首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The biogeochemical controls on particulate phosphorus distribution in the Humber estuary have been investigated with regard to salinity and season. Surveys of the Humber were conducted in August 1991 and January, March and June 1992. Samples were collected for particulate phosphorus, dissolved phosphorus, suspended load and salinity analysis. Particulate phosphorus forms 16 to 93% of the total phosphorus present in the water column of the Humber estuary. Total particulate phosphorus concentrations in the Humber ranged from 1 to 45 μmol l−1. This range is comparable to that observed in similar sized industrialized estuaries of the U.S.A. and northern Europe. Flocculation at low salinities was found to be a major influence on particulate phosphorus concentrations. Highest concentrations of particulate phosphorus were found in reaches below a salinity of 5 and may result in phosphorus being trapped in the sediments of the estuary. There is evidence that this phosphorus may be released as oxygen concentrations decrease during the summer. Suspended load, adsorption/desorption equilibrium and external inputs were also found to influence the particulate phosphorus concentrations.  相似文献   

2.
A general simulation model developed for the Ems estuary (a part of the Wadden Sea), to describe the main carbon flow through the foodweb, was applied for monitoring purposes. In this model, the estuary is divided into five compartments, in each of which a pelagic, an epibenthic and a benthic submodel operates. A transport model regulates the distribution of dissolved and particulate substances over the area. Two parameters that partly regulate the carbon flow are the concentrations of phosphate and of the particles (turbidity) in the water. From the sensitivity analyses for phosphate and turbidity it can be concluded that the relative effects of changes in turbidity and changes in the influx of phosphate from the rivers are large in the upper reaches and small in the lowest reaches of the estuary. This is due to the increasing influence of the coastal waters in the lower reaches. These results indicate that the reaches, which represent the beginning and the end of a gradient in the estuary, are also very suitable for monitoring the quality status of this estuary in terms of production and standing stock of groups of organisms. The need to use monitored data from the boundaries (sea and rivers) of those ecosystems as input in simulation models is discussed. Moreover, the possibilities of using simulation models to generate new ideas on the functioning of estuarine ecosystems under changing environmental conditions and to help administrators to decide on specific future management strategies are also discussed. Presented at the VI International Wadden Sea Symposium (Biologische Anstalt Helgoland, Wattenmeerstation Sylt, D-2282 List, FRG, 1–4 November 1988).  相似文献   

3.
Summary The Ems estuary is a tidal system, showing typical estuaries characteristics, such as gradients of salinity and suspended matter in the water phase. The tidal amplitude is 2.5–3 m. Tidal flats cover 40% of the total area in the outer part and 75% in the innermost part of the estuary, the Dollard. In the sediment aerobic heterotrophic bacteria are concentrated in the upper 2 cm, the numbers rapidly decreasing with depth.Oxygen production and consumption rates in the sediment, and oxygen consumption in the water are measured, together with environmental parameters and numbers of aerobic heterotrophic bacteria. Using a conversion factor of 12/32, oxygen measurements are translated to organic carbon. Input of organic carbon from external sources (particulate carbon from the river Ems and the North Sea, and organic waste discharge) is calculated for the Dollard. An organic carbon budget for the Dollard, using these calculated figures from one year's measurements, showed that most of the organic carbon entering the systems, originated from external sources.Mineralization was quantitatively more important in the sediment than it was in the water phase. The calculated import and production of organic carbon in the system was larger than the calculated consumption. An explanation for this difference is probably the export of soluble organic carbon, which was not measured, to the adjoining Waddensea, which must be considerable. It was concluded that heterotrophic bacteria must play an important role in carbon fluxes in the Dollard and that studies of growth yield under in situ conditions are necessary for a better understanding of their role in the ecosystem.  相似文献   

4.
In the low salinity region of the Elbe estuary in March–April 1992 the turbidity zone was characterized by high loads of suspended matter, 7% of which was organic material (750 μM C) at the surface. Particulate nitrogen, phosphorus and carbohydrates concentrations reached 55 μM N, 10 μM P and more than 15 μM glc. eq., corresponding to 13% of total C, at the surface and increasing threefold near the bottom. In spite of the peaking of particulate organic material levels in the maximum turbidity zone, there were only consistent qualitative changes in total particulate C, N, P, and carbohydrates along the Elbe estuary. Downstream, both the percentage of particulate organic material and the turbidity: organic material ratio decreased, indicating decomposition in the upper estuary and dilution with inorganic suspended matter from the lower estuary. Diatoms, the dominant phytoplankton group, decreased from the upper reaches towards the turbidity zone by 0.3 (surface) and 1.5 mg C l−1 (bottom). This corresponded to 12 and 60% of the decrease in total particulate carbon. Estimated local input of organic carbon by primary production (21 μg Cl−1d−1) was almost compensated by calculated minimum grazing (14 μg C l−1d−1). Considering net primary production and grazing, the dissimilation by zooplankton (5 μg C l−1d−1) and heterotrophic bacterial decomposition (48 μg C l−1d−1), when summed over the estimated flushing time (12 days) represented a loss of suspended organic matter of 0.6 mg Cl−1. Since this was only 20% of the observed decrease in particulate carbon, significant dilution processes must be assumed. Dissolved organic nitrogen decreased from 35 to 10 μM N and dissolvd organic phosphorus from 0.6 to 0.1 μM P towards the sea, mainly due to dilution. The distribution of phosphate, with highest loads in the turbidity maximum of 2.4 μM, suggested an interaction with the accumulated load of particulate material.  相似文献   

5.
Analysis of long-term data on chlorophyll a and total phosphorus concentrations, plankton primary production, organic matter mineralization, and weather conditions in the middle of summer in 2003–2017 revealed eutrophication processes in the Neva River estuary. Weather conditions in the region exerted a strong effect on organic matter prodaction and mineralization processes in the estuary. Rainy and cold summers of the recent years promoted massive development of algae due to increased washout of nutrients from the catchment area, but the rate of organic matter mineralization in the water column was reduced because of low water temperature.  相似文献   

6.
In the Ems estuary the gradients in the concentration of nutrients and in turbidity (the factors that mainly determine the amount of carbon assimilated by phytoplankton) are steep. The effects of changing the turbidity in the estuary and the amount of phosphate discharged by the rivers Ems and Westerwoldsche Aa were analysed, using the simulation model developed by BOEDE (Biological Research Ems-Dollard estuary). The results of several sensitivity runs were compared with the standard run.A 50% reduction of turbidity led to a strong increase in phytoplanktonbiomass, especially in the inner parts of the estuary where turbidity is high. On average, the effects are two to three times larger for the inner part than for the outer part of the estuary. When the turbidity doubles the opposite occurs resulting in a significant decrease of phytoplankton biomass in the upper reaches. In the lower reaches of the estuary a 50% reduction in the river discharge of phosphate is largely compensated for by changes in phosphate transport from the North Sea. This results in a nearly unchanged primary production in the lower reaches as compared with the standard run.In the upper reaches a 50% reduction of phosphate loads results in a strongly reduced primary production.In general, the zooplankton groups (copepods and microzooplankton) are influenced less than the phytoplankton. Benthic fauna is hardly influenced, except for filter feeders; which are strongly affected by the total density of the particles, a parameter which also is directly related to turbidity.  相似文献   

7.
Summary Transport processes were studied in a gully between a saltmarsh and an estuary. After storm tides, ebb currents in the gully reached high values. It is concluded that particulate matter (both obganic and inorganic) are imported into the marsh. Coarse organic debris is exported during storm tides, but this amount is low when compared with the primary production on the marsh. Exports are shown for dissolved organic carbon, ammonia, phosphate and silica, while nitrate and possibly nitrite are imported. Therefore, it seems warranted to conclude that the organic matter producedin situ and imported is mineralized in the marsh.  相似文献   

8.
1. River food webs rely on two major food sources: autochthonous primary production within the river and allochthonous organic matter transferred to the river. We characterised the consumer communities and assessed the food sources of dominant consumers along a subtropical mountainous river (the Lanyang River of north‐eastern Taiwan) at the catchment scale from the headwater to the estuary using natural abundances of stable carbon and nitrogen isotopes. 2. The downstream transport of fine particulate organic matter (FPOM) was two orders of magnitude greater than that of coarse particulate organic matter (CPOM). Transport of both materials increased from the headwater and reached a maximum in the midstream reach. CPOM composition exhibited a gradual shift from leaves and branches in the headwater, an area characterised by high canopy cover, to algae in the midstream reaches and marsh plants in the downstream reaches. 3. Consumer communities can be classified into two regional categories: the upland category in the headwater and upstream and midstream reaches and the lowland category comprised of samples from the downstream reach and estuary. The upland category revealed a clear and gradual seasonal shift in community composition, but a seasonal shift was not apparent for the lowland category. Nutrient concentrations and water temperature were the main factors explaining longitudinal and seasonal variations. 4. The use of sources of organic matter by dominant consumers along the Lanyang River was primarily determined by their availability. Riparian C3 plants were the major food sources in the headwater, upstream reach and estuary, but the contribution of periphyton increased in the upper midstream reach where the river flows through an agricultural area. In the lower midstream and downstream reaches, the contribution of riparian C4 plants became dominant. 5. The trophic transfer of organic materials in the Lanyang River may be influenced by the fast current velocity and by sewage nutrient loading in the river, both of which have important implications for predicting how the functioning of subtropical river food webs will respond to human‐related changes in land use.  相似文献   

9.
A. Ruiz  J. Franco  E. Orive 《Aquatic Ecology》1994,28(3-4):309-316
Seston quantity and quality was measured in the Urdaibai Estuary in summer, when river discharge is low and tidal flushing is the main driving force to transport and resuspend particulate matter in the estuary. The highest seston concentrations are found in the upper estuary, where more than 90% of total suspended particulate matter is made up of particles <20 μm. There is a temporal ebb-flood asymmetry and turbulent mixing is stronger at flood tide. During dry calm periods sediment resuspension is observed for a short period of time at floods during spring tides, decreasing drastically before slack waters. In spite of this, particulate organic matter mainly originates from anthropogenic sources (domestic wastewater discharge) and plankton production.  相似文献   

10.
18 Swedish forest lakes covering a wide range of dystrophy were studied in order to quantify and characterize the organic matter in the water with respect to origin (allochthonous or autochthonous), physical state (particulate or dissolved) and phosphorus content. Samples were collected repeatedly during a two-year period with unusually variable hydrological conditions. Water from three different depths and from tributaries was analysed with standard monitoring methods, including water colour, Secchi disk transparency, total organic carbon (TOC), CODCr, CODMn, total phosphorus and molybdate reactive phosphorus. Interrelationships were used to compare different methods and to assess the concentration and composition of organic matter. It is estimated that in remote softwater lakes of the Swedish forest region, autochthonous carbon is typically < 5 g m−3. Most lakes in this region receive significant amounts of humic matter originating from coniferous forest soils or peatland in the catchment area. In most humic lakes with a water colour of ≥ 50 g Pt m−3, more than half of the organic carbon in the surface water is of allochthonous origin, and in polyhumic lakes (> 200 g Pt m−3) the proportion can exceed 90%. Secchi depth readings were related similarly to organic matter from both sources and provided good estimates of TOC with a single optical measurement. Water colour was used to distinguish allochthonous and autochthonous matter. High concentrations of phosphorus were found in humic waters, most of it being molybdate reactive, and probably associated with humic matter rather than as dissolved free inorganic forms. CODMn yielded only 25–60% of TOC and appears to include mainly truly dissolved substances of low molecular weight.  相似文献   

11.
Fertilizer applications and other non-point sources result in an increasing diffuse N and P pollution of receiving waters degrading water quality by eutrophication with several adverse impacts. Floodplains are regarded as reactive interfaces between uplands and receiving waters. In the present study groundwater quality on its subsurface flow from an upland area through a lowland floodplain towards the receiving water body of the Spree River was monitored biweekly over 2 years with two transects of 18 groundwater observation wells. Within the floodplain reaction rates of the nutrients are unevenly distributed. On a scale smaller than the floodplain, the hyporheic zone is regarded as reactive interface with unproportional high reaction rates. Therefore, phosphate and dissolved iron were measured with high spatial resolution in the pore water of the riverbed and the oxbow bed to investigate turnover processes and their small-scale spatial variability at the immediate surface–subsurface interface. The biogeochemical composition of subsurface water is characterized by little temporal variability while spatial heterogeneity is high on the hectametre scale of the study site as well as on the centimetre scale of the bed sediments. Nitrate is eliminated very efficiently by denitrification in the anoxic aquifer of the floodplain while ammonium and phosphate concentrations increase under anoxic conditions. Phosphate and ammonium originate from the mineralization of organic matter and phosphate is additionally released by reductive dissolution of iron-bound phosphorus and weathering of bedrock. Sorption–desorption processes equalize temporal fluctuations of phosphate concentrations. Phosphate uptake by plants is assumed as an important process at only one of the groundwater observation wells. Redox conditions required for a phosphate sink are opposite to those involved in nitrate removal by denitrification. Thus, redox patchiness of floodplain aquifers favours nitrate and phosphate removal, i.e. a temporal and spatial sequence of anoxic and oxic conditions eliminates nitrogen and causes phosphate storage. On the groundwater's path from the upland to the river further phosphate is released in the bed sediments. It originates from previously settled particulate compounds containing phosphorus. While the release of iron-bound phosphorus clearly predominates in the riverbed sediments the mineralization of organic matter is an important additional phosphorus release process in the oxbow bed sediments.  相似文献   

12.
Although phosphate concentrations have been reduced, the rivers Meuse and Rhine are still polluted with sulphate, which most probably affects vegetation development in newly created riverine wetlands. The influence of flooding with river water rich in sulphate was tested on three soil types from floodplains of the river Meuse using flow-through and batch experiments. Soils were selected for contrasting concentrations of iron and organic matter and originated from a floating fen (iron-poor, organic), an alder carr (iron-rich, organic) and a clay pit (iron-rich, low in organic matter). Flooding induced mobilisation of phosphate. Sulphate only enhanced this effect in the alder carr soil, where sulphide and phosphate competed for binding to iron. Only in the floating fen soil did the addition of sulphate result in the formation of free sulphide, which reduced the growth of Glyceria maxima, serving as a phytometer. In addition, the floating soil started to sink, due to falling methane concentrations. In the different soil types methane production was hampered by the presence of more favourable electron acceptors such as sulphate in the water and Fe(III) in the soil. It was concluded that the effects of inundation with sulphate-polluted water strongly depend on the soil type: under iron-poor circumstances, free sulphide may accumulate, leading to phytotoxicity, while in soils rich in iron, sulphide toxicity is prevented, but phosphate availability may be increased. In addition, shortage of easily degradable organic matter can limit the formation of potential toxicants such as ammonium, iron and sulphide. Results are discussed in terms of their implications for nature management.  相似文献   

13.
Prins  T. C.  Smaal  A. C. 《Hydrobiologia》1994,282(1):413-429
The fluxes of particulate and dissolved material between bivalve beds and the water column in the Oosterschelde estuary have been measured in situ with a Benthic Ecosystem Tunnel. On mussel beds uptake of POC, PON and POP was observed. POC and PON fluxes showed a significant positive correlation, and the average C:N ratio of the fluxes was 9.4. There was a high release of phosphate, nitrate, ammonium and silicate from the mussel bed into the water column. The effluxes of dissolved inorganic nitrogen and phosphate showed a significant correlation, with an average N:P ratio of 16.5. A comparison of the in situ measurements with individual nutrient excretion rates showed that excretion by the mussels contributed 31–85% to the total phosphate flux from the mussel bed. Ammonium excretion by the mussels accounted for 17–94% of the ammonium flux from the mussel bed. The mussels did not excrete silicate or nitrate. Mineralization of biodeposition on the mussel bed was probably the main source of the regenerated nutrients.From the in situ observations net budgets of N, P and Si for the mussel bed were calculated. A comparison between the uptake of particulate organic N and the release of dissolved inorganic N (ammonium + nitrate) showed that little N is retained by the mussel bed, and suggested that denitrification is a minor process in the mussel bed sediment. On average, only 2/3 of the particulate organic P, taken up by the mussel bed, was recycled as phosphate. A net Si uptake was observed during phytoplankton blooms, and a net release dominated during autumn. It is concluded that mussel beds increase the mineralization rate of phytoplankton and affect nutrient ratios in the water column. A comparison of N regeneration by mussels in the central part of the Oosterschelde estuary with model estimates of total N remineralization showed that mussels play a major role in the recycling of nitrogen.  相似文献   

14.
The Great Ouse estuary in southern England is a macrotidal estuary with rather coarse sediment. Two intertidal sites were sampled five times over the year at low tide. The sediments are suboxic, organic poor (approximately 1.5% organic carbon). They are composed mainly of detrital quartz and feldspar with some calcite. At both sites the total phosphorus in the sediments ranges from 0.03 – 0.12% dry weight and total iron from 0.42–1.22% dry weight. Of the total phosphorus 20% is organic and 80% is inorganic of which 10% is water extractable. Total iron and phosphorus correlate well and the ratio of iron:phosphorus is 8.4 which is similar to that found when phosphorus is adsorbed by iron oxyhydroxides, suggesting that iron oxyhydroxides are an important substrate for phosphorus sorption in these sediments. Fluxes of phosphorus from the sediment to the overlying water, measured in cores incubated in the laboratory, are low and show no seasonality. The sodium concentration in the porewaters at both sites is variable suggesting that there is movement of water through the sediment to depths of at least 20 cm. This is borne out by variable phosphorus, iron and phosphorus concentrations in the porewaters and ill defined redox zones in the sediments.  相似文献   

15.
The present study aimed to investigate into the feeding ecology of the dominant copepods along a salinity gradient in Chikugo estuary. Copepod composition was studied from samples collected from stations positioned along the salinity gradient of the estuary. Copepod gut pigment concentrations were measured by fluorescence technique and hydrographical parameters such as temperature, salinity, transparency, suspended particulate matter (SPM); pigments such as chlorophyll-a (Chl-a), phaeopigment; and particulate nutrients such as particulate organic carbon (POC) and particulate organic nitrogen (PON) were measured. Two distinct zones in terms of nutrient and pigment concentrations as well as copepod distribution and feeding were identified along the estuary. We identified a zone of turbidity maximum (TM) in the low saline upper estuary which was characterized by having higher SPM, higher POC and PON but lower POC:PON ratios, higher pigment concentrations but lower Chl-a/SPM ratios and higher copepod dry biomass. Sinocalanus sinensis was the single dominant copepod in low saline upper estuary where significantly higher concentrations of nutrients and pigments were recorded and a multispecies copepod assemblage dominated by common coastal copepods such as Acartia omorii, Oithona davisae and Paracalanus parvus was observed in the lower estuary where nutrient and pigment concentrations were lower. Copepods in the estuary are predominantly herbivorous, feeding primarily on pigment bearing plants. However, completely contrasting trophic environments were found in the upper and the lower estuary. It was speculated from the Chl-a and phaeopigment values that copepods in the upper estuary receive energy from a detritus-based food web while in the lower estuary an algal-based food web supports copepod growth. Overall, the upper estuary was identified to provide a better trophic environment for copepod and is associated with higher SPM concentrations and elevated turbidity. The study demonstrates the role of estuarine turbidity maximum (ETM) in habitat trophic richness for copepod feeding. The study points out the role of detritus-based food web as energy source for the endemic copepod S. sinensis in the upper estuary, which supports as nursery for many fish species.  相似文献   

16.
Phosphorus (P) fractions were quantified in water samples collected on four occasions from sites at the lower tidal limit of seven Scottish East Coast rivers. Individual catchment characteristics ranged from those dominated by semi-natural land use to those where agriculture predominated. Together the rivers displayed attributes ranging from nearly pristine to those impacted by point and diffuse sources of pollutants. Sampling times were chosen to coincide with periods of low river flows where conditions should result in low concentrations of suspended particulate matter (SPM) but favourable for phytoplankton growth. Total phosphorus (TP) concentrations were < 0.004 mg l–1, 0.005–0.048 mg l–1 and 0.28–2.2 mg l–1 for pristine, agricultural and point source impacted rivers respectively. Soluble reactive phosphorus (SRP) represented from < 5% to > 90% of TP and dissolved P dominated all samples. The total phosphorus content (TPC) of SMP ranged from 0.1 to 1.1% and was significantly related to SRP. Organic matter was a significant component of SPM and organically bound phosphorus was the dominant form of particulate P. The C/P ratio of organic matter was wide, between 500–1200 for the more pristine systems which narrowed to < 400 for heavily impacted rivers. Exchangeable P increased during the summer but was generally a minor component of TP and therefore likely to be a significant source of SRP only in pristine rivers. Phytoplankton constituted between 5 and 46% of organic matter and concentrations of chlorophyll-a were significantly correlated with both TP and SRP.  相似文献   

17.
Benthic phosphorus regeneration in the Potomac River Estuary   总被引:2,自引:2,他引:0  
Callender  Edward 《Hydrobiologia》1982,91(1):431-446
The flux of dissolved reactive phosphate from Potomac riverine and estuarine sediments is controlled by processes occurring at the water-sediment interface and within surficial sediment.In situ benthic fluxes (0.1 to 2.0 mmoles m−2 day−1) are generally five to ten times higher than calculated diffusive fluxes (0.020 to 0.30 mmoles m−2 day−1). The discrepancy between the two flux estimates is greatest in the transition zone (river mile 50 to 70) and is attributd to macrofaunal irrigation. Bothin situ and diffusive fluxes of dissolved reactive phosphate from Potomac tidal river sediments are low while those from anoxic lower estuarine sediments are high. The net accumulation rate of phosphorus in benthic sediment exhibits an inverse pattern. Thus a large fraction of phosphorus is retained by Potomac tidal river sediments, which contain a surficial oxidized layer and oligochaete worms tolerant of low oxygen conditions, and a large fraction of phosphorus is released from anoxic lower estuary sediments. Tidal river sediment pore waters are in equilibrium with amorphous Fe (OH)3 while lower estuary pore waters are significantly undersaturated with respect to this phase. Benthic regeneration of dissolved reactive phosphorus is sufficient to supply all the phosphorus requirements for net primary production in the lower tidal river and transition-zone waters of the Potomac River Estuary. Benthic regeneration supplies approximately 25% as much phosphorus as inputs from sewage treatment plants and 10% of all phosphorus inputs to the tidal Potomac River. When all available point source phosphorus data are put into a steady-state conservation of mass model and reasonable coefficients for uptake of dissolved phosphorus, remineralization of particulate phosphorus, and sedimentation of particulate phosphorus are used in the model, a reasonably accurate simulation of dissolved and particulate phosphorus in the water column is obtained for the summer of 1980.  相似文献   

18.
Brydsten  Lars 《Hydrobiologia》1992,235(1):71-83
Material transported by the Öre River in northern Sweden is all deposited within the estuary which means that resuspension is necessary for the transport of particles out of the estuary. Wave-induced sediment resuspension in the estuary was studied by monitoring the distribution of suspended particles during a resuspension-redeposition cycle. The particle concentration in the water mass was measured with a light scattering probe, calibrated by comparison with the amount of particles collected on a filter.After a long period with calm weather and a low river input less than 100 tonne of suspended particulate matter was present in the estuary. However, during a period with stormy conditions significant resuspension of sediment particles occurred within the estuary. Two days after the storm approximately 1125 tonne of suspended particulate matter was found in the estuary. Most (61%) of the suspended matter was found in the deepest third of the water column, although up to 17% was present in the top third of the water column. The total load of particulate matter in the water column remained constant until day four after the storm, but a significant redistribution of the particulate matter occurred both in the vertical and horizontal directions. Nine days after the storm, a significant amount of particles (c. 350 tonnes) was still in suspension.  相似文献   

19.
Sedimentation of phosphorus was studied during the spring flood in April and May 1991 in Lake Örträsket and the Öre Estuary, northern Sweden. Lake Örträsket has an area of 7.3 km2 and a mean depth of 22 m and is located 100 km from the coast halfways along the course of the River Öre. The river ends in a semi-closed low salinity estuary with an area of ca. 50 km2 and a mean depth of 16 m. Sedimentation of phosphorus, iron and organic carbon were measured with sediment traps in Lake Örträsket and in the Öre Estuary. Characterization of particulate phosphorus in river water, sediment trap material and sediments were performed by the sequential extraction procedure proposed by Hieltjes & Lijklema (1980). Apart from being an efficient trap for suspended particles including particulate phosphorus, Lake Örträsket was shown to serve as a source for particulate material during spring 1991. The Öre Estuary, on the other hand, constitutes an efficient trap for the total supply of river-borne phosphorus during the spring flood period. Phosphorus was shown to be closely related to iron in particulate material in both the lake and the estuary. Adsorption of phosphorus on settling inorganic particles seems to be an important process, which is particularly pronounced in the estuary.  相似文献   

20.
In the Elbe hardly anything is known about the actual fate of phytoplankton and the resultant pigment composition of suspended matter. As part of a longterm study on the role of suspended matter in the cycles of nitrogen and associated oxygen consumption processes in the Elbe estuary in northern Germany (‘Sonderforschungsbereich 327 Elbe’ project) and the characterization of estuarine and coastal water bodies with regard to the transport of pollutants such as heavy metals, we have started to characterize suspended matter with regard to the pigments present therein. This will allow us to study phytoplankton turnover and to determine the role of phytoplankton decay mechanisms in the mobilization, binding, and transport of pollutants associated with particulate matter. Our first data on the pigment composition of suspended matter from the Elbe and particularly over the region of Hamburg harbour, obtained using a High Performance Liquid Chromatography (HPLC) method, is presented. The pigment concentrations varied considerably over the summer months. Values up to 250 mg l−1 of chlorophyll a were observed upstream of Hamburg. We found that on its course through Hamburg the concentrations (μg g−1 of particulate matter) of all pigments in the Elbe drop to under half those found upstream of Hamburg. The pigment concentrations in the turbidity maximum were significantly lower than in the rest of the estuary due to the decline of algae as a result of inadequate light conditions and the salinity gradient. The highest particulate matter concentrations were found in the turbidity maximum and just downstream of Hamburg. The highest particulate organic carbon values were found just downstream of Hamburg. The presence of of fucoxanthin and the chlorophyllsc andb, and the changes in pigment patterns were indicative for the dominant algal classes and the phytoplankton succession in the suspended matter. The ratio of chlorophylla to lutein was found to be a possible indicator of phytoplankton breakdown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号