首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We studied the seasonal variation in carbon dioxide, water vapour and energy fluxes in a broad‐leafed semi‐arid savanna in Southern Africa using the eddy covariance technique. The open woodland studied consisted of an overstorey dominated by Colophospermum mopane with a sparse understorey of grasses and herbs. Measurements presented here cover a 19‐month period from the end of the rainy season in March 1999 to the end of the dry season September 2000. During the wet season, sensible and latent heat fluxes showed a linear dependence on incoming solar radiation (I) with a Bowen ratio (β) typically just below unity. Although β was typically around 1 at low incoming solar radiation (150 W m?2) during the dry season, it increased dramatically with I, typically being as high as 4 or 5 around solar noon. Thus, under these water‐limited conditions, almost all available energy was dissipated as sensible, rather than latent heat. Marked spikes of CO2 release occurred at the onset of the rainfall season after isolated rainfall events and respiration dominated the balance well into the rainfall season. During this time, the ecosystem was a constant source of CO2 with an average flux of 3–5 μmol m?2 s?1 to the atmosphere during both day and night. But later in the wet season, for example, in March 2000 under optimal soil moisture conditions, with maximum leaf canopy development (leaf area index 0.9–1.3), the peak ecosystem CO2 influx was as much as 10 μmol m?2 s?1. The net ecosystem maximum photosynthesis at this time was estimated at 14 μmol m?2 s?1, with the woodland ecosystem a significant sink for CO2. During the dry season, just before leaf fall in August, maximum day‐ and night‐time net ecosystem fluxes were typically ?3 μmol m?2 s?1 and 1–2 μmol m?2 s?1, respectively, with the ecosystem still being a marginal sink. Over the course of 12 months (March 1999–March 2000), the woodland was more or less carbon neutral, with a net uptake estimated at only about 1 mol C m?2 yr?1. The annual net photosynthesis (gross primary production) was estimated at 32.2 mol m?2 yr?1.  相似文献   

2.
Conversion of tropical rainforests to pastures and plantations is associated with changes in soil properties and biogeochemical cycling, with implications for carbon cycling and trace gas fluxes. The stable isotopic composition of ecosystem respiration (δ13CR and δ18OR) is used in inversion models to quantify regional patterns of CO2 sources and sinks, but models are limited by sparse measurements in tropical regions. We measured soil respiration rates, concentrations of CO2, CH4, CO, N2O and H2 and the isotopic composition of CO2, CH4 and H2 at four heights in the nocturnal boundary layer (NBL) above three common land‐use types in central Panama, during dry and rainy seasons. Soil respiration rates were lowest in Plantation (average 3.4 μmol m?2 s?1), highest in Pasture (8.3 μmol m?2 s?1) and intermediate in Rainforest (5.2 μmol m?2 s?1). δ13CR closely reflected land use and increased during the dry season where C3 vegetation was present. δ18OR did not differ by land use but was lower during the rainy than the dry season. CO2 was correlated with other species in approximately half of the NBL profiles, allowing us to estimate trace gas fluxes that were generally within the range of literature values. The Rainforest soil was a sink for CH4 but emissions were observed in Pasture and Plantation, especially during the wet season. N2O emissions were higher in Pasture and Plantation than Rainforest, contrary to expectations. Soil H2 uptake was highest in Rainforest and was not observable in Pasture and Plantation during the wet season. We observed soil CO uptake during the dry season and emissions during the wet season across land‐use types. This study demonstrated that strong impacts of land‐use change on soil–atmosphere trace gas exchange can be detected in the NBL, and provides useful observational constraints for top‐down and bottom‐up biogeochemistry models.  相似文献   

3.
We present the energy and mass balance of cerrado sensu stricto (a Brazilian form of savanna), in which a mixture of shrubs, trees and grasses forms a vegetation with a leaf area index of 1·0 in the wet season and 0·4 in the dry season. In the wet season the available energy was equally dissipated between sensible heat and evaporation, but in the dry season at high irradiance the sensible heat greatly exceeded evaporation. Ecosystem surface conductance gs in the wet season rose abruptly to 0·3 mol m?2 s?1 and fell gradually as the day progressed. Much of the total variation in gs was associated with variation in the leaf-to-air vapour pressure deficit of water and the solar irradiance. In the dry season the maximal gs values were only 0·1 mol m?2 s?1. Maximal net ecosystem fluxes of CO2 in the wet and dry season were –10 and –15 μmol CO2 m?2 s?1, respectively (sign convention: negative denotes fluxes from atmosphere to vegetation). The canopy was well coupled to the atmosphere, and there was rarely a significant build-up of respiratory CO2 during the night. For observations in the wet season, the vegetation was a carbon dioxide sink, of maximal strength 0·15 mol m?2 d?1. However, it was a source of carbon dioxide for a brief period at the height of the dry season. Leaf carbon isotopic composition showed all the grasses except for one species to be C4, and all the palms and woody plants to be C3. The CO2 coming from the soil had an isotopic composition that suggested 40% of it was of C4 origin.  相似文献   

4.
Radon‐222 (Rn‐222) is used as a transport tracer of forest canopy–atmosphere CO2 exchange in an old‐growth, tropical rain forest site near km 67 of the Tapajós National Forest, Pará, Brazil. Initial results, from month‐long periods at the end of the wet season (June–July) and the end of the dry season (November–December) in 2001, demonstrate the potential of new Rn measurement instruments and methods to quantify mass transport processes between forest canopies and the atmosphere. Gas exchange rates yield mean canopy air residence times ranging from minutes during turbulent daytime hours to greater than 12 h during calm nights. Rn is an effective tracer for net ecosystem exchange of CO2 (CO2 NEE) during calm, night‐time hours when eddy covariance‐based NEE measurements are less certain because of low atmospheric turbulence. Rn‐derived night‐time CO2 NEE (9.00±0.99 μmol m?2 s?1 in the wet season, 6.39±0.59 in the dry season) was significantly higher than raw uncorrected, eddy covariance‐derived CO2 NEE (5.96±0.51 wet season, 5.57±0.53 dry season), but agrees with corrected eddy covariance results (8.65±1.07 wet season, 6.56±0.73 dry season) derived by filtering out lower NEE values obtained during calm periods using independent meteorological criteria. The Rn CO2 results suggest that uncorrected eddy covariance values underestimate night‐time CO2 loss at this site. If generalizable to other sites, these observations indicate that previous reports of strong net CO2 uptake in Amazonian terra firme forest may be overestimated.  相似文献   

5.
  • 1 Carbon dioxide and water vapour fluxes were measured for 55 days by eddy covariance over an undisturbed tropical rain forest in Rondonia, Brazil. Profiles of CO2 inside the canopy were also measured.
  • 2 During the night, CO2 concentration frequently built up to 500 ppm throughout the canopy as a result of low rates of exchange with the atmosphere. In the early morning hours, ventilation of the canopy occurred.
  • 3 Ecosystem gas exchange was calculated from a knowledge of fluxes above the canopy and changes of CO2 stored inside the canopy. Typically, uptake by the canopy was 15 μmol m?2 s?1 in bright sunlight and dark respiration was 6-7 μmol m?2 s?1 The quantum requirement at low irradiance was: 40 mol photons per mol of CO2.
  • 4 Bulk stomatal conductance of the ecosystem was maximal in the early morning (0.4-1.0 mol m?2 s?1) and declined over the course of the day as leaf-to-air vapour pressure difference increased.
  相似文献   

6.
We measured net ecosystem CO2 exchange (NEE) in Panamá over C4 pasture plots that varied in grazing intensity. After adjusting for variation in light, there were noticeable effects of grazing‐related variables on CO2 exchange that were largely dependent on the developmental stage of the plant canopy. Above‐ground productivity was positively related to grazing intensity (r2=0.30). Two experimentally grazed fields had significantly lower standing crop biomass but no significant difference in CO2 uptake (24.2 μmol/m2/s) compared with two ungrazed fields (20.3 μmol/m2/s). Grazed fields had significantly lower ecosystem respiration rates (10.3 μmol/m2/s) than did ungrazed fields (17.6 μmol/m2/s). These results suggest that, although these pastures were possible sources of CO2 during the time intervals sampled, the size of the sources tended to be dampened by cattle grazing through reductions in ecosystem respiration. Thus, it appears that disturbance caused by cattle grazing will not always result in an increase in CO2 release from tropical pastures to the atmosphere.  相似文献   

7.
In the Orinoco lowlands, savannas have been often replaced by pastures composed of the C4 grass, Brachiaria decumbens Stapf. We addressed following questions: (1) How does the replacement of the native vegetation affect CO2 exchange on seasonal and annual scales? (2) How do biophysical constraints change when the landscape is transformed? To assess how these changes affect carbon exchange, we determined simultaneously the CO2 fluxes by eddy covariance, and the soil CO2 efflux by a chamber-based system in B. decumbens and herbaceous savanna stands. Measurements covered a one-year period from the beginning of the dry season (November 2008) to the end of the wet season (November 2009). During the wet season, the net ecosystem CO2 exchange reached maximum values of 23 and 10 μmol(CO2) m?2 s?1 in the B. decumbens field and in the herbaceous savanna stand, respectively. The soil CO2 efflux for both stands followed a temperature variation during the dry and wet seasons, when the soil water content (SWC) increased above 0.087 m3 m?3 in the latter case. Bursts of CO2 emissions were evident when the dry soil experienced rehydration. The carbon source/sink dynamics over the two canopies differed markedly. Annual measurements of the net ecosystem production indicated that the B. decumbens field constituted a strong carbon sink of 216 g(C) m?2 y?1. By contrast, the herbaceous savanna stand was found to be only a weak sink [36 g(C) m?2 y?1]. About 53% of the gross primary production was lost as the ecosystem respiration. Carbon uptake was limited by SWC in the herbaceous savanna stand as evident from the pattern of water-use efficiency (WUE). At the B. decumbens stand, WUE was relatively insensitive to SWC. Although these results were specific to the studied site, the effect of land use changes and the physiological response of the studied stands might be applicable to other savannas.  相似文献   

8.
This research utilized tower‐based eddy covariance to quantify the trends in net ecosystem mass (CO2 and H2O vapor) and energy exchange of important land‐cover types of NW Mato Grosso during the March–December 2002 seasonal transition. Measurements were made in a mature transitional (ecotonal) tropical forest near Sinop, Mato Grosso, and a cattle pasture near Cotriguaçú, Mato Grosso, located 500 km WNW of Sinop. Pasture net ecosystem CO2 exchange (NEE) was considerably more variable than the forest NEE over the seasonal transition, and the pasture had significantly higher rates of maximum gross primary production in every season except the dry–wet season transition (September–October). The pasture also had significantly higher rates of whole‐ecosystem dark respiration than the forest during the wetter times of the year. Average (±95% CI) rates of total daily NEE during the March–December 2002 measurement period were 26±15 mmol m?2 day?1 for the forest (positive values indicate net CO2 loss by the ecosystem) and ?38±26 mmol m?2 day?1 for the pasture. While both ecosystems partitioned more net radiation (Rn) into latent heat flux (Le), the forest had significantly higher rates of Le and lower rates of sensible heat flux (H) than the pasture; a trend that became more extreme during the onset of the dry season. Large differences in pasture and forest mass and energy exchange occurred even though seasonal variations in micrometeorology (air temperature, humidity, and radiation) were relatively similar for both ecosystems. While the short measurement period and lack of spatial replication limit the ability to generalize these results to pasture and forest regions of the Amazon Basin, these results suggest important differences in the magnitude and seasonal variation of NEE and energy partitioning for pasture and transitional tropical forest.  相似文献   

9.
Carbon exchange of grazed pasture on a drained peat soil   总被引:1,自引:0,他引:1  
Land‐use changes have contributed to increased atmospheric CO2 concentrations. Conversion from natural peatlands to agricultural land has led to widespread subsidence of the peat surface caused by soil compaction and mineralization. To study the net ecosystem exchange of carbon (C) and the contribution of respiration to peat subsidence, eddy covariance measurements were made over pasture on a well‐developed, drained peat soil from 22 May 2002 to 21 May 2003. The depth to the water table fluctuated between 0.02 m in winter 2002 to 0.75 m during late summer and early autumn 2003. Peat soil moisture content varied between 0.6 and 0.7 m3 m?3 until the water table dropped below 0.5 m, when moisture content reached 0.38 m3 m?3. Neither depth to water table nor soil moisture was found to have an effect on the rate of night‐time respiration (ranging from 0.4–8.0 μmol CO2 m?2 s?1 in winter and summer, respectively). Most of the variance in night‐time respiration was explained by changes in the 0.1 m soil temperature (r2=0.93). The highest values for daytime net ecosystem exchange were measured in September 2002, with a maximum of ?17.2 μmol CO2 m?2 s?1. Grazing events and soil moisture deficiencies during a short period in summer reduced net CO2 exchange. To establish an annual C balance for this ecosystem, non‐linear regression was used to model missing data. Annually integrated (CO2) C exchange for this peat–pasture ecosystem was 45±500 kg C ha?1 yr?1. After including other C exchanges (methane emissions from cows and production of milk), the net annual C loss was 1061±500 kg C ha?1 yr?1.  相似文献   

10.
CO2 exchange rates per unit dry weight, measured in the field on attached fruits of the late-maturing Cal Red peach cultivar, at 1200 μmol photons m?2S?1 and in dark, and photosynthetic rates, calculated by the difference between the rates of CO2 evolution in light and dark, declined over the growing season. Calculated photosynthetic rates per fruit increased over the season with increasing fruit dry matter, but declined in maturing fruits apparently coinciding with the loss of chlorophyll. Slight net fruit photosynthetic rates ranging from 0. 087 ± 0. 06 to 0. 003 ± 0. 05 nmol CO2 (g dry weight)?1 S?1 were measured in midseason under optimal temperature (15 and 20°C) and light (1200 μmol photons m?2 S?1) conditions. Calculated fruit photosynthetic rates per unit dry weight increased with increasing temperatures and photon flux densities during fruit development. Dark respiration rates per unit dry weight doubled within a temperature interval of 10°C; the mean seasonal O10 value was 2. 03 between 20 and 30°C. The highest photosynthetic rates were measured at 35°C throughout the growing season. Since dark respiration rates increased at high temperatures to a greater extent than CO2 exchange rates in light, fruit photosynthesis was apparently stimulated by high internal CO2 concentrations via CO2 refixation. At 15°C, fruit photosynthetic rates tended to be saturated at about 600 μmol photons m?2 S?1. Young peach fruits responded to increasing ambient CO2 concentrations with decreasing net CO2 exchange rates in light, but more mature fruits did not respond to increases in ambient CO2. Fruit CO2 exchange rates in the dark remained fairly constant, apparently uninfluenced by ambient CO2 concentrations during the entire growing season. Calculated fruit photosynthetic rates clearly revealed the difference in CO2 response of young and mature peach fruits. Photosynthetic rates of younger peach fruits apparently approached saturation at 370 μl CO21?2. In CO2 free air, fruit photosynthesis was dependent on CO2 refixation since CO2 uptake by the fruits from the external atmosphere was not possible. The difference in photosynthetic rates between fruits in CO2-free air and 370 μl CO2 1?1 indicated that young peach fruits were apparently able to take up CO2 from the external atmosphere. CO2 uptake by peach fruits contributed between 28 and 16% to the fruit photosynthetic rate early in the season, whereas photosynthesis in maturing fruits was supplied entirely by CO2 refixation.  相似文献   

11.
Arid ecosystems, which occupy about 35% of the Earth's terrestrial surface area, are believed to be among the most responsive to elevated [CO2]. Net ecosystem CO2 exchange (NEE) was measured in the eighth year of CO2 enrichment at the Nevada Desert Free‐Air CO2 Enrichment (FACE) Facility between the months of December 2003–December 2004. On most dates mean daily NEE (24 h) (μmol CO2 m?2 s?1) of ecosystems exposed to elevated atmospheric CO2 were similar to those maintained at current ambient CO2 levels. However, on sampling dates following rains, mean daily NEEs of ecosystems exposed to elevated [CO2] averaged 23 to 56% lower than mean daily NEEs of ecosystems maintained at ambient [CO2]. Mean daily NEE varied seasonally across both CO2 treatments, increasing from about 0.1 μmol CO2 m?2 s?1 in December to a maximum of 0.5–0.6 μmol CO2 m?2 s?1 in early spring. Maximum NEE in ecosystems exposed to elevated CO2 occurred 1 month earlier than it did in ecosystems exposed to ambient CO2, with declines in both treatments to lowest seasonal levels by early October (0.09±0.03 μmol CO2 m?2 s?1), but then increasing to near peak levels in late October (0.36±0.08 μmol CO2 m?2 s?1), November (0.28±0.03 μmol CO2 m?2 s?1), and December (0.54±0.06 μmol CO2 m?2 s?1). Seasonal patterns of mean daily NEE primarily resulted from larger seasonal fluctuations in rates of daytime net ecosystem CO2 uptake which were closely tied to plant community phenology and precipitation. Photosynthesis in the autotrophic crust community (lichens, mosses, and free‐living cyanobacteria) following rains were probably responsible for the high NEEs observed in January, February, and late October 2004 when vascular plant photosynthesis was low. Both CO2 treatments were net CO2 sinks in 2004, but exposure to elevated CO2 reduced CO2 sink strength by 30% (positive net ecosystem productivity=127±17 g C m?2 yr?1 ambient CO2 and 90±11 g C m?2 yr?1 elevated CO2, P=0.011). This level of net C uptake rivals or exceeds levels observed in some forested and grassland ecosystems. Thus, the decrease in C sequestration seen in our study under elevated CO2– along with the extensive coverage of arid and semi‐arid ecosystems globally – points to a significant drop in global C sequestration potential in the next several decades because of responses of heretofore overlooked dryland ecosystems.  相似文献   

12.
Carbon dioxide exchange, soil C and N, leaf mineral nutrition and leaf carbon isotope discrimination (LCID‐Δ) were measured in three High Arctic tundra ecosystems over 2 years under ambient and long‐term (9 years) warmed (~2°C) conditions. These ecosystems are located at Alexandra Fiord (79°N) on Ellesmere Island, Nunavut, and span a soil water gradient; dry, mesic, and wet tundra. Growing season CO2 fluxes (i.e., net ecosystem exchange (NEE), gross ecosystem photosynthesis (GEP), and ecosystem respiration (Re)) were measured using an infrared gas analyzer and winter C losses were estimated by chemical absorption. All three tundra ecosystems lost CO2 to the atmosphere during the winter, ranging from 7 to 12 g CO2‐C m?2 season?1 being highest in the wet tundra. The period during the growing season when mesic tundra switch from being a CO2 source to a CO2 sink was increased by 2 weeks because of warming and increases in GEP. Warming during the summer stimulated dry tundra GEP more than Re and thus, NEE was consistently greater under warmed as opposed to ambient temperatures. In mesic tundra, warming stimulated GEP with no effect on Re increasing NEE by ~10%, especially in the first half of the summer. During the ~70 days growing season (mid‐June–mid‐August), the dry and wet tundra ecosystems were net CO2‐C sinks (30 and 67 g C m?2 season?1, respectively) and the mesic ecosystem was a net C source (58 g C m?2 season?1) to the atmosphere under ambient temperature conditions, due in part to unusual glacier melt water flooding that occurred in the mesic tundra. Experimental warming during the growing season increased net C uptake by ~12% in dry tundra, but reduced net C uptake by ~20% in wet tundra primarily because of greater rates of Re as opposed to lower rates of GEP. Mesic tundra responded to long‐term warming with ~30% increase in GEP with almost no change in Re reducing this tundra type to a slight C source (17 g C m?2 season?1). Warming caused LCID of Dryas integrafolia plants to be higher in dry tundra and lower in Salix arctic plants in mesic and wet tundra. Our findings indicate that: (1) High Arctic ecosystems, which occur in similar mesoclimates, have different net CO2 exchange rates with the atmosphere; (2) long‐term warming can increase the net CO2 exchange of High Arctic tundra by stimulating GEP, but it can also reduce net CO2 exchange in some tundra types during the summer by stimulating Re to a greater degree than stimulating GEP; (3) after 9 years of experimental warming, increases in soil carbon and nitrogen are detectable, in part, because of increases in deciduous shrub cover, biomass, and leaf litter inputs; (4) dry tundra increases in GEP, in response to long‐term warming, is reflected in D. integrifolia LCID; and (5) the differential carbon exchange responses of dry, mesic, and wet tundra to similar warming magnitudes appear to depend, in part, on the hydrologic (soil water) conditions. Annual net ecosystem CO2‐C exchange rates ranged from losses of 64 g C m?2 yr?1 to gains of 55 g C m?2 yr?1. These magnitudes of positive NEE are close to the estimates of NPP for these tundra types in Alexandra Fiord and in other High Arctic locations based on destructive harvests.  相似文献   

13.
Despite the advance in our understanding of the carbon exchange between terrestrial ecosystems and the atmosphere, semiarid ecosystems have been poorly investigated and little is known about their role in the global carbon balance. We used eddy covariance measurements to determine the exchange of CO2 between a semiarid steppe and the atmosphere over 3 years. The vegetation is a perennial grassland of Stipa tenacissima L. located in the SE of Spain. We examined diurnal, seasonal and interannual variations in the net ecosystem carbon balance (NECB) in relation to biophysical variables. Cumulative NECB was a net source of 65.7, 143.6 and 92.1 g C m?2 yr?1 for the 3 years studied, respectively. We separated the year into two distinctive periods: dry period and growing season. The ecosystem was a net source of CO2 to the atmosphere, particularly during the dry period when large CO2 positive fluxes of up to 15 μmol m?2 s?1 were observed in concomitance with large wind speeds. Over the growing season, the ecosystem was a slight sink or neutral with maximum rates of ?2.3 μmol m?2 s?1. Rainfall events caused large fluxes of CO2 to the atmosphere and determined the length of the growing season. In this season, photosynthetic photon flux density controlled day‐time NECB just below 1000 μmol m?2 s?1. The analyses of the diurnal and seasonal data and preliminary geological and gas‐geochemical evaluations, including C isotopic analyses, suggest that the CO2 released was not only biogenic but most likely included a component of geothermal origin, presumably related to deep fluids occurring in the area. These results highlight the importance of considering geological carbon sources, as well as the need to carefully interpret the results of eddy covariance partitioning techniques when applied in geologically active areas potentially affected by CO2‐rich geofluid circulation.  相似文献   

14.
Forests in the south-eastern United States experienced a prolonged dry spell and above-normal temperatures during the 1995 growing season. During this episode, nearly continuous, eddy covariance measurements of carbon dioxide and water vapour fluxes were acquired over a temperate, hardwood forest. These data are used to examine how environmental factors and accumulating soil moisture deficits affected the diurnal pattern and magnitude of canopy-scale carbon dioxide and water vapour fluxes. The field data are also used to test an integrative leaf-to-canopy scaling model (CANOAK), which uses micrometeorological and physiological theory, to calculate mass and energy fluxes. When soil moisture was ample in the spring, peak rates of net ecosystem CO2 exchange (NF) occurred around midday and exceeded 20 μmol m?2 s?1. Rates of NK were near optimal when air temperature ranged between 22 and 25°C. The accumulation of soil moisture deficits and a co-occurrence of high temperatures caused peak rates of daytime carbon dioxide uptake to occur earlier in the morning. High air temperatures and soil moisture deficits were also correlated with a dramatic reduction in the magnitude of NE. On average, the magnitude of NE decreased from 20 to 7 μmol m?2 s?1 as air temperature increased from 24 to 30°C and the soil dried. The CANAOK model yielded accurate estimates of canopy-scale carbon dioxide and water vapour fluxes when the forest had an ample supply of soil moisture. During the drought and heat spell, a cumulative drought index was needed to adjust the proportionality constant of the stomatal conductance model to yield accurate estimates of canopy CO2 exchange. The adoption of the drought index also enabled the CANOAK model to give improved estimates of evaporation until midday. On the other hand, the scheme failed to yield accurate estimates of evaporation during the afternoon.  相似文献   

15.
We used eddy covariance and biomass measurements to quantify the carbon (C) dynamics of a naturally regenerated longleaf pine/slash pine flatwoods ecosystem in north Florida for 4 years, July 2000 to June 2002 and 2004 to 2005, to quantify how forest type, silvicultural intensity and environment influence stand‐level C balance. Precipitation over the study periods ranged from extreme drought (July 2000–June 2002) to above‐average precipitation (2004 and 2005). After photosynthetic photon flux density (PPFD), vapor pressure deficit (VPD) >1.5 kPa and air temperature <10 °C were important constraints on daytime half‐hourly net CO2 exchange (NEEday) and reduced the magnitude of midday CO2 exchange by >5 μmol CO2 m?2 s?1. Analysis of water use efficiency indicated that stomatal closure at VPD>1.5 kPa moderated transpiration similarly in both drought and wet years. Night‐time exchange (NEEnight) was an exponential function of air temperature, with rates further modulated by soil moisture. Estimated annual net ecosystem production (NEP) was remarkably consistent among the four measurement years (range: 158–192 g C m?2 yr?1). In comparison, annual ecosystem C assimilation estimates from biomass measurements between 2000 and 2002 ranged from 77 to 136 g C m?2 yr?1. Understory fluxes accounted for approximately 25–35% of above‐canopy NEE over 24‐h periods, and 85% and 27% of whole‐ecosystem fluxes during night and midday (11:00–15:00 hours) periods, respectively. Concurrent measurements of a nearby intensively managed slash pine plantation showed that annual NEP was three to four times greater than that of the Austin Cary Memorial Forest, highlighting the importance of silviculture and management in regulating stand‐level C budgets.  相似文献   

16.
Seasonal and annual respiration of a ponderosa pine ecosystem   总被引:2,自引:0,他引:2  
The net ecosystem exchange of CO2 between forests and the atmosphere, measured by eddy covariance, is the small difference between two large fluxes of photosynthesis and respiration. Chamber measurements of soil surface CO2 efflux (Fs), wood respiration (Fw) and foliage respiration (Ff) help identify the contributions of these individual components to net ecosystem exchange. Models developed from the chamber data also provide independent estimates of respiration costs. We measured CO2 efflux with chambers periodically in 1996–97 in a ponderosa pine forest in Oregon, scaled these measurements to the ecosystem, and computed annual totals for respiration by component. We also compared estimated half-hourly ecosystem respiration at night (Fnc) with eddy covariance measurements. Mean foliage respiration normalized to 10 °C was 0.20 μmol m–2 (hemi-leaf surface area) s–1, and reached a maximum of 0.24 μmol m–2 HSA s–1 between days 162 and 208. Mean wood respiration normalized to 10 °C was 5.9 μmol m–3 sapwood s–1, with slightly higher rates in mid-summer, when growth occurs. There was no significant difference (P > 0.10) between wood respiration of young (45 years) and old trees (250 years). Soil surface respiration normalized to 10 °C ranged from 0.7 to 3.0 μmol m–2 (ground) s–1 from days 23 to 329, with the lowest rates in winter and highest rates in late spring. Annual CO2 flux from soil surface, foliage and wood was 683, 157, and 54 g C m–2 y–1, with soil fluxes responsible for 76% of ecosystem respiration. The ratio of net primary production to gross primary production was 0.45, consistent with values for conifer sites in Oregon and Australia, but higher than values reported for boreal coniferous forests. Below-ground carbon allocation (root turnover and respiration, estimated as Fs– litterfall carbon) consumed 61% of GPP; high ratios such as this are typical of sites with more water and nutrient constraints. The chamber estimates were moderately correlated with change in CO2 storage in the canopy (Fstor) on calm nights (friction velocity u* < 0.25 m s–1; R2 = 0.60); Fstor was not significantly different from summed chamber estimates. On windy nights (u* > 0.25 m s–1), the sum of turbulent flux measured above the canopy by eddy covariance and Fstor was only weakly correlated with summed chamber estimates (R2 = 0.14); the eddy covariance estimates were lower than chamber estimates by 50%.  相似文献   

17.
The effects of varying nitrogen supply on canopy leaf area, response of leaf net photosynthesis (An) to quantum flux density (Q), and fruit yields of kiwifruit vines (Actinidia deliciosa var. deliciosa) were examined in a two-year field experiment. Vines were grown with 0, 250 or 750 kg N ha?1 year?1. The responses to nitrogen supply were compared with responses to shade, to examine the impact of reduced carbon assimilation on canopy leaf area and fruit yields. Nitrogen supply did not affect significantly any of the measured variables during the first season of the experiment. In the second season, canopy leaf area was reduced significantly where nitrogen supply was limited. The quantum efficiency of photosynthesis (φq) increased from 0. 03 mol CO2 mol?1 Q soon after leaf emergence to more than 0. 05 mol CO2 mol?1 Q during the middle of the growing season. The quantum saturated rate of An (Asat) also increased during the season, from 7–10 μmol CO2 m?2 s?1 soon after leaf emergence, to 15–20 (μmol CO2 m?2 s?1 during the middle of the growing season. φq and Asat increased significantly with nitrogen supply at all measurement times during the second season. For vines with high nitrogen, fruit yields in both seasons were similar, averaging 3. 05 kg m?2. Fruit yields in the second season were reduced significantly where nitrogen supply was limited, due to reduced fruit numbers. The relative effects of reduced leaf area and reduced leaf photosynthesis for carbon assimilation by nitrogen deficient vines were examined using a mathematical model of canopy photosynthesis for kiwifruit vines. Simulations of canopy photosynthesis indicated that effects on leaf area and on leaf photosynthesis were of similar importance in the overall effects of nitrogen deficiency on carbon assimilation. The effects of nitrogen supply on fruit numbers (i. e. flower development) preceded the measured effects on carbon assimilation, indicating that the nitrogen supply affected carbon partitioning to reserves in the first season.  相似文献   

18.
Water vapour and CO2 fluxes were measured using the eddy correlation method above and below the overstorey of a 21-m tall aspen stand in the boreal forest of central Saskatchewan as part of the Boreal Ecosystem-Atmosphere Study (BOREAS). Measurements were made at the 39.5-m and 4-m heights using 3-dimensional sonic anemometers (Kaijo-Denki and Solent, respectively) and closed-path gas analysers (LI-COR 6262) with 6-m and 4.7-m long heated sampling tubing, respectively. Continuous measurements were made from early October to mid-November 1993 and from early February to late-September 1994. Soil CO2 flux (respiration) was measured using a LI-COR 6000-09 soil chamber and soil evaporation was measured using Iysimetry. The leaf area index of the aspen and hazelnut understorey reached 1.8 and 3.3, respectively. The maximum daily evapotranspiration (E) rate was 5–6 mm d?1. Following leaf-out the hazelnut and soil accounted for 22% of the forest E. The estimated total E was 403 mm for 1994. About 88% of the precipitation in 1994 was lost as evapotranspiration. During the growing season, the magnitude of half-hourly eddy fluxes of CO2 from the atmosphere into the forest reached 1.2 mg CO2 m?2 s?1 (33 μmol C m?2 s?1) during the daytime. Downward eddy fluxes at the 4-m height were observed when the hazelnut was growing rapidly in June and July. Under well-ventilated night-time conditions, the eddy fluxes of CO2 above the aspen and hazelnut, corrected for canopy storage, increased exponentially with soil temperature at the 2-cm depth. Estimates of daytime respiration rates using these relationships agreed well with soil chamber measurements. During the 1994 growing season, the cumulative net ecosystem exchange (NEE) was -3.5 t C ha?1 y?1 (a net gain by the system). For 1994, cumulative NEE, ecosystem respiration (R) and gross ecosystem photosynthesis (GEP = R - NEE) were estimated to be -1.3, 8.9 and 10.2 t C ha?1 y?1 respectively. Gross photosynthesis of the hazelnut was 32% of GEP.  相似文献   

19.
Increased fire frequency in the Great Basin of North America's intermountain West has led to large‐scale conversion of native sagebrush (Artemisia tridentata Nutt.) communities to postfire successional communities dominated by native and non‐native annual species during the last century. The consequences of this conversion for basic ecosystem functions, however, are poorly understood. We measured net ecosystem CO2 exchange (NEE) and evapotranspiration (ET) during the first two dry years after wildfire using a 4‐m diameter (16.4 m3) translucent static chamber (dome), and found that both NEE and ET were higher in a postfire successional ecosystem (?0.9–2.6 µ mol CO2 m?2 s?1 and 0.0–1.0 mmol H2O m?2 s?2, respectively) than in an adjacent intact sagebrush ecosystem (?1.2–2.3 µ mol CO2 m?2 s?1 and ?0.1–0.8 mmol H2O m?2 s?2, respectively) during relatively moist periods. Higher NEE in the postfire ecosystem appears to be due to lower rates of above‐ground plant respiration while higher ET appears to be caused by higher surface soil temperatures and increased soil water recharge after rains. These patterns disappeared or were reversed, however, when the conditions were drier. Daily net ecosystem productivity (NEP; g C m?2 d?1), derived from multiple linear regressions of measured fluxes with continuously measured climate variables, was very small (close to zero) throughout most of the year. The wintertime was an exception in the intact sagebrush ecosystem with C losses exceeding C gains leading to negative NEP while C balance of the postfire ecosystem remained near zero. Taken together, our results indicate that wildfire‐induced conversion of native sagebrush steppe to ecosystems dominated by herbaceous annual species may have little effect on C balance during relatively dry years (except in winter months) but may stimulate water loss immediately following fires.  相似文献   

20.
Understanding the response of ecosystem respiration (ER) to major environmental drivers is critical for estimating carbon sequestration and large-scale modeling research. Temperature effect on ER is modified by other environmental factors, mainly soil moisture, and such information is lacking for switchgrass (Panicum virgatum L.) ecosystems. The objective of this study was to examine seasonal variation in ER and its relationship with soil temperature (T s) and moisture in a switchgrass field. ER from the nighttime net ecosystem CO2 exchange measurements by eddy covariance system during the 2011 and 2012 growing seasons was analyzed. Nighttime ER ranged from about 2 (early growing season) to as high as 13 μmol m?2 s?1 (peak growing period) and showed a clear seasonality, with low rates during warm (>30 °C) and dry periods (<0.20 m3 m?3 of soil water content). No single temperature or moisture function described variability in ER on the seasonal scale. However, an exponential temperature–respiration function explained over 50 % of seasonal variation in ER at adequate soil moisture (>0.20 m3 m?3), indicating that soil moisture <0.20 m3 m?3 started to limit ER. Due to the limitation of soil–atmosphere gas exchange, ER rates declined markedly in wet soil conditions (>0.35 m3 m?3) as well. Consequently, both dry and wet conditions lowered temperature sensitivity of respiration (Q 10). Stronger ER–T s relationships were observed at higher soil moisture levels. These results demonstrate that soil moisture greatly influences the dynamics of ER and its relationship with T s in drought prone switchgrass ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号