首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent studies demonstrated that the generation of intracellular reactive oxygen species (ROS) was enhanced prior to the onset of mitochondrial membrane permeability transition (MPT), a critical step for the induction of DNA fragmentation and apoptosis. Although Ca2+ induces typical MPT that involves depolarization and swelling of mitochondria and finally releases cytochrome c into cytosol, the mechanism by which ROS induce MPT remains unclear. In the presence of inorganic phosphate, Ca2+ increased the oxygen consumption and ROS production by isolated mitochondria as determined by a chemiluminescence (CHL) method using L-012. Ca2+ increased the generation of H2O2 by some mechanism that was inhibited by cyclosporin A but not by superoxide dismutase (SOD) and trifluoperazine. Ca2+ decreased the content of free thiols in adenine nucleotide translocase (ANT) in mitochondrial membranes with concomitant increase in ROS generation. The presence of cyclosporin A, trifluoperazine, or SOD inhibited the Ca2+-induced increase of L-012 CHL and decrease in the free thiols of ANT. These results indicate that Ca2+ increases the generation of ROS which oxidize the free thiol groups in mitochondrial ANT, thereby inducing MPT to release cytochrome c.  相似文献   

2.
Cardiolipin peroxidation plays a critical role in mitochondrial cytochrome c release and subsequent apoptotic process. Mitochondrial pore transition (MPT) is considered as an important step in this process. In this work, the effect of peroxidized cardiolipin on MPT induction and cytochrome c release in rat heart mitochondria was investigated. Treatment of mitochondria with micromolar concentrations of cardiolipin hydroperoxide (CLOOH) resulted in a dose-dependent matrix swelling, DeltaPsi collapse, release of preaccumulated Ca2+ and release of cytochrome c. All these events were inhibited by cyclosporin A and bongkrekic acid, indicating that peroxidized cardiolipin behaves as an inducer of MPT. Ca2+ accumulation by mitochondria was required for this effect. ANT (ADP/ATP translocator) appears to be involved in the CLOOH-dependent MPT induction, as suggested by the modulation by ligands and inhibitors of adenine nucleotide translocator (ANT). Together, these results indicate that peroxidized cardiolipin lowers the threshold of Ca2+ for MPT induction and cytochrome c release. This synergistic effect of Ca2+ and peroxidized cardiolipin on MPT induction and cytochrome c release in mitochondria, might be important in regulating the initial phase of apoptosis and also may have important implications in those physiopathological situations, characterized by both Ca2+ and peroxidized cardiolipin accumulation in mitochondria, such as aging, ischemia/reperfusion and other degenerative diseases.  相似文献   

3.
Recent studies demonstrated that the generation of intracellular reactive oxygen species (ROS) was enhanced prior to the onset of mitochondrial membrane permeability transition (MPT), a critical step for the induction of DNA fragmentation and apoptosis. Although Ca2+ induces typical MPT that involves depolarization and swelling of mitochondria and finally releases cytochrome c into cytosol, the mechanism by which ROS induce MPT remains unclear. In the presence of inorganic phosphate, Ca2+ increased the oxygen consumption and ROS production by isolated mitochondria as determined by a chemiluminescence (CHL) method using L-012. Ca2+ increased the generation of H2O2 by some mechanism that was inhibited by cyclosporin A but not by superoxide dismutase (SOD) and trifluoperazine. Ca2+ decreased the content of free thiols in adenine nucleotide translocase (ANT) in mitochondrial membranes with concomitant increase in ROS generation. The presence of cyclosporin A, trifluoperazine, or SOD inhibited the Ca2+-induced increase of L-012 CHL and decrease in the free thiols of ANT. These results indicate that Ca2+ increases the generation of ROS which oxidize the free thiol groups in mitochondrial ANT, thereby inducing MPT to release cytochrome c.  相似文献   

4.
Cepharanthine (CEP), a biscocrourine alkaloid, has been widely used in Japan for the treatment of several disorders. Furthermore, accumulated evidence shows that CEP protects against some cell death systems but not others. Recently, it was found that mitochondria play an important role in a mechanism of apoptosis involving membrane permeability transition (MPT). Although CEP stabilizes the mitochondrial membrane structure and protects some functions of mitochondria from damage, the mechanism of action of CEP on MPT remains obscure. In this study, therefore, we examined the effect of CEP on Ca2+- and Fe2+/ADP-induced MPT of isolated mitochondria. CEP inhibited Ca2+-induced swelling, depolarization, Cyt.c release, and the release of Ca2+ in a concentration dependent manner. CEP also inhibited Ca2+-induced generation of reactive oxygen species and Fe/ADP-induced swelling and lipid peroxidation. Furthermore, CEP suppressed Ca2+-induced thiol modification of adenine nucleotide transloase (ANT). These results suggested that CEP suppressed MPT by a decrease in affinity of cyclophilin D for ANT. From these results it was concluded that the suppression of MPT by CEP might be due to its inhibitory action on Ca2+ release and antioxidant activity and that CEP might suppress the mechanism of apoptotic cell death when directly interacted with mitochondria in cells.  相似文献   

5.
Oxidative stress-induced apoptotic cell death has been implicated to play a critical role in the mechanism of corpus luteum regression and follicular atresia. Recent studies suggests that reactive oxygen species (ROS) might play important roles in the regulation of luteal function. The present work describes the inhibitory effect of 17beta-estradiol (E2) on ROS-induced mitochondrial membrane permeability transition (MPT) and apoptosis of Chinese hamster ovary (CHO) cells. ROS generated by Fe2+ and H2O2 induced mitochondrial lipid peroxidation, depolarization, activation of caspase-3 and DNA fragmentation in CHO cells by some E2-inhibitable mechanism. E2 suppressed the Fe2+/H2O2-induced lipid peroxidation and MPT of isolated mitochondria that was characterized by cyclosporin A-inhibitable swelling, depolarization and cytochrome c release. Furthermore, E2 scavenged the xanthine oxidase generated ROS. These results suggests that Fe2+/H2O2 induced MPT and apoptosis of CHO cells by a mechanism that could be suppressed by antioxidant properties of E2.  相似文献   

6.
Mitochondria play an important role in apoptosis by generating reactive oxygen species (ROS) and inducing membrane permeability transition (MPT). Recent studies on alpha-lipoic acid (LA) and its reduced form, dihydrolipoic acid, suggest that these agents (LAs) inhibit apoptosis of cells by means of their antioxidant activity. On the other hand, LAs also stimulate Ca2+-dependent mitochondrial MPT and induce apoptosis of certain cells. Thus, the role of LAs in apoptotic cell death remains obscure. We investigated the mechanism of LA-induced MPT of mitochondria. Biochemical analysis revealed, in the presence of Ca2+, inorganic phosphate and succinate, LA induced uncoupling of oxidative phosphorylation, stimulated oxidation of pyridine nucleotides and enhanced Ca2+-induced MPT, as characterized by decrease in Ca2+ loading, ROS generation, oxidation of thiol groups of adenine nucleotide translocator, membrane depolarization, swelling, and cytochrome c release in an incubation time and concentration dependent manner. LA also stimulated hydroxyl radical-induced MPT in a alpha-tocopherol-inhibitable manner. Cyclosporine A, a potent inhibitor of mitochondrial MPT, inhibited all these events induced by LA. These results indicate that, under certain conditions, LA stimulates Ca2+-induced MPT through the decrease in loading capacity of Ca2+ and that MPT is involved in LA-induced apoptotic cell death. Since fairly high doses of LA have been used as a dietary supplement, the possible occurrence of such side effects, including mitochondrial dysfunction and induction of apoptosis in normal tissues, should be studied.  相似文献   

7.
Cardiolipin oxidation is emerging as an important factor in mitochondrial dysfunction as well as in the initial phase of the apoptotic process. We have previously shown that exogenously added peroxidized cardiolipin sensitizes mitochondria to Ca2+-induced mitochondrial permeability transition (MPT) pore opening and promotes the release of cytochrome c. In this work, the effects of intramitochondrial cardiolipin peroxidation on Ca2+-induced MPT and on the cytochrome c release from mitochondria were studied. The effects of melatonin, a compound known to protect the mitochondria from oxidative damage, on both of these processes were also tested. tert-Butylhydroperoxide (t-BuOOH), a lipid-soluble peroxide that promotes lipid peroxidation, was used to induce intramitochondrial cardiolipin peroxidation. Exposure of heart mitochondria to t-BuOOH resulted in the oxidation of cardiolipin, associated with an increased sensitivity of mitochondria to Ca2+-induced MPT and with the release of cytochrome c from the mitochondria. All these processes were inhibited by micromolar concentrations of melatonin. It is proposed that melatonin inhibits cardiolipin peroxidation in mitochondria, and this effect seems to be responsible for the protection afforded by this agent against the MPT induction and cytochrome c release. Thus, manipulating the oxidation sensitivity of cardiolipin with melatonin may help to control MPT and cytochrome c release, events associated with cell death, and thus, be used for treatment of those disorders characterized by mitochondrial cardiolipin oxidation and Ca2+ overload.  相似文献   

8.
A small amount of reactive oxygen species (ROS) is generated through aerobic respiration even under physiological conditions. Because ROS are known to have various deteriorating actions, the way cells could evade the effects of ROS in and around mitochondria would determine the fate of cells. We previously reported that Cu,Zn-superoxide dismutase (SOD1), a cytosolic enzyme, is also localized in mitochondria in various types of cells. Therefore, we undertook this study to elucidate the physiological significance of SOD1 localization in and around mitochondria. We analyzed the effects of various reagents that could modulate mitochondrial respiration, ROS metabolism, and subcellular localization of SOD1 and cytochrome c. Using rat liver mitochondria, we have shown that Ca2+, Fe2+, or long-chain fatty acids increased the mitochondrial generation of ROS and that the resulting ROS oxidized the critical thiol groups in adenine nucleotide translocase (ANT). The oxidation of ANT induced mitochondrial swelling followed by the release of SOD1 and cytochrome c. Although inhibitors of electron transport, such as rotenone, antimycin A, and KCN, also increased ROS generation, they failed to (i) oxidize the critical thiol groups in ANT, (ii) induce swelling, and (iii) release SOD1 and cytochrome c. These results suggest that the oxidation of ANT thiols and the opening of the membrane permeability transition pores induce the release of both SOD1 and cytochrome c. We demonstrated that the loss of SOD1 increases the susceptibility of mitochondria to oxidative stresses and that the simultaneous release of SOD1 enhances the vicious cycle of apoptotic reactions triggered by the released cytochrome c. Therefore, SOD1 must have important roles in protecting mitochondria from ROS-induced injury. Our data also suggest that SOD1 release parallels cytochrome c release under all conditions. We propose that intramembranously localized SOD1 is a third reagent (along with AIF) that will regulate apoptosis.  相似文献   

9.
Increased mitochondrial Ca2+ accumulation is a trigger for the release of cytochrome c from the mitochondrial intermembrane space into the cytosol where it can activate caspases and lead to apoptosis. This study tested the hypothesis that Ca2+-induced release of cytochrome c in vitro can occur by membrane permeability transition (MPT)-dependent and independent mechanisms, depending on the tissue from which mitochondria are isolated. Mitochondria were isolated from rat liver and brain and suspended at 37 degrees C in a K+-based medium containing oxidizable substrates, ATP, and Mg2+. Measurements of changes in mitochondrial volume (via light scattering and electron microscopy), membrane potential and the medium free [Ca2+] indicated that the addition of 0.3 - 3.2 micromol Ca2+ mg-1 protein induced the MPT in liver but not brain mitochondria. Under these conditions, a Ca2+ dose-dependent release of cytochrome c was observed with both types of mitochondria; however, the MPT inhibitor cyclosporin A was only capable of inhibiting this release from liver mitochondria. Therefore, the MPT is responsible for cytochrome c release from liver mitochondria, whereas an MPT-independent mechanism is responsible for release from brain mitochondria.  相似文献   

10.
Membrane permeability transition (MPT) of mitochondria has an important role in apoptosis of various cells. The classic type of MPT is characterized by increased Ca(2+) transport, membrane depolarization, swelling, and sensitivity to cyclosporin A. In this study, we investigated whether L-carnitine suppresses oleic acid-induced MPT using isolated mitochondria from rat liver. Oleic acid-induced MPT in isolated mitochondria, inhibited endogenous respiration, caused membrane depolarization, and increased large amplitude swelling, and cytochrome c (Cyt. c) release from mitochondria. L-Carnitine was indispensable to beta-oxidation of oleic acid in the mitochondria, and this reaction required ATP and coenzyme A (CoA). In the presence of ATP and CoA, L-carnitine stimulated oleic acid oxidation and suppressed the oleic acid-induced depolarization, swelling, and Cyt. c release. L-Carnitine also contributed to maintaining mitochondrial function, which was decreased by the generation of free fatty acids with the passage of time after isolation. These results suggest that L-carnitine acts to maintain mitochondrial function and suppresses oleic acid-mediated MPT through acceleration of beta-oxidation.  相似文献   

11.
Digitonin-permeabilized PC12 and GT1-7 neural cells exhibited a cyclosporin A-sensitive decrease in mitochondrial membrane potential, increased volume, and release of the pro-apoptotic factor cytochrome c in the presence of Ca2+ and the mitochondrial permeability transition (MPT) inducers t-butyl hydroperoxide (t-bOOH) or phenylarsine oxide (PhAsO). Although the concentration of PhAsO required to induce the MPT was similar for Bcl-2 negative and Bcl-2 overexpressing transfected cells (Bcl-2(+)), the level of t-bOOH necessary for triggering the MPT was much higher for Bcl-2(+) cells. A higher concentration of t-bOOH was also necessary for promoting the oxidation of mitochondrial pyridine nucleotides in Bcl-2(+) cells. The sensitivity of Bcl-2(- ) cell mitochondria to t-bOOH but not PhAsO could be overcome by the use of conditions that protect the pyridine nucleotides against oxidation. We conclude that the increased ability of Bcl-2(+) cells to maintain mitochondrial pyridine nucleotides in a reduced redox state is a sufficient explanation for their resistance to MPT under conditions of oxidative stress induced by Ca2+ plus t-bOOH.  相似文献   

12.
Reactive oxygen species (ROS) play a key role in promoting mitochondrial cytochrome c release and induction of apoptosis. ROS induce dissociation of cytochrome c from cardiolipin on the inner mitochondrial membrane (IMM), and cytochrome c may then be released via mitochondrial permeability transition (MPT)-dependent or MPT-independent mechanisms. We have developed peptide antioxidants that target the IMM, and we used them to investigate the role of ROS and MPT in cell death caused by t-butylhydroperoxide (tBHP) and 3-nitropropionic acid (3NP). The structural motif of these peptides centers on alternating aromatic and basic amino acid residues, with dimethyltyrosine providing scavenging properties. These peptide antioxidants are cell-permeable and concentrate 1000-fold in the IMM. They potently reduced intracellular ROS and cell death caused by tBHP in neuronal N(2)A cells (EC(50) in nm range). They also decreased mitochondrial ROS production, inhibited MPT and swelling, and prevented cytochrome c release induced by Ca(2+) in isolated mitochondria. In addition, they inhibited 3NP-induced MPT in isolated mitochondria and prevented mitochondrial depolarization in cells treated with 3NP. ROS and MPT have been implicated in myocardial stunning associated with reperfusion in ischemic hearts, and these peptide antioxidants potently improved contractile force in an ex vivo heart model. It is noteworthy that peptide analogs without dimethyltyrosine did not inhibit mitochondrial ROS generation or swelling and failed to prevent myocardial stunning. These results clearly demonstrate that overproduction of ROS underlies the cellular toxicity of tBHP and 3NP, and ROS mediate cytochrome c release via MPT. These IMM-targeted antioxidants may be very beneficial in the treatment of aging and diseases associated with oxidative stress.  相似文献   

13.
Cytochrome c release and mitochondrial permeability transition (MPT) play important roles in apoptosis. In this study, we found that selenium, an essential trace element, induced mitochondrial membrane potential (Delta psi(m)) loss, swelling, and cytochrome c release in isolated mitochondria. All of the above observations were blocked by cyclosporin A (CsA), which is a specific inhibitor to permeability transition pore (PTP), indicating selenite-induced mitochondrial changes were mediated through the opening of PTP. In physiological concentration, selenite could induce mitochondria at low-conductance PTP 'open' probability, which is correlated to regulate the physiological function, whereas in toxic concentration, induce mitochondria at high-conductance PTP 'open' probability and rapidly undergo a process of osmotic swelling following diffusion toward matrix as for inducer (Ca(2+)/P(i)). Selenite also induced other mitochondrial marker enzymes including monoamine oxidase (MAO) and mitochondria aspartate aminotransferase (mAST). Oligomycin inhibited the selenite-induced cytochrome c release and Delta psi(m) loss, showing that F(0)F(1)-ATPase was important in selenite or Ca(2+)/P(i)-induced MPT.  相似文献   

14.
Genistein, a natural isoflavone present in soybeans, is a potent agent in the prophylaxis and treatment of cancer. Addition of genistein to isolated rat liver mitochondria (RLM) induces swelling, loss of membrane potential and release of accumulated Ca2+. These changes are Ca2+-dependent and are prevented by cyclosporin A (CsA) and bongkrekic acid (BKA), two classical inhibitors of the mitochondrial permeability transition (MPT). Induction of the MPT by genistein is accompanied by oxidation of thiol groups and pyridine nucleotides. The reducing agent dithioerythritol and the alkylating agent N-ethylmaleimide (NEM) completely prevent the opening of the transition pore, thereby emphasizing that the effect of the isoflavone correlates with the mitochondrial redox state. Further analyses showed that genistein induces the MPT by the generation of reactive oxygen species (ROS) due to its interaction with the respiratory chain at the level of mitochondrial complex III.  相似文献   

15.
Release of cytochrome c from mitochondria is considered a critical, early event in the induction of an apoptosis cascade that ultimately leads to programmed cell death. Mitochondrial Ca(2+) loading is a trigger for the release of cytochrome c, although the molecular mechanism underlying this effect is not fully clarified. This study tested the hypothesis that distinct Ca(2+) thresholds may induce cytochrome c release from rat liver mitochondria by membrane permeability transition (MPT)-dependent and independent mechanisms. The involvement of reactive oxygen species (ROS) and cardiolipin in the Ca(2+)-induced cytochrome c release was also investigated. Cytochrome c was quantitated by a new, very sensitive, and rapid reverse-phase high performance liquid chromatography method with a detection limit of 0.1 pmol/sample. We found that a low extramitochondrial Ca(2+) level (2 microM) promoted the release of approximately 13% of the total alamethicin releasable pool of cytochrome c from mitochondria. This release was not depending of MPT; it was mediated by Ca(2+)-induced ROS production and cardiolipin peroxidation and appears to involve the voltage-dependent anion channel. High extramitochondrial Ca(2+) level (20 microM) promoted approximately 45% of the total releasable pool of cytochrome c. This process was MPT-dependent and was also mediated by ROS and cardiolipin. It is suggested that distinct Ca(2+) levels may determine the mode and the amount of cytochrome c release from rat liver mitochondria. The data may help to clarify the molecular mechanism underlying the Ca(2+)-induced release of cytochrome c from rat liver mitochondria and the role played by ROS and cardiolipin in this process.  相似文献   

16.
The opening of mitochondrial membrane permeability transition (MPT) pores, which results in a cyclosporin A (CsA)-sensitive and Ca(2+)-dependent dissipation of the membrane potential (delta psi) and swelling (classical MPT), has been postulated to play an important role in the release of cytochrome c (Cyt.c) and also in apoptotic cell death. Recently, it has been reported that CsA-insensitive or Ca(2+)-independent MPT can be classified as non-classic MPT. Therefore, we studied the effects of apoptosis-inducing agents on mitochondrial functions with respect to their CsA-sensitivity and Ca(2+)-dependency. CsA-sensitive mitochondrial swelling, depolarization, and the release of Ca2+ and Cyt.c were induced by low concentrations of arachidonic acid, triiodothyronine (T3), or 6-hydroxdopamine but not by valinomycin and high concentrations of the fatty acid or T3. Fe2+/ADP and 2,2,-azobis-(2-amidinopropane) dihydrochloride (AAPH) induced swelling of mitochondria and the release of Ca2+ and Cyt.c were not coupled with depolarization or CsA-sensitivity while dibucaine-induced swelling occurred without depolarization, Cyt.c-release or by a CsA-sensitive mechanism. A protonophoric FCCP and SF-6847 induced depolarization and Ca(2+)-release occurred in a CsA-insensitive manner and failed to stimulate the release of Cyt.c. These results indicate that ambient conditions of mitochondria can greatly influence the state of membrane stability and that Cyt.c release may occur not only via a CsA-sensitive MPT but also by way of a CsA-insensitive membrane deterioration.  相似文献   

17.
Nimesulide, a widely used nonsteroidal anti-inflammatory drug containing a nitroaromatic moiety, has been associated with rare but serious hepatic adverse effects. The mechanisms underlying this idiosyncratic hepatotoxicity are unknown; however, both mitochondrial injury and oxidative stress have been implicated in contributing to liver injury in susceptible patients. The aim of this study was, first, to explore whether membrane permeability transition (MPT) could contribute to nimesulide's mitochondrial toxicity and, second, whether metabolism-derived reactive oxygen species (ROS) were responsible for MPT. We found that isolated mouse liver mitochondria readily underwent Ca2+-dependent, cyclosporin A-sensitive MPT upon exposure to nimesulide (at >or=3 microM). Net increases in mitochondrial superoxide anion levels, determined with the fluorescent probe dihydroethidium, were induced by nimesulide only in the presence of Ca2+ and were cyclosporin A-sensitive, indicating that superoxide production was a consequence, rather than the cause, of MPT. In addition, nimesulide caused a rapid dissipation of the inner mitochondrial transmembrane potential (at >or=3 microM), followed by a concentration-dependent decrease in ATP biosynthesis. Because nimesulide, unlike the related nitroaromatic drug nilutamide, did not produce any detectable ROS during incubation with mouse hepatic microsomes, we conclude that mitochondrial uncoupling causes MPT and that ROS production is a secondary effect.  相似文献   

18.
Muratovska A  Eccles MR 《FEBS letters》2004,570(1-3):63-68
Cholesterol enrichment of rat liver mitochondria (CHM) impairs atractyloside-induced mitochondrial permeability transition (MPT) due to decreased membrane fluidity. In this study we addressed the effect of cholesterol enrichment on MPT induced by reactive oxygen species (ROS). Superoxide anion generated by xanthine plus xanthine oxidase triggered mitochondrial swelling and cytochrome c release in CHM, which was prevented by butylated hydroxytoluene, an anti-voltage-dependent anion channel antibody, or cyclosporin A. Furthermore, hydrogen peroxide generated by the combination of ganglioside GD3 and mitochondrial GSH depletion elicited mitochondrial swelling and release of cytochrome c, Smac/Diablo and apoptosis-inducing factor in control mitochondria and CHM. Thus, ROS induce MPT and apoptosome activation regardless of decreased mitochondrial membrane dynamics due to cholesterol enrichment.  相似文献   

19.
Mitochondrial permeability transition (MPT) is a Ca(2+)-dependent, cyclosporine A-sensitive, non-selective inner membrane permeabilization induced by a wide range of agents or conditions, which has often been associated with necrotic or apoptotic cell death. When mitochondria isolated from livers of rats treated with the natural occurring glucosyl xanthone mangiferin (40 mg/kg body weight) were exposed in vitro to Ca(2+), they underwent CsA, NEM, and ADP-sensitive high amplitude swelling and associated membrane potential dissipation, release of pre-accumulated Ca(2+), oxidation of thiol groups, and depletion of GSH, without changes in the NAD(P)H redox state. The same treatment reduced the phosphorylation rate of mitochondria and the resting respiration by around 4 and 11%, respectively, as well as generation of reactive oxygen species (ROS) by organelle. The in vitro exposure of untreated mitochondria to mangiferin plus Ca(2+) also resulted in oxidation of thiol groups, in the same way that the compound inhibited the Ca(2+)-induced peroxidation of mitochondrial membrane lipids. The spectrum of mangiferin during its oxidation by the H(2)O(2)/HRP system showed a characteristic absorption peak at 380 nm, which decreased immediately after reaction was started; two isosbestic points at around 336 and 412 nm, with a blue shift in the position of the maxima absorption of mangiferin were observed, suggesting their conversion into one oxidation product. Glutathione abolished this decrease of absorbance, suggesting that the oxidation product of mangiferin forms adducts with GSH. We propose that Ca(2+) increases levels of mitochondria-generated ROS, which reacts with mangiferin producing quinoid derivatives, which in turn react with the most accessible mitochondrial thiol groups, thus triggering MPT. It seems probable that the free radical scavenging activity of mangiferin shifts its anti-oxidant protection to the thiol arylation. An interesting proposition is that accumulation of mangiferin quinoid products would take place in cells exposed to an overproduction of ROS, such as cancer cells, where the occurrence of MPT-mediated apoptosis may be a cellular defence mechanism against excessive ROS formation.  相似文献   

20.
The isoflavonoid genistein, the cyclic triterpene glycyrrhetinic acid, and salicylate induce mitochondrial swelling and loss of membrane potential (Delta Psi) in rat liver mitochondria (RLM). These effects are Ca(2+)-dependent and are prevented by cyclosporin A and bongkrekik acid, classic inhibitors of mitochondrial permeability transition (MPT). This membrane permeabilization is also inhibited by N-ethylmaleimide, butylhydroxytoluene, and mannitol. The above-mentioned pro-oxidants also induce an increase in O(2) consumption and H(2)O(2) generation and the oxidation of sulfhydryl groups, glutathione, and pyridine nucleotides. All these observations are indicative of the induction of MPT mediated by oxidative stress. At concentrations similar to those present in the cell, spermine can prevent swelling and Delta Psi collapse, that is, MPT induction. Spermine, by acting as a free radical scavenger, in the absence of Ca(2+) inhibits H(2)O(2) production and maintains glutathione and sulfhydryl groups at normal reduced level, so that the critical thiols responsible for pore opening are also consequently prevented from being oxidized. Spermine also protects RLM under conditions of accentuated thiol and glutathione oxidation, lipid peroxidation, and protein oxidation, suggesting that its action takes place by scavenging the hydroxyl radical.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号