首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 988 毫秒
1.
Summary Terbutryn-resistant plastids of the Nicotiana plumbaginifolia TBR2 mutant were introduced into N. tabacum plants by protoplast fusion following X-irradiation of TBR2 protoplasts. The N. tabacum chloroplast recipient line, SR1-A15, carried mutant (albino) plastids. Following protoplast fusion, potential cybrid cell lines with an N. tabacum (SR1-A15) nucleus and N. plumbaginifolia (TBR2) chloroplasts were identified by their green color. The presence of TBR2 plastids in regenerated green N. tabacum plants was confirmed by hybridization with a chloroplast DNA probe and by the modified chloroplast fluorescence transients characteristic of the TBR2 mutant. Cybrid plants were resistant to high levels of atrazine (10 kg/ha). The protruding stigma and shorter than normal filaments of the cybrids resulted in male sterility. In the cybrids atrazine resistance was associated with reduced vigour, suggesting a causal relationship.  相似文献   

2.
A striped-leaf mutant has been identified in a Taiwanese maize line, Tainan White. The striped area is pale green at the seedling stage, and turns yellow and white at maturity, extending from the leaf blade to the sheath and the internode below the sheath. The mutant does not breed true and following self-pollination, produces three different types of progeny: green, striped and completely affected. The green type permanently loses the mutant character, while the completely affected type is lethal, without any green tissue. Only the striped type transmits the mutant phenotype to progeny, and it has a clonal distribution on the ear. Its phenotype is inherited maternally and its expression is unaffected by the paternal genotype. It cannot be inherited through the paternal parent. This pattern of inheritance, which persists after three cycles of backcrossing with the affected types as the recurrent pistillate parent, suggests that the responsible gene is located in the cytoplamic genome.  相似文献   

3.
Summary Protoplasts of Nicotiana tabacum SRI (streptomycin resistant) and of Nicotiana knightiana (streptomycin sensitive) were fused using polyethylene glycol treatment. From three heterokaryons 500 clones were obtained. From the 43 which were further investigated, 6 resistant, 3 sensitive, and 34 chimeric (consisting of resistant and sensitive sectors) calli were found. From eight clones, a total of 39 plants were regenerated and identified as somatic hybrids. Chloroplast type (N. tabacum = NT or N. knightiana = NK) in the plants was determined on the basis of the species specific EcoRI restriction pattern of the chloroplast DNA. Regenerates contained NT (13 plants) or NK (15 plants) plastids but only the plants with the NT chloroplasts were resistant to streptomycin. This finding and our earlier data on uniparental inheritance points to the chloroplasts as the carriers of the streptomycin resistance factor.  相似文献   

4.
Callus cultures were established from seedling hypocotyls of the tropical pasture legume Stylosanthes humilis H.B.K., and from leaves of in vitro-grown regenerated plantlets and glasshouse-grown plants. Callus was induced on Murashige and Skoog medium, supplemented with 1.0 mg/1 each of benzyladenine and naphthaleneacetic acid, and subcultured on the same medium with 0.5 mg/1 each of the same plant growth regulators. Induction of shoot formation occurred with a number of benzyladenine/naphthaleneacetic acid combinations. With 1.0 mg/1 benzyladenine (no auxin) all hypocotyl-derived calli and 78% (in vitro-grown plantlets) and 56% (glasshouse-grown plants) of the leaf-derived calli could be induced to form shoots. Morphogenetic potential was maintained during five subcultures. The process of induction of shoot formation took generally longer in leaf-derived calli than in those derived from hypocotyls. Most regenerated plants survived transfer to soil and all tested plants nodulated if inocculated with Rhizobium . No morphological abnormalities were observed.  相似文献   

5.
The capacity for indirect shoot organogenesis of leaf and root explants of four Dieffenbachia cultivars were examined on a modified Murashige and Skoog (MS; Physiol Plant 15:473–495, 1962) medium supplemented with different plant growth regulators in 112 combinations. Callus formation was only observed from leaf explants on MS supplemented with 1–10 μM thidiazuron (TDZ) and 0.5–1.0 μM 2,4-dichlorophenoxyacetic acid (2,4-D) regardless of cultivars. The combination of 5 μM TDZ and 1 μM 2,4-D resulted in the greatest callus formation frequency among the four cultivars tested. Significant differences in callus and shoot formation from leaf explants were also observed among cultivars. Cultivars Camouflage, Camille, Octopus, and Star Bright produced green nodular, brown nodular, yellow friable, and green compact calli with corresponding maximum callus formation frequencies of 96%, 62%, 54%, and 52%, respectively. A maximum of 6.7 shoots/callus was observed in cv. Camouflage, followed by cvs. Camille and Star Bright at 3.7 and 3.5, respectively. Calli of cv. Octopus displayed no capacity for shoot organogenesis. Regardless of cultivar, callus formation was not observed on root explants. Regenerated shoots were successfully acclimatized in a shaded greenhouse condition with 100% survival.  相似文献   

6.
The effect of various hormonal combinations on callus formation and regeneration of shoot and root from leaf derived callus of Acanthophyllum sordidum Bunge ex Boiss. has been studied. Proteins and activity of antioxidant enzymes were also evaluated during shoot and root organogenesis from callus. Calli were induced from leaf explants excised from 30-d-old seedlings grown on Murashige and Skoog medium containing 4.52 μM 2,4-dichlorophenoxyacetic acid + 4.65 μM kinetin. Maximum growth of calli and the most efficient regeneration of shoots and roots occurred with 2.69 μM 1-naphthalene acetic acid (NAA), 2.69 μM NAA + 4.54 μM thidiazuron and 2.46 μM indole-3-butyric acid. Protein content decreased in calli and increased significantly during regeneration of shoots from callus. Superoxide dismutase activity decreased in calli comparing to that of seedlings, then increased in regenerated shoots and roots. High catalase activity was detected in seedlings and regenerated shoots, whereas high peroxidase activity was observed in calli and regenerated roots.  相似文献   

7.
Callus was successfully initiated on root, mesocotyl and leaf base segments of 3- to 4-day-old seedlings of ragi (Eleusine coracana Gaertn.). 2,4-D along with casein hydrolysate for Murashige and Skoog's basal medium was found to be most effective for callus initiation and maintenance. Mesocotyl and leaf base tissue derived calli gave shoot buds in medium in which the 2,4-D concentration was lowered.  相似文献   

8.
Leaf calli of Silybum marianum Gaertn. subcultured for one year were used for protoplast isolation and culture. First division was observed three days after culture on medium M12, and the highest division frequency was 35.4%. One to three months later, small ralli were seen with naked eyes, and grew up gradually. Upon transferring them onto D6 differentiation medium, the green bud apices were observed two months later. However, no shoot differentiation was obtained. Hypocotyl calli were induced on MS+NAA 0.8mg/1, 6-BA 0.5mg/1. Two months after transferring calli onto D6 medium, shoots were regenerated from the surface of the calli. The freqency of shoot differentiation was 75%. On a MS rooting medium containing NAA 0.5 mg/1, IBA 0.1 mg/1, whole plants with healthy roots were obtained.  相似文献   

9.
Leaf anatomy was studied in the mosaic Ficus benjamina cv. Starlight and non-chimeric Ficus benjamina cv. Daniel. The number of chloroplasts in a white, chlorophyll-deficient tissue declines as compared to the green tissue. However, their functional activity is retained. The leaf of the mosaic F. benjamina contains two or, sometimes, three subepidermal layers. Mesophyll forms one layer in the green and white parts of leaf palisade and one white and one green layer in the transitional zone (edge). In the transitional zone, green spongy mesophyll is located between two white spongy layers and the proportion of photosynthesizing cells varies. In cv. Daniel, there are two subepidermal layers and one layer of columnar mesophyll cells. According to the morphometry data, the proportion of white zone in the leaf correlates with the leaf position in the whole shoot: the higher the branch order, the larger the proportion of white zone. The total leaf area depends also on its position in the shoot. No such correlation was found in non-chimeric F. benjamina cv. Daniel. In the mosaic chimera, the source-sink status appears to depend on the leaf position in the shoot. Experiments with individual shoots of the same order and elimination of all lateral shoots have shown that the proportion of white zone in new leaves on the shoot increases with the total area of green zone. Thus, the area of assimilating shoot surface affects the formation of leaves in the meristem. A hypothesis was put forward that the source-sink state affects the ratio of green and white parts in the leaf primordium. Products of photosynthesis (carbohydrates) are a possible metabolic signal affecting the meristem. It cannot be excluded as well that the hormonal state undergoes changes in the chimeric plant.  相似文献   

10.
Zinc tolerant and non-tolerant ecotypes of Silene vulgaris (Moench) Garcke were examined for their suitability to provide an efficient and reproducible callus formation and regeneration system. Successful and rapid regeneration of adventitious shoots from callus was achieved in leaf tissue but not root or apical meristematic tissue using concentrations of plant growth regulators that spanned a concentration range of (0.05–1 mg l–1) NAA and (0.5–10 mg l–1) BAP respectively. Large differences were observed between ecotypes regarding both callus formation and shoot regeneration on the different hormone concentrations. Leaf explants incubated on basal media with different concentrations of auxin/cytokinin demonstrated initial callus formation after 3 weeks of incubation. Callus initiation was seen to develop from the wounded margins of the leaf explants and, after 2 weeks the initially dark callus became more swollen and green. A mean of 6–8 shoots per leaf explant was observed and the survival rate of these regenerates was seen to be 90%. All regenerated plants that were transferred to soil after the emergence of roots, were seen to have no disturbed morphological characteristics. This study demonstrates the stability of the zinc tolerance traits in the regenerated explants and the potential use of this calli formation and regeneration system in Silene vulgaris. Further, this study is a necessary pre-requite for the development of a genetic transformation system with which to study the genetic basis of zinc and, other heavy metal tolerances in a species with a naturally selected high-level tolerance.  相似文献   

11.
欧美黑杨离体再生途径及影响因子的研究   总被引:5,自引:0,他引:5  
先期完成了以腋芽发育为再生方式的研究后 [1 ] ,又对不定芽的发育进行了探索 .分别以欧美黑杨特选品系的不同部位外植体进行愈伤组织诱导及植株再生研究 ,易诱导并易分化出新芽的外植体为幼嫩茎段 ;通过不同激素浓度合理配比 ,进行适宜的诱导及分化培养基筛选 ,培养基为 MS+6 - BA 1.2 mg/ L +NAA 0 .5 mg/ l,附加 6g/ L琼脂 ,诱导的愈伤组织分化出密集的再生芽 ;糖分在诱导分化过程中作用突出 ,其合适浓度为 4 0 g/ L ;愈伤组织的形态及培养时间对分化频率影响较大 ,最佳的形态为致密的绿色 ,白色及粉红色的愈伤组织较疏松 ,分化率很低 .不同部位外植体、激素含量、蔗糖浓度、愈伤组织形态及培养时间是明显影响欧美黑杨愈伤组织诱导分化的因子 .  相似文献   

12.
In our study, we investigated the effects of regeneration conditions on both green and albino rice plants (Oryza sativa L.). The regeneration frequency of an albino cell line was compared to a normal cell line obtained from mature seed under two kinds of culture conditions; namely, the static culture on semi-solid regeneration medium and the suspension culture in liquid regeneration medium. The albino cell line, from which only albino plantlets were regenerated, was induced from the albino leaf segments. There were no significant differences in the regeneration frequencies between normal and albino calli on the semisolid regeneration medium. On the other hand, the frequency of regeneration of albino calli was significantly lower than that of the control specifically in the liquid regeneration medium.  相似文献   

13.
Summary Green mesophyll protoplasts of the dihaploid potato line 1982 (Solanum tuberosum L.) were fused with herbicide-bleached mesophyll protoplasts of the dihaploid potato line 679 using a polyethylene glycol protocol. Heterokaryons were identified under a fluorescence microscope using the dual fluorescence of carboxyfluorescein-stained, herbicide-bleached protoplasts and the autofluorescence of green mesophyll protoplasts. About 20% of the protoplasts survived the fusion treatment, and the fusion frequency was 3%–4%. Unfused and fused protoplasts were mass cultured for 6 weeks after which vigorously growing calli were selected and transferred to shoot regeneration medium. Somatic hybrids were identified by a combination of five isozyme markers, and the ploidy level was determined by flow cytometry. Out of 15 calli that regenerated shoots, 6 plants derived from 2 different calli were identified as hexaploid somatic hybrids, while one morphologically deviant plant from a third callus was identified as a mixoploid that had lost some enzyme markers after 4 months of culturing.  相似文献   

14.
Adventitious shoot regeneration via callus phase from in vitro leaf explants is reported for the first time in tea. Callus was obtained on Murashige and Skoog medium supplemented with varied concentrations of 2,4-dichlorophenoxyacetic acid (2,4-D) (2.5, 5.0, 7.5 and 10.0 mg/l). Rhizogenesis was observed at all concentrations of 2,4-D. Adventitious shoot buds developed indirectly on leaf explants after prolonged culture for 16 weeks on medium supplemented with 10.0 mg/l 2,4-D. GC analysis of the medium and the tissues at different stages of development showed that specific levels of 2,4-D in the tissue were responsible for morphogenesis. Shoot buds developed on rhizogenic calli, only when 2,4-D declined to undetectable or negligible concentrations in the tissue probably due to detoxification and metabolism. Alternatively, shoot buds could also be evoked when rhizogenic calli were transferred to medium supplemented with low concentration of 2,4-D (1.5 mg/l). The adventitious nature of the shoots was confirmed through histological studies.  相似文献   

15.
Atrazine and diuron resistant clones were isolated from diploid photoautotrophic protoplastderived colonies of Nicotiana plumbaginifolia. Protoplasts were mutagenised with 0.1 mM N-ethyl-N-nitrosourea and colonies were screened for resistance after plating. Selection of calli was carried out on their ability to grow and green on a selective medium containing either atrazine or diuron. Plants were regenerated from most tolerant calli. Herbicide spray showed that plants of 6 and 4 clones were resistant to atrazine and diuron, respectively.Abbreviations Atrazine 2-chloro-4-ethylamino-6-isopropyl-amino-s-triazine - diuron 3-(3,4-dichlorophenyl)-1,1-dimethylurea - NEU N-ethyl-N-nitrosourea - PSII photosystem II  相似文献   

16.
Summary Ethyl methane sulphonate (EMS) is a potential mutagen to induce lincomycin resistance in Capsicum annuum. Mutagenized cotyledons were cultured on shoot regenerating medium containing lincomycin (100 mgl−1). Approximately 14% of regenerated shoots were chlorophyll deficient and about 4% of regenerated shoots were green from mutaganized cotyledons. The regenerated green plants were resistant to lincomycin but sensitive to chloramphenicol, kanamycin, spectinomycin, and streptomycin. Reciprocal crosses were made between resistant and sensitive plants. Inheritance of lincomycin resistance was transmitted as a non-Mendelian trait. Lincomycin resistance is a first selectable and maternally inherited organelle encoded genetic marker described in chili pepper. Such mutants should be useful in designing biochemical selection schemes to recover somatic hybrids and cybrids.  相似文献   

17.
Callus cultures were established on Murashige and Skoog medium from seedling hypocotyls and roots of Slylosanlhes guyanensis (Aubl.) Sw. cv. Cook and from leaves of 6-month-old) plants. Shoots developed in primary calli derived from seedling tissue with a number of benzyladenine or kinetin and naphthaleneacetic acid combinations. Shoot formation on primary leaf callus, occurred with 2.0 mg/1 benzyladenine and 2.0 or 1.0 mg/l naphthaieneacetic acid. Undifferentiated callus from all three sources was induced and maintained on medium with 2.0 mg/1 kinetin and 2.0 mg/1 2, 4-dichlorophenoxyacede acid in the dark. Shoot formation and regeneration of whole plants from these calli were achieved at high frequencies. The most successful combination of phytohormones for the induction of shoot development in undifferentiated callus, was 2.0 mg/1 benzyladenine and 1.0 mg/1 naphthaleneacetic acid. The regenerated plants showed no phenotypic abnormalities.  相似文献   

18.
Induction of callus and plant regeneration in Vicoa indica   总被引:1,自引:0,他引:1  
Callus cultures were initiated from the stem and leaf explants of aseptically grown Vicoa indica. A simple method is described for plant regeneration from callus and the rapid multiplication of the plants thus obtained. Callus initiation was optimum in Gamborg B5 (B5) basal medium containing either 2.0 mg l-1 naphthaleneacetic acid (NAA) with 0.2 mg l-1 kinetin (Kn) or 2.0 mg l-1 6-benzylaminopurine (BAP) with 0.2 mg l-1 NAA. The calli initiated on B5 medium were able to proliferate on both Murashige and Skoog (MS) and B5 basal medium. Shoot primordia were obtained from greenish callus on passage to B5 basal medium containing 3.0 mg l-1 BAP and 1.0 mg l-1 Kn. On further subculture onto B5 medium containing 0.2 mg l-1 Kn the shoot primordia developed into plantlets.  相似文献   

19.
Amongst rolC transgenic tobacco plants regenerated from leaf disks 6.5% are periclinal chimeras, i.e. plants with genetically different cell populations in different cell layers. The expression of the rolC gene of Agrobacterium rhizogenes causes a reduction in pigment content in leaves. The chimeric composition of the regenerated plants becomes thus apparent as light green leaf tissue in the transgenic region, tissue flanked by dark green wild-type sectors. Southern and northern blot analysis confirmed the chimeric nature of such plants. Investigation of selfed progeny of chimeric plants on selective media indicates that layer invasion in reproductive tissues can occur in tobacco early during the formation of the flower buds. The results show (1) that tobacco plants regenerated from leaf disks and grown on selective media have not necessarily the same clonal origin and (2) that they can give rise to non-transgenic offspring. The chimeric plants provide insight on the effect of rolC gene expression on microsporogenesis.  相似文献   

20.
Summary A transformation system that allows regeneration of transgenic pea plants from calli selected for antibiotic resistance was developed. Explants from axenic shoot cultures and seedling epicotyls were cocultivated with nononcogenic Agrobacterium tumefaciens strains, and transformed callus could be selected on callus-inducing media containing either 15 mg/l hygromycin or 75 mg/l kanamycin. After several passages on regeneration medium, shoot organogenesis could be reproducibly induced on hygromycin-resistant calli, but not on the calli selected for kanamycin resistance. Regenerated shoots could subsequently be rooted and transferred into the greenhouse. In addition, the effects of different callus-inducing and growth media on organogenesis were investigated. The transformation of the calli and regenerated plants was confirmed by DNA analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号