors (Pol 647 and Pol 656) has been solved using X-ray diffraction data up to 2.6 and 2.8 A resolution. The inhibitors bind to the S'-side of the proteinase, inserting between two protein segments, establishing a mixed parallel-antiparallel three-stranded beta-sheet and coordinate the central zinc ion in a bidentate manner via their two C-terminal oxygen atoms. The proteinase-inhibitor complexes are described in detail and are compared with other known structures. An adamalysin-based model of the active site of TACE reveals that these small molecules would probably fit into the active site cleft of this latter metalloproteinase, providing a starting model for the rational design of TACE inhibitors.  相似文献   

18.
Glycosylation is one of the most common modifications of proteins and lipids and also a major source of biological diversity in eukaryotes. It is critical for many basic cellular functions and recognition events that range from protein folding to cell signaling, immunological defense, and the development of multicellular organisms. Glycosylation takes place mainly in the endoplasmic reticulum and Golgi apparatus and involves dozens of functionally distinct glycosidases and glycosyltransferases. How the functions of these enzymes, which act sequentially and often competitively, are coordinated to faithfully synthesize a vast array of different glycan structures is currently unclear. Here, we investigate the supramolecular organization of the Golgi N- and O-glycosylation pathways in live cells using a FRET flow cytometric quantification approach. We show that the enzymes form enzymatically active homo- and/or heteromeric complexes within each pathway. However, no complexes composed of enzymes that operate in different pathways, were detected, which suggests that the pathways are physically distinct. In addition, we show that complex formation is mediated almost exclusively by the catalytic domains of the interacting enzymes. Our data also suggest that the heteromeric complexes are functionally more important than enzyme homomers. Heteromeric complex formation was found to be dependent on Golgi acidity, markedly impaired in acidification-defective cancer cells, and required for the efficient synthesis of cell surface glycans. Collectively, the results emphasize that the Golgi glycosylation pathways are functionally organized into complexes that are important for glycan synthesis.  相似文献   

19.
l-Amino acid oxidase from Rhodococcus opacus (roLAAO) is classified as a member of the GR(2)-family of flavin-dependent oxidoreductases according to a highly conserved sequence motif for the cofactor binding. The monomer of the homodimeric enzyme consists of three well-defined domains: the FAD-binding domain corresponding to a general topology throughout the whole GR(2)-family; a substrate-binding domain with almost the same topology as the snake venom LAAO and a helical domain exclusively responsible for the unusual dimerisation mode of the enzyme and not found in other members of the family so far. We describe here high-resolution structures of the binary complex of protein and cofactor as well as the ternary complexes of protein, cofactor and ligands. This structures in addition to the structural knowledge of snake venom LAAO and DAAO from yeast and pig kidney permit more insight into different steps in the reaction mechanism of this class of enzymes. There is strong evidence for hydride transfer as the mechanism of dehydrogenation. This mechanism appears to be uncommon in a sense that the chemical transformation can proceed efficiently without the involvement of amino acid functional groups. Most groups present at the active site are involved in substrate recognition, binding and fixation, i.e. they direct the trajectory of the interacting orbitals. In this mode of catalysis orbital steering/interactions are the predominant factors for the chemical step(s). A mirror-symmetrical relationship between the two substrate-binding sites of d and l-amino acid oxidases is observed which facilitates enantiomeric selectivity while preserving a common arrangement of the residues in the active site. These results are of general relevance for the mechanism of flavoproteins and lead to the proposal of a common dehydrogenation step in the mechanism for l and d-amino acid oxidases.  相似文献   

20.
The macromolecular tRNA synthetase complex consists of nine different enzymes and three non-enzymatic factors. This complex was recently shown to be a novel signalosome, since many of its components are involved in signaling pathways in addition to their catalytic roles in protein synthesis. The structural organization and dynamic relationships of the components of the complex are not well understood. Here we performed a systematic depletion analysis to determine the effects of structural intimacy and the turnover of the components. The results showed that the stability of some components depended on their neighbors. Lysyl-tRNA synthetase was most independent of other components for its stability whereas it was most required for the stability of other components. Arginyl- and methionyl-tRNA synthetases had the opposite characteristics. Thus, the systematic depletion of the components revealed the functional reason for the complex formation and the assembly pattern of these multi-functional enzymes and their associated factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号