首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Field experiments were carried out on a temperate soil to determine the decline rate, the stabilization in soil organic matter and the plant uptake of N from 15N-labelled crop residues. The fate of N from field pea (Pisum sativum L.) and spring barley (Hordeum vulgare L.) residues was followed in unplanted and planted plots and related to their chemical composition. In the top 10 cm of unplanted plots, inorganic N was immobilized after barley residue incorporation, whereas the inorganic N pool was increased during the initial 30 days after incorporation (DAI) of pea residues. Initial net mineralization of N was highly correlated to the concentrations of soluble C and N and the lignin: N ratio of residues. The contribution of residue-derived N to the inorganic N pool was at its maximum 30 DAI (10–55%) and declined to on average 5% after 3 years of decomposition.Residual organic labelled N in the top 10 cm soil declined rapidly during the initial 86 DAI for all residue types. Leaching of soluble organic materials may have contributed to this decline. At 216 DAI 72, 59 and 45% of the barley, mature pea and green pea residue N, respectively, were present in organic N-forms in the topsoil. During the 1–3 year period, residual organic labelled N from different residues declined at similar rates, mean decay constant: 0.18 yr-1. After 3 years, 45% of the barley and on average 32% of the pea residue N were present as soil organic N. The proportion of residue N remaining in the soil after 3 years of decomposition was most strongly correlated with the total and soluble N concentrations in the residue. The ratio (% inorganic N derived from residues): (% organic N derived from residues) was used as a measure of the rate residue N stabilization. From initial values of 3–7 the ratios declined to on average 1.9 and 1.6 after 2 and 3 yrs, respectively, indicating that a major part of the residue N was stabilized after 2 years of decomposition. Even though the largest proportion of residue N stabilized after 3 years was found for barley, the largest amount of residue N stabilized was found with incorporation of pea residues, since much more N was incorporated with these residues.In planted plots and after one year of decomposition, 7% of the pea and 5% of the barley residue N were recovered in perennial ryegrass (Lolium perenne L.) shoots. After 2 years the cumulative recovery of residue N in ryegrass shoots and roots was 14% for pea and 15% for barley residue N. The total uptake of non-labelled soil N after 2 years of growth was similar in the two residue treatments, but the amount of soil N taken up in each growth period varied between the treatments, apparently because the soil N immobilized during initial decomposition of residues was remineralized later in the barley than in the pea residue treatment. Balances were established for the amounts of barley and mature pea residue N remaining in the 0–10 cm soil layer and taken up in ryegrass after 2 years of decomposition. About 24% of the barley and 35% of the pea residue N were unaccounted for. Since these apparent losses are comparable to almost twice the amounts of pea and barley residue N taken up by the perennial ryegrass crop, there seems to be a potential for improved crop residue management in order to conserve nutrients in the soil-plant system.  相似文献   

2.
In a field experiment performed in microplots, winter wheat was fertilized at two different total N dressings (135 and 180 kg ha–1) split-applied as Na15NO3 in three equal applications at tillering, stem elongation, and flag leaf.No significant differences were found in the percentage recovery values for the entire plant at the three split applications between the two N dressings. The total percentage recovery of fertilizer N by the plant was high and practically equal at both fertilization levels (76.65% and 75.84% for 135 and 180 kg N ha–1, respectively); crop yields were also similar. In contrast, gaseous losses calculated after drawing up the balance sheet were, in absolute values, higher for the tillering and stem elongation split applications when using the 180 kg N ha–1 dressing (7.67 and 4.84 kg N ha–1, respectively) than for the 135 kg N ha–1 dressing (3.45 and 1.26 kg N ha–1, respectively). They were found to be zero at flag leaf at both fertilization levels. The amount of applied fertilizer N did not influence the amount of N taken up from the soil which was about 143 kg ha–1.  相似文献   

3.
Although wheat (Triticum aestivum L.) is the dominant crop of the semi-arid plains of Canada and the western United States, lentil (Lens culinaris Medik.) has become an important alternative crop. Sources and seasonal accumulation of N must be understood in order to identify parameters that can lead to increased N2-fixing activity and yield. Inoculated lentil was grown in a sandy-loam soil at an irrigated site in Saskatchewan, Canada. Wheat was used as the reference crop to estimate N2 fixation by the A-value approach. Lentil and wheat received 10 and 100 kg N ha−1 of ammonium nitrate, respectively. Crops were harvested six times during the growing season and plant components analyzed. During the first 71 days after planting the wheat had a higher daily dry matter and N accumulation compared to lentil. However, during the latter part of the growing season, daily dry matter and N accumulation were greater for lentil. The maximum total N accumulation for lentil at maturity was 149 kg ha−1. In contrast, wheat had a maximum N accumulation of 98 kg ha−1 in the Feekes 11.1 stage, or 86 days after planting. The maximum daily rates of N accumulation were 3.82 kg N ha−1 day−1 for lentil and 2.21 kg N ha−1 day−1 for wheat. The percentage of N derived from N2 fixation (% Ndfa) ranged from 0 at the first harvest to 92 % at final harvest. Generative plant components had higher values for % Ndfa than the vegetative components which indicates that N in the reproductive plant parts was derived largely from current N2 fixation and lentil continued to fix N until the end of the pod fill stage. At final harvest, lentil had derived 129 kg N ha−1 from N2 fixation with maximum N2-fixing activity (4.4 kg N ha−1 day−1) occurring during the early stages of pod fill. Higher maximum rates of N2-fixing activity than net N accumulation (3.82 kg N ha−1 day−1) may have been caused by N losses like volatilization. In addition, lentil provided a net N contribution to the soil of 59 kg ha−1 following the removal of the grain.  相似文献   

4.
Cucumis sativus L. cv. Aminex (F1 hybrid) was grown alone or in symbiosis with Glomus intraradices Schenck and Smith in containers with two hyphal compartments (HCA and HCB) on either side of a root compartment (RC) separated by fine nylon mesh. Plants received a total of either 100, 200 or 400 mg N which were applied gradually to the RC during the experiment. 15N was supplied to HCA 42 d after plating, at 50 mg 15NH4 +-N kg–1 soil. Lateral movement of the applied 15N towards the roots was minimized by using a nitrification inhibitor and a hyphal buffer compartment.Non-mycorrhizal controls contained only traces of 15N after a 27 d labelling period irrespective of the amount of N supplied to the RC. In contrast, 49, 48 and 27% of the applied 15N was recovered in mycorrhizal plants supplied with 100, 200 and 400 mg N, respectively. The plant dry weight was increased by mycorrhizal colonization at all three levels of N supply, but this effect was strongest in plants of low N status. The results indicated that this increase was due partly to the improved inflow of N via the external hyphae. Root colonization by G. intraradices was unaffected by the amount of N supplied to the RC, while hyphal length increased in HCA compared to HCB. Although a considerable 15N content was detected in mycorrhizal roots adjacent to HCB, only insignificant amounts of 15N were found in the external hyphae in HCB. The external hyphae depleted the soil of inorganic N in both HCA and HCB, while the concentration of soil mineral N was still high in non-mycorrhizal containers at harvest. An exception was plants supplied with 400 mg N, where some inorganic N was present at 5 cm distance from the RC in HCA. The possibility of a regulation mechanism for hyphal transport of N is discussed.  相似文献   

5.
All applied metals (Co, Al, Cu, Cd) and NaCl inhibited barley root growth. No root growth inhibition was caused by drought exposure, in contrast to cold treatment. 0.01 mM H2O2 stimulated root growth and GA application did not affect root growth at all. Other activators and inhibitors of H2O2 production (SHAM, DTT, 10 mM H2O2, 2,4-D) inhibited root growth. Loss of cell viability was most significant after Al treatment, followed by Cd and Cu, but no cell death was induced by Co. Drought led to slight increase in Evans blue uptake, whereas neither NaCl nor cold influenced this parameter. DTT treatment caused slight increase in Evans blue uptake and significant increases were detected after 2,4-D and 10 mM H2O2 treatment, but were not induced by others stressors. Metal exposure increased guaiacol-POD activity, which was correlated with oxidation of NADH and production of H2O2. Exposure to drought caused a minor change in NADH oxidation, but neither H2O2 production nor guaiacol-POD activity was increased. Cold and NaCl application decreased all monitored activities. Increase in NADH oxidation and guaiacol-POD activity was caused by 10 mM H2O2 and 0.01 mM 2,4-D treatment, which also caused enhancement of H2O2 production. Slight inhibition of all activities was caused by 0.01 mM H2O2, GA, DTT; more pronounced inhibition was detected after SHAM treatment. The role of H2O2 production mediated by POD activity in relation to root growth and cell viability under exposure to some abiotic stress factors is discussed.  相似文献   

6.
Barley (Hordeum vulgare L.) mutants altered in the regulation of synthesis of aspartate-derived amino acids were sought by screening embryos for growth on a medium containing lysine plus threonine. One mutant, Rothamsted 2501, was selected with good growth. From the segregation of resistance in the following generations, it was concluded that the resistance was conferred by a dominant gene, Lt1. No homozygous Lt1/Lt1 fertile plants have been recovered. Partially purified aspartate kinase preparations from resistant and sensitive plants were separated on DEAE-cellulose chromatography into three peaks of activity (I, II, III) and the feedback regulatory properties of these peaks determined. These peaks are considered to be three isozymic forms of aspartate kinase, one predominantly sensitive to threonine and two sensitive to lysine or lysine plus S-adenosyl methionine. The feedback characteristics of one of the peaks of aspartate kinase activity from resistant plants were changed such that lysine was half-maximally inhibitory at 10 rather than 0.4mm. Increases in the concentrations of the free pools of threonine (4×) and methionine (2×) were measured in young plants grown on a basal medium. Threonine in the soluble fraction of mature seeds from resistant plants was increased from 0.8 to 9.6% of the total threonine content. The total content of both threonine and methionine of the seeds was increased by 6% compared with grain of similar nitrogen content.S.E.R. acknowledges the receipt of a Council of Europe Scholarship through The British Council. Part of this was also supported by EEC Grant 473.  相似文献   

7.
Genetic diversity among wild and cultivated barley as revealed by RFLP   总被引:4,自引:0,他引:4  
Genetic variability of cultivated and wild barley, Hordeum vulgare ssp. vulgare and spontaneum, respectively, was assessed by RFLP analysis. The material consisted of 13 European varietes, single-plant offspring lines of eight land races from Ethiopia and Nepal, and five accessions of ssp. spontaneum from Israel, Iran and Turkey. Seventeen out of twenty-one studied cDNA and gDNA probes distributed across all seven barley chromosomes revealed polymorphism when DNA was digested with one of four restriction enzymes. A tree based on genetic distances using frequencies of RFLP banding patterns was estimated and the barley lines clustered into five groups reflecting geographical origin. The geographical groups of land-race lines showed less intragroup variation than the geographical groups of spontaneum lines. The group of European varieties, representing large variation in agronomic traits, showed an intermediate level. The proportion of gene diversity residing among geographical groups (FST) varied from 0.19 to 0.94 (average 0.54) per RFLP pattern, indicating large diversification between geographical groups.  相似文献   

8.
Exposure of barley plants (Hordeum vulgare L.) to soil flooding for 2 to 24 h reduced the net photosynthetic rate and transpiration rate. Stomatal conductance also decreased in flooded plants. Stomatal closure started within 2 – 6 h and stomata remained closed up to 24 h of treatment.  相似文献   

9.
Labelled fertilizer N applied to winter wheat as Na15NO3 and (15NH4)2SO4 at a total N dressing of 100kg ha−1 was used in a microplot balance study to investigate the fate of each split fraction at three growth stages: end of tillering, heading and beginning of flowering. Results indicated that while the percentage utilization of the applied N by the grain and total crop increased considerably from the first to the third split application, these values diminished steadily in the straw. Grain recovery values for the first, second and third split applications were 34.2%, 51.5% and 55.7% for the NO3 and 32.3%, 48.4% and 52.5% for the NH4 carrier, respectively. The corresponding recovery values for the whole plant were 54.6%, 67.8% and 69.9% for the NO3 and 51.7%, 63.5% and 66.1% for the NH4 carrier. A greater proportion of the fertilizer N applied at the end of tillering stage was found in the vegetative plant components as compared with the grain. The reverse occurred for the N applied at the heading and at the beginning of the flowering stages. The residual fertilizer N found in the soil amounted to 18.0%, 10.4% and 11.6% of the applied NO3−N and to 22.5%, 12.7% and 15.2% of the applied NH4−N for the respective split applications. No differences were found for each split application between the two carriers as far as the unaccounted fertilizer N was concerned. The losses were 26.6%, 22.3% and 18.6% of the applied N for the three split applications, respectively. The application of fertilizer N did not lead to any increase in soil N uptake by the crop.  相似文献   

10.
Cadmium translocation and accumulation in developing barley grains   总被引:3,自引:0,他引:3  
Chen F  Wu F  Dong J  Vincze E  Zhang G  Wang F  Huang Y  Wei K 《Planta》2007,227(1):223-232
Soil cadmium (Cd) contamination has posed a serious problem for safe food production and become a potential agricultural and environmental hazard worldwide. In order to study the transport of Cd into the developing grains, detached ears of two-rowed barley cv. ZAU 3 were cultured in Cd stressed nutrient solution containing the markers for phloem (rubidium) and xylem (strontium) transport. Cd concentration in each part of detached spikes increased with external Cd levels, and Cd concentration in various organs over the three Cd levels of 0.5, 2, 8 μM Cd on 15-day Cd exposure was in the order: awn > stem > grain > rachis > glume, while the majority of Cd was accumulated in grains with the proportion of 51.0% relative to the total Cd amount in the five parts of detached spikes. Cd accumulation in grains increased not only with external Cd levels but the time of exposure contrast to stem, awn, rachis and glume. Those four parts of detached spike showed increase Cd accumulation for 5 days, followed by sharp decrease till day 10 and increase again after 12.5 days. Awn-removal and stem-girdling markedly decreased Cd concentration in grains, and sucrose or zinc (Zn) addition to the medium and higher relative humidity (RH) also induced dramatic reduction in Cd transport to developing grains. The results indicated that awn, rachis and glume may involve in Cd transport into developing grains, and suggested that Cd redistribution in maturing cereals be considered as an important physiological process influencing the quality of harvested grains. Our results suggested that increasing RH to 90% and Zn addition in the medium at grain filling stage would be beneficial to decrease Cd accumulation in grains.  相似文献   

11.
Summary Barley plants (Hordeum vulgare L.) grown from seed for 28 days in flowing solution culture were subjected to different root temperatures (3, 5, 7, 9, 11, 13, 17, 25°C) for 14 days with a common air temperature of 25/15°C (day/night). Uptake of NH4 and NO3 ions was monitored separately and continuously from solutions maintained at 10 M NH4NO3 and pH 6.0. Effects of root temperature on unit absorption rate , flux and inflow were compared. After 5 days , and increased with temperature over the range 3–11°C for NH4 ions and over the range 3–13°C for NO3 ions, with little change for either ion above these temperatures. Q10 temperature coefficients for NH4 ions (3–13°C) were 1.9, 1.7 and 1.6 for , and respectively, the corresponding values for NO3 ions being 5.0, 4.5 and 4.6. For both ions, , and changed with time as did their temperature dependence over the range 3–25°C, suggesting that rates of ontogenetic development and the extent of adaptation to temperature may have varied among treatments.  相似文献   

12.
Hordeum bulbosum represents the secondary gene pool of barley and constitutes a potential source of various disease resistances in barley breeding. Interspecific crosses of H. vulgare × H. bulbosum resulted in recombinant diploid-barley progeny with immunity to BaMMV after mechanical inoculation. Tests on fields contaminated with different viruses demonstrated that resistance was effective against all European viruses of the soil-borne virus complex (BaMMV, BaYMV-1, -2). Genetic analysis revealed that resistance was dominantly inherited. Marker analysis in a F5 mapping family was performed to map the introgression in the barley genome and to estimate its size after several rounds of recombination. RFLP anchor-marker alleles indicative of an H. bulbosum introgression were found to cover an interval 2.9 cM in length on chromosome 6HS. The soil-borne virus resistance locus harboured by this introgressed segment was designated Rym14Hb. For marker-assisted selection of Rym14Hb carriers, a diagnostic codominant STS marker was derived from an AFLP fragment amplified from leaf cDNA of homozygous-resistant genotypes inoculated with BaMMV.Communicated by F. Salamini  相似文献   

13.
To examine the influence of plant-microorganism interactions on soil-N transformations (e.g. net mineralization, net immobilization) a pot experiment was conducted in a14C-labelled atmosphere by using different (two annuals, one perennial) plants species. It was assumed that variation in below-ground, microorganism-available C would influence N transformations in soil. Plant species were fertilized (low rate) with15N-labelled nitrogen and grown, during days 13 and 62 after germination, in a growth chamber with a14C-labelled atmosphere. Nitrification was inhibited by using nitrapyrin (N-Serve). During the chamber period, shoots were harvested, and associated roots and soil were collected on two sampling occasionm, e.g. after 4 and 7 weeks in the growth chamber.The distribution of net (%) assimilated14C was significantly affected by both plant and time factors, and there was a significant plant × time interaction. There were significant differences between plants in all plant-soil compartments examined as well as in the degree of the plant × time interaction.Differences in the14C distribution between plants were due to both interspecific and developmental variation. In general, when comparing15N and14C quantities between species, many of the differences found between plants can be explained by the differences determined in the weight of shoot or root parts. Despite the fact that amounts of C released were greater in ryegrass than in the other plant-treatments no unequivocal evidence was found to show that the effects of plant-microorganism interactions on soil-N mineralization were greater under ryegrass. Possible mechanisms accounting for the partitioning of N found among plant biomass, soil biomass and soil residues are discussed.  相似文献   

14.
Summary Variation in the nitrogen content of seed of six barley cultivars was brought about by growing parent plants at four nitrogen levels. Shoot dry weight of plants grown for 23 days from these seeds was generally enhanced by an increase in seed nitrogen content. The most responsive cultivar was a primitive type of barley from Ethiopia. Cultivars with a longer breeding history were less responsive. Risø 1508 apparently had physiological and biochemical limitations in responding to extra seed nitrogen. In the barley cultivars studied extra seed nitrogen seems to supplement, rather than substitute for, nitrogen fertilizer in the seed bed.  相似文献   

15.
It has been demonstrated that plant roots can take up small amounts of low-molecular weight (LMW) compounds from the surrounding soil. Root uptake of LMW compounds have been investigated by applying isotopically labelled sugars or amino acids but not labelled organic matter. We tested whether wheat roots took up LMW compounds released from dual-labelled (13C and 15N) green manure by analysing for excess 13C in roots. To estimate the fraction of green manure C that potentially was available for root uptake, excess 13C and 15N in the primary decomposers was estimated by analysing soil dwelling Collembola that primarily feed on fungi or microfauna. The experimental setup consisted of soil microcosm with wheat and dual-labelled green manure additions. Plant growth, plant N and recoveries of 13C and 15N in soil, roots, shoots and Collembola were measured at 27, 56 and 84 days. We found a small (<1%) but significant uptake of green manure derived 13C in roots at the first but not the two last samplings. About 50% of green manure C was not recovered from the soil-plant system at 27 days and additional 8% was not recovered at 84 days. Up to 23% of C in collembolans derived from the green manure at 56 days (the 27 days sampling was lost). Using a linear mixing model we estimated that roots or root effluxes provided the main C source for collembolans (54−79%). We conclude that there is no solid support for claiming that roots assimilated green manure derived C due to very small or no recoveries of excess 13C in wheat roots. During the incubation the pool of green manure derived C available for root uptake decreased due to decomposition. However, the isotopic composition in Collembola indicated that there was a considerable fraction of green manure derived C in the decomposer system at 56 days thus supporting the premise that LMW compounds containing C from the green manure was released throughout the incubation. Responsible Editor: A. C. Borstlap.  相似文献   

16.
B. Seeling  A. Jungk 《Plant and Soil》1996,178(2):179-184
Organic phosphorus is often a major part of total phosphorus in soil solution. The role of this fraction as a P source for plants and the mechanism involved in its transfer from soil to plant is still unclear. We studied the utilization of organic phospharus in 0.01 M calcium chloride extracts by barley and its hydrolysis by isolated acid and alkaline phosphatases. Calcium chloride extracts were used as a nutrient solution in 24 hrs assays. Concentration of organic and inorganic P in equilibrium calcium chloride extracts was 7.8 and 1.8 µmol P L-1, respectively, which was similar to the soil solution P concentration. When soil microbial biomass was destroyed by autoclaving, organic P concentration increased to 64.8 µmol P L-1 whereas the inorganic P was hardly changed. Inoculation of the autoclaved soil with non-sterile soil and incubation for 5 days decreased the organic P concentration to 27.9 µmol P L-1 but did not change inorganic P. In this study barley plants utilized organic P from all extracts. The greatest reduction of organic P concentration occurred in fresh extracts of the autoclaved soil. Inorganic P was depleted to traces in all extracts. Organic P was hydrolyzed by isolated acid and alkaline phosphatases. We conclude that organic P in soil solution is a heterogeneous pool of organic P compounds originating from microbial biomass. Its initial availability to plants was nigh but its susceptibility to phosphatase hydrolysis was quickly reduced but not completely lost.  相似文献   

17.
A 12-week greenhouse experiment was conducted to determine the effect of the polyphenol, lignin and N contents of six legumes on their N mineralization rate in soil and to compare estimates of legume-N release by the difference and 15N-recovery methods. Mature tops of alfalfa (Medicago sativa L.), round leaf cassia (Cassia rotundifolia Pers., var. Wynn), leucaena (Leucaena leucocephala Lam., deWit), Fitzroy stylo (Stylosanthes scabra Vog., var Fitzroy), snail medic (Medicago scutellata L.), and vigna (Vigna trilobata L., var verde) were incorporated in soil at the rate of 100 mg legume N kg-1 soil. The medic and vigna were labeled with 15N. Sorghum-sudan hybrid (Sorghum bicolor, L. Moench) was used as the test crop. A non-amended treatment was used as a control. Net N mineralization after 12 weeks ranged from 11% of added N with cassia to 47% of added N for alfalfa. With the two legumes that contained less than 20 g kg-1 of N, stylo and cassia, there was net N immobilization for the first 6 weeks of the experiment. The legume (lignin + polyphenol):N ratio was significantly correlated with N mineralization at all sampling dates at the 0.05 level and at the 0.01 level at 6 weeks (r2=0.866). Legume N, lignin, or polyphenol concentrations or the lignin:N ratio were not significantly correlated with N mineralization at any time. The polyphenol:N ratio was only significantly correlated with N mineralization after 9 weeks (r2=0.692). The (lignin + polyphenol):N ratio appears to be a good predictor of N mineralization rates of incorporated legumes, but the method for analyzing plant polyphenol needs to be standardized. Estimates of legume-N mineralization by the difference and 15N recovery methods were significantly different at all sampling dates for both 15N-labeled legumes. After 12 weeks, estimates of legume-N mineralization averaged 20% more with the difference method than with the 15N recovery method. This finding suggests that estimates of legume N available to subsequent crops should not be based solely on results from 15N recovery experiments.  相似文献   

18.
Incorporation of cupric sulfate into callus induction, maintenance, and regeneration media significantly enhanced plant regeneration from callus cultures of barley (Hordeum vulgare L.) immature embryos. Embryos from the cultivars Hector and Excel were cultured on MS medium containing 0, 0.1 (MS level), 0.5, 1.0, 5.0, 10.0, 50.0, or 100.0 M cupric sulfate. Plants were regenerated beginning at 8 weeks and continuing through 36 weeks. For Hector, medium containing 50 M copper regenerated significantly more plants than any other medium, with an average of 17 plants per embryo. In comparison, medium with MS copper levels (0.1 M) regenerated only 5 plants per embryo. For Excel, medium containing 5.0 M copper was the best, regenerating 1.4 plants per embryo. No Excel regenerants were obtained on medium with MS copper levels. Increased copper levels also increased the percentage of embryos that regenerated at least one plant, in both cultivars. The results indicate that MS copper levels are not optimized for barley callus cultures, and that improved plant regeneration can be obtained at higher copper concentrations.Abbreviations MS Murashige & Skoog (1962) - 2,4-d 2,4-dichlorophenoxyacetic acid The US Government's right to retain a non-exclusive royalty-free license on and to any copyright is acknowledged  相似文献   

19.
In a mass balance of 15N-labelled nitrate added to soil grown with pea or barley, denitrification estimates using the acetylene-inhibition technique were compared with unaccounted for 15N. During the growth season of 1989, which was drier than average, N losses due to denitrification estimated by the acetylene-inhibition technique were negligible. A substantial amount of fertilizer N was unaccounted for by the 15N mass balance, especially in the pea plots. The loss took place during the period of grain-filling in which no leaching occurred, and was accompanied by a decrease in 15N content of the plants. Volatilization of ammonia from the aerial parts of the plants is a possible explanation of the observed loss. An estimation of denitrification relying only on the 15N mass balance would have resulted in an overestimation of denitrification.  相似文献   

20.
In situ 15N-labelling was used to provide a quantitative assessment of the total contribution of lupin (Lupinus angustifolius) to below-ground (BG) N accumulation during a growing season under field conditions, and to directly trace the fate of the lupin BG N in the next season, including quantifying the N benefit from lupin to a following wheat (Triticum aestivum) crop. The experiments were conducted at two sites, both experiencing a semi-arid Mediterranean-type climate in the wheat-growing region of Western Australia but with differing soil types, a deep sand (Moora) and a sand-over-clay shallow duplex soil (East Beverley, EB). Lupin shoot and root dry matter and total plant N accumulation, proportional dependence on nitrogen fixation and grain yield were greater at the deep sand site than the duplex soil site, although there was a similar proportion of shoot N to estimated total BG N at both sites. The proportion of total plant BG N decreased from the vegetative stage (42–51%) to peak biomass (25–39%) and maturity (23–34%). From 56–67% of BG N on the deep sand and 74–86% on the duplex soil was not recovered in coarse roots (>2 mm) or as soluble N, but was present in the insoluble organic N fraction. There was evidence for cycling of lupin root-derived N into soil microbial biomass and soluble organic N during lupin growth (by the late vegetative stage), but no evidence for leaching of legume derived BG N during the lupin season. Estimates of fixed N input BG were at least four times greater if based on total lupin BG N rather than on N recovered in coarse roots (>2 mm). There were no apparent losses of lupin BG N during the summer fallow period subsequent to lupin harvest at either site. Also, immediately prior to sowing of wheat there were similar proportions of lupin BG N in the inorganic (20–25%) and microbial biomass (6–9%) pools at both sites, with the majority of BG N detected in the <2 mm fraction of the soil column. However, the proportion of residual lupin BG N estimated to benefit the aboveground wheat biomass was relatively low, 10% on the deep sand and only 3% on the shallow duplex. Some (14%) residual lupin BG N was leached as nitrate to 1 m on the deep sand compared to 8% of residual lupin BG N leached to the clay layer (0.3 m) on the shallow duplex. About 27% of the residual lupin BG N on the deep sand at Moora had apparently mineralised by the end of the succeeding wheat season (i.e. recovered either in the wheat shoots, as inorganic N in the soil profile or as leached nitrate) compared to only 12% at EB. There was an unaccounted for large loss of residual lupin BG N (50%) from the duplex soil at EB during the wheat season, postulated to be chiefly via denitrification. At both sites after the wheat season a substantial proportion (32–55%) of legume derived BG N was still present as residual insoluble organic N, considered to be an important contribution to structural and nutritional long-term sustainability of these soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号