首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 814 毫秒
1.
The influence of galactose--(GL-GAL) and inositol-specific (GL-I) lectins from the glial cells of the chicken brain fraction on the HCO3- -ATPase activity was studied. It was established that enzyme activity changes depended on the concentration of lectins. It must be said that the presence of these lectins also changes the pH optimum of enzyme activity. Calcium ions have an inhibitory effect on the HCO3- -ATPase activity. This effect sharply decreases as a result of the presence of GL-GAL and GL-I. The modulator influence of lectin on the HCO3- -ATPase activity is determined by changing the enzyme affinity for Ca2+ ions.  相似文献   

2.
A beta-galactoside-binding activity has been detected in mammalian brain extracts using a hemagglutination test and a nerve cell aggregation assay. Inhibition studies suggested the involvement of lectin-carbohydrate interactions in these processes. In an attempt to explore further the biological role of brain lectins, the beta-galactoside-binding activity has been purified to apparent homogeneity from bovine and rat brain by salt extraction of the brain tissue and affinity chromatography on asialofetuin-agarose. The molecular weights determined by gel filtration, under native conditions on Ultrogel AcA-34, were 30,000 for the bovine brain lectin and 32,000 for the rat brain lectin; polyacrylamide gel electrophoresis in SDS gave molecular weights of 15,000 and 16,000, respectively, suggesting that the two brain lectins are dimers. Both lectins have an isoelectric point of 3.9. Amino acid composition data indicate that both lectins contain high proportions of glycine and acidic amino acids. The lectins are specific for beta-D-galactosides and related sugars and the configuration of carbon atoms 1, 2 and 4 seems of primary importance. Moreover, the nerve cell aggregation-promoting activity of the purified lectin is 300-fold that of the crude extracts.  相似文献   

3.
Two lectins have been isolated: one from the venom of Lachesis muta (bushmaster lectin) and one from Dendroaspis jamesonii venom (Jameson's mamba lectin). The lectin from bushmaster venom (BML) is similar to the lactose-binding lectins previously isolated from snake venoms (Gartner et al. (1980) FEBS Lett. 117, 13-16; Gartner & Ogilvie (1984) Biochem. J. 224, 301-307) in that it is calcium-dependent, lactose inhibitable, and is a dimer of molecular weight 28,000. In contrast, the lactose-blockable lectin from Jameson's mamba venom (JML) has an apparent molecular weight of 26,000 and agglutinates erythrocytes in the presence of EDTA. The absorption spectra of BML were affected by the binding of calcium, or calcium and lactose to the lectin. However, JML spectra were not affected by these conditions. While the hemagglutination activity of each of the previously described lactose-binding snake venom lectins is inhibited by reducing agent, the activities of BML and JML are not affected by reducing agent. Antiserum against bushmaster lectin cross-reacts with thrombolectin, cottonmouth lectin (CML), rattlesnake lectin (RSL), and copperhead lectin (CuHL) but not lectin from Jameson's mamba venom. This evidence plus a comparison of atomic absorption spectra, isoelectric points and amino acid analyses of the lectins demonstrate that JML and BML are different from thrombolectin, CML, RSL, and CuHL.  相似文献   

4.
In contrast to plant agglutinins, biological activities of animal/human lectins are not well defined yet. Testing a panel of seven mammalian carbohydrate-binding proteins we have found that the dimeric lectin from chicken liver (CL-16) was a stimulator of H2O2 release from human neutrophils as well as effector for induction of cytosolic Ca2+ and pH increase in rat thymocytes. Activity of this lectin was comparable to potent galactoside-specific plant lectins such as Viscum album L. agglutinin. The activities of the tested plant lectins depended significantly on their nominal carbohydrate specificity as well as on the source. The results indicate that endogenous lectins may be involved in the regulation of neutrophil and lymphocyte functions by elicitation of selective biosignaling reactions.  相似文献   

5.
A novel fucose-binding lectin, designated SauFBP32, was purified by affinity chromatography on fucose-agarose, from the serum of the gilt head bream Sparus aurata. Electrophoretic mobility of the subunit revealed apparent molecular weights of 35 and 30 kDa under reducing and non-reducing conditions, respectively. Size exclusion analysis suggests that the native lectin is a monomer under the selected experimental conditions. Agglutinating activity towards rabbit erythrocytes was not significantly modified by addition of calcium or EDTA; activity was optimal at 37 degrees C, retained partial activity by treatment at 70 degrees C, and was fully inactivated at 90 degrees C. On western blot analysis, SauFBP showed intense cross-reactivity with antibodies specific for a sea bass (Dicentrarchus labrax) fucose-binding lectin. In addition, the similarity of the N-terminal sequence and a partial coding domain to teleost F-type lectins suggests that SauFBP32 is a member of this emerging family of lectins.  相似文献   

6.
Using a variety of colloidal gold-labelled lectins, the structure and topography of carbohydrate determinants of the surface membrane in different types of cultured glial cells of the snailHelix pomatia have been electron cytochemically investigated. Analysis of lectin binding having different sugar specificities have shown heterogeneity of carbohydrate pools between glial and nerve cells and among different types of glial cells. It was found that satellite glial cells displaying ultrastructural traits of intensive metabolism (type II cells) selectively bindGNA, which is specific for terminal -D-mannose residues, and do not interact (Con A) or slightly interact (LCA) with other mannose-specific lectins.GNA determinants remain during the whole period of cell growth and are absent in satellite type-I glial cells, fibrous glial cells, microglia, and neurons.LTA, PVA, andLABA do not bind to any glial cells.WGA determinants, which are abundant on the neurons, are completely absent onGNA-binding glial cells and single on other types of glial cells. The density ofPNA determinants on microglial cells is the highest, as compared with other types of glial cells or neurons. It is concluded that some lectin determinants (forRCA-1, PNA, LPA) are present on all types of glial cells, while another determinant (GNA) is specific for a certain type of glial cells only and can serve as a marker of these cells. The role of specific carbohydrate determinants for neuron-glia interaction in mature brain is discussed.Neirofiziologiya/Neurophysiology, Vol. 26, No. 3, pp. 177–189, May–June, 1994.  相似文献   

7.
Summary The lectin binding pattern of bone marrow cells in normal and reactive states and in various neoplastic disorders was investigated using trephine biopsy specimens taken from the iliac crest. The tissue samples were routinely processed (fixed in formalin and embedded in paraffin wax) and subjected to mild decalcification with EDTA. The following results were obtained. (1) More than half of the 23 fluoresceinated lectins used reacted with normal blood cells and/or their neoplastic derivatives. Inhibition tests with the appropriate sugars confirmed the specificity of binding for the majority, but not all, of the lectins. (2) WGA, Con A, PSA, STA and RCA60 and RCA120 produced a particularly intense reaction with normal, reactive and neoplastic myeloid cells. Erythroblasts exhibited weak staining in a few cases by a few lectins (WGA producing the strongest staining), while megakaryocytes nearly always remained unstained. Neoplastic lymphoid cells in various lymphoproliferative disorders and plasmacytoma cells generally reacted with the same lectins as the myeloid cells. (3) Since neoplastic myeloid cells in various myelodysplastic and myeloproliferative disorders exhibited a lectin binding pattern similar to that of myeloid cells in normal and reactive bone marrow, it is unlikely that lectin histochemistry of the bone marrow will prove of great value in the diagnosis of myelodysplastic—myeloproliferative disorders.  相似文献   

8.
Polyclonal antisera were raised against a peptide containing the cysteine residue required for carbohydrate binding activity in the lima bean lectin. The antisera were tested for cross-reactivity with (a) synthetic peptide analogs to the essential cysteine containing peptide, (b) proteolytic digests of related lectins, (c) native lectins. The antisera were specifically inhibited from binding to a peptide conjugate by free synthetic peptides. The degree of inhibition by lectin digests correlated approximately along evolutionary relationships and the degree of sequence conservation. One antiserum was found to cross-react with certain lectins in the native state. In a second set of experiments, the calcium binding properties of the synthetic peptides were investigated using metal ion-chelate chromatography and UV-difference spectroscopy. The nonapeptide and undecapeptide bound to a Ca2+ iminodiacetic acid agarose column and were eluted with EDTA. Ultraviolet difference spectral titrations with Ca2+ performed on the synthetic undecapeptide and a related favin derived peptide resulted in dissociation constants of approximately 6 × 103 per molar.  相似文献   

9.
Receptors on natural killer (NK) cells are classified as C-type lectins or as Ig-like molecules, and many of them are encoded by two genomic clusters designated natural killer gene complex (NKC) and leukocyte receptor complex, respectively. Here, we describe the analysis of an NKC-encoded chicken C-type lectin, previously annotated as homologue to CD94 and NKG2 and thus designated chicken CD94/NKG2. To further elucidate its potential function on NK cells, we produced a specific mab by immunizing with stably transfected HEK293 cells expressing this lectin. Staining of various chicken tissues revealed minimal reactivity with bursal, or thymus cells. In peripheral blood mononuclear cell and spleen, however, the mab reacted with virtually all thrombocytes, whereas most NK cells in organs such as embryonic spleen, lung and intestine were found to be negative. These findings indicate that the gene may not resemble CD94/NKG2, but rather a CLEC-2 homologue, a claim further supported by sequence features such as an additional extracellular cysteine residue and the presence of a cytoplasmic motif known as a hem immunoreceptor tyrosine-based activation motif, found in C-type lectins such as Dectin-1, CLEC-2, but not CD94/NKG2. The biochemical analyses demonstrated that CLEC-2 is present on the cell surface as heavily glycosylated homodimer, which upon mab crosslinking induced thrombocyte activation, as measured by CD107 expression. These analyses reveal that the chicken NKC may not encode NK cell receptor genes, in particular not CD94 or NKG2 genes, and identifies a chicken CLEC-2 homologue.  相似文献   

10.
N Ali  A Salahuddin 《FEBS letters》1989,246(1-2):163-165
Membrane lectins were isolated from sheep, goat, and buffalo liver by chromatography on an asialofetuin (ASF)-Sepharose 4B column. The lectins moved as a single protein band in SDS-PAGE with molecular masses of 42, 54 and 50 kDa, respectively, for sheep, goat and buffalo lectins. The molecular masses remained unchanged in 0.2 M 2-mercaptoethanol. As judged from the inhibition of binding of the lectin to ASF gel, the three lectins were beta-galactoside-specific. Sheep, goat and buffalo lectins were found to be sialoglycoproteins containing 18.6, 27 and 38.8 mol/mol lectin of neutral hexose, respectively; the corresponding values for the sialic acid content being 5.3, 8.7 and 11.8 mol/mol lectin. Thus goat and buffalo lectins are physico-chemically different from many mammalian hepatic lectins described so far.  相似文献   

11.
Aggregating cell cultures prepared from fetal rat telencephalon express the two subunits [cerebellar soluble lectins (CSL) 1 and 2] of a soluble, mannose-specific endogenous lectin (CSL) in a development-dependent manner. Increased CSL synthesis was found at an early postmitotic stage as well as during the period of maximal myelination. Repetitive treatment of early cultures with epidermal growth factor (EGF, 3nM) caused a great stimulation of CSL biosynthesis. Immunocytochemical studies revealed particularly intense CSL-specific staining in small, EGF-responsive cells, presumably glial cells. Large quantities of CSL-immunoreactive material were found also in the extracellular space and on the external side of the plasma membrane, indicating abundant release of CSL. The present findings suggest that EGF or EGF-related factors in the brain are able to regulate the expression of an endogenous lectin, affecting brain ontogeny.  相似文献   

12.
Among lectins in the skin mucus of fish, primary structures of four different types of lectin have been determined. Congerin from the conger eel Conger myriaster and AJL-1 from the Japanese eel Anguilla japonica were identified as galectin, characterized by its specific binding to β-galactoside. Eel has additionally a unique lectin, AJL-2, which has a highly conserved sequence of C-type lectins but displays Ca2+-independent activity. This is rational because the lectin exerts its function on the cutaneous surface, which is exposed to a Ca2+ scarce environment when the eel is in fresh water. The third type lectin is pufflectin, a mannose specific lectin in the skin mucus of pufferfish Takifugu rubripes. This lectin showed no sequence similarity with any known animal lectins but, surprisingly, shares sequence homology with mannose-binding lectins of monocotyledonous plants. The fourth lectin was found in the ponyfish Leiognathus nuchalis and exhibits homology with rhamnose-binding lectins known in eggs of some fish species. These lectins, except ponyfish lectin, showed agglutination of certain bacteria. In addition, pufflectin was found to bind to a parasitic trematode, Heterobothrium okamotoi. Taken together, these results demonstrate that skin mucus lectins in fish have wide molecular diversity.  相似文献   

13.
Soluble lectins of chicken, rat, frog, and the cellular slime mold, Dictyostelium discoideum, were purified and specific antibodies raised against these proteins were used to immunohistochemically localize the lectins in and around the tissues in which they were synthesized. Within cells, some of these soluble lectins (chicken-lactose-lectin-II in intestinal goblet cells, discoidin II in prespore cells) appear to be concentrated within vesicles whereas others (e.g., rat beta-galactoside lectin in pulmonary alveolar and smooth muscle cells) appear to be free in the cytoplasm. All of these lectins are eventually secreted to extracellular sites in developing or adult tissues. The sites include mucin (chicken-lactose-lectin-II in intestine); developing extracellular matrix (chicken-lactose-lectin-I in muscle; Xenopus laevis lectin in blastula stage embryos); slime (discoidin I); developing spore coat (discoidin II); and a specialized extracellular matrix, elastic fibers (rat beta-galactoside lectin in lung). In cases where this has been studied in detail (discoidin I, discoidin II, and chicken-lactose-lectin-II), the lectin is associated with a complementary extracellular ligand, at least transiently. Lectin-ligand interactions presumably confer specialized properties in these particular extracellular domains.  相似文献   

14.
Summary In the search for a functional role for the polarized glycoconjugates of rat collecting duct epithelial cells, the relation between binding of various lectins and expression of cellular transport enzyme profile of the cells was studied. For this purpose, principal and intercalated cells of rat kidney collecting duct were identified by morphological criteria and by their immunocytochemically determined content of (Na++K+)-ATPase and carbonic anhydrase (CA II), respectively. VariousN-acetylgalactosamine-specific lectins such as those fromHelix pomatia andMaclura pomifera revealed heterogeneity among both principal and intercalated cells, whereas -N-acetylgalactosa nine-specific lectin fromDolichos biflorus andVicia villosa bound preferentially to principal cells. Still another lectin fromArachis hypogaea reacted with most collecting duct cells in the cortex and outer medulla, but only with a subpopulation of cells in the inner medulla. Interestingly, some lectins reacted exclusively with the apical aspect of the collecting duct epithelial cells, whereas others revealed both an apical and basolateral distribution of lectin reactive glycoconjugates. The results thus show subtle differences in the glycocalyx structure of principal and intercalated cells and differences in the intracellular polarization of glycoconjugates of these cells. Thus, lectins may be useful tools in the study of the molecular mechanisms which establish and maintain the polarized functions of principal and intercalated cells.  相似文献   

15.
A novel fucose-binding lectin, designated SauFBP32, was purified by affinity chromatography on fucose–agarose, from the serum of the gilt head bream Sparus aurata. Electrophoretic mobility of the subunit revealed apparent molecular weights of 35 and 30 kDa under reducing and non-reducing conditions, respectively. Size exclusion analysis suggests that the native lectin is a monomer under the selected experimental conditions. Agglutinating activity towards rabbit erythrocytes was not significantly modified by addition of calcium or EDTA; activity was optimal at 37 °C, retained partial activity by treatment at 70 °C, and was fully inactivated at 90 °C. On western blot analysis, SauFBP showed intense cross-reactivity with antibodies specific for a sea bass (Dicentrarchus labrax) fucose-binding lectin. In addition, the similarity of the N-terminal sequence and a partial coding domain to teleost F-type lectins suggests that SauFBP32 is a member of this emerging family of lectins.  相似文献   

16.
Lectins have been detected in the nuclear matrix of nerve tissue cells, and an extraction procedure for the protein fraction with lectin activity has been developed. The lectins are characterized by hemagglutinating activity that is inhibited by D-GlcNAc, D-Gal, Lac, and D-Glc. The existence of lectins with similar molecular masses (from 7 to 20 kD) in the nuclear matrix of calf and rat brain has been shown.  相似文献   

17.
Binding studies with six purified plant lectins were used to investigate membrane alterations that occur in lymphocyte transformation. Normal human peripheral blood lymphocytes transformed with E-Phytohemagglutinin (E-PHA) or concanavalin-A (Con-A) generally possessed increased numbers of lectin receptors. When this increase was corrected for the expanded surface area of transformed lymphocytes, it appeared that E-PHA and ConA each produced a unique and complex reorganization of cell surface topography. Surface alterations occurred independently of DNA synthesis, cell proliferation, and microtubule or microfilament function. Puromycin inhibited emergence of new lectin receptors on cells transformed with E-PHA, but not with ConA. Lymphocytes incubated with either lectin showed increased incorporation of [14C]galactose into trypsin-sensitive cell surface glycoproteins. This incorporation was abolished by puromycin in cells stimulated by E-PHA but not by ConA. These studies demonstrate that although both lectins induce similar morphological alterations in human lymphocytes, at the molecular level the structural changes induced in the cell membrane by these two lectins differ considerably. Furthermore, these structural alterations are mediated via different mechanisms in the two groups of cells. De novo protein synthesis is required for cell surface reorganization in PHA-stimulated cells, but not in cells stimulated by ConA. The effect of ConA appears to be to enhance attachment of saccharide structures to pre-synthesized membrane proteins.  相似文献   

18.
Plant and animal lectins bind and cross-link certain multiantennaryoligosaccharides, glycopeptides, and glycoproteins. This canlead to the formation of homogeneous cross-linked complexes,which may differ in their stoichiometry depending on the natureof the sugar receptor involved. As a precisely defined ligand,we have employed bovine asialofetuin (ASF), a glycoprotein thatpossesses three asparagine-linked triantennary complex carbohydratechains with terminal LacNAc residues. In the present study,we have compared the carbohydrate cross-linking properties oftwo Lac-specific plant lectins, an animal lectin and a naturallyoccurring Lac-binding polyclonal iminunoglobulin G subfractionfrom human serum with the ligand. Quantitative precipitationstudies of the Lac-specific plant lectins, Viscum album agglutininand Ricinus communis agglutinin, and the Lac-specific 16 kDadimenc galectin from chicken liver demonstrate that these lectinsform specific, stoichiometric cross-linked complexes with ASF.At low concentrations of ASF, 1:9 ASF/lectin (monomer) complexesformed with both plant lectins and the chicken lectin. Withincreasing concentrations of ASF, 1:3 ASF/lectin (monomer) complexesformed with the lectins irrespective of their source or size.The naturally occurring polyclonal antibodies, however, revealeda different cross-linking behavior. They show the formationof 1:3 ASF/antibody (per Fab moiety) cross-linked complexesat all concentrations of ASF. These studies demonstrate thatLac-specific plant and animal lectins as well as the Lac-bindingimmunoglobulin subfraction form specific stoichiometric cross-linkedcomplexes with ASF. These results are discussed in terms ofthe structure-function properties of multivalent lectins andantibodies. asialofetuin Lac-specific lectins immunoglobulin subfraction  相似文献   

19.
Beta-galactoside-binding lectins were isolated from various calf tissues and from chicken hearts by affinity chromatography on asialofetuin-Sepharose, and were compared with respect to biochemical characteristics, binding properties, antigenic cross-reactivity, and cellular localization. The lectins are all thiol group-requiring, divalent cation-independent dimers, of apparent monomer mol wt 12,000 (calf lectins) or 13,000 (chicken lectin), and acidic pI. The calf lectins appear essentially identical by dodecyl sulfate-polyacrylamide gel electrophoresis, isoelectric focusing, amino acid composition, and radioimmunoassay, while the chicken lectin is distinctly different by these criteria. However, all of the lectins competed for the same binding sites on rabbit erythrocytes, and could be inhibited by the same saccharide haptens (notably lactose and thiodigalactoside). Immuno-fluorescence studies on several cultured cell lines revealed that the bovine and chicken lectins had primarily an intracellular cytoplasmic localization. The beta-galactoside-binding lectins of vertebrates appear to be species-specific rather than tissue-specific.  相似文献   

20.
In invertebrates, C-type lectins play crucial roles in innate immunity responses by mediating the recognition of host cells to pathogens and clearing microinvaders, which interact with carbohydrates and function as pattern recognition receptors (PRRs). A novel C-type lectin gene (LvLec) cDNA was cloned from hemocytes of Litopenaeus vannamei by expressed sequence tag (EST) and rapid amplification of cDNA ends (RACE) PCR. The full-length cDNA of LvLec was of 618 bp, consisting of a 5′-terminal untranslated region (UTR) of 60 bp and a 3′-UTR of 87 bp with a poly (A) tail. The deduced amino acid sequence of LvLec possessed all conserved features critical for the fundamental structure, such as the four cysteine residues (Cys53, Cys128, Cys144, Cys152) involved in the formation of disulfides bridges and the potential Ca2+/carbohydrate-binding sites. The high similarity and the close phylogenetic relationship of LvLec shared with C-type lectins from vertebrates and invertebrates. The structural features of LvLec indicated that it was an invertebrate counterpart of the C-type lectin family. The cDNA fragment encoding the mature peptide of LvLec was recombined and expressed in Escherichia coli BL21(DE3)-pLysS. The recombinant protein (rLvLec) could agglutinate bacteria E. coli JM109 depending on Ca2+, and the agglutination could be inhibited by mannose and EDTA. These results indicated that LvLec was a new member of C-type lectin family and involved in the immune defence response to Gram negative bacteria in Litopenaeus vannamei.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号