首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 749 毫秒
1.
A central function of the Drosophila salivary glands (SGs), historically known for their polytene chromosomes, is to produce and then release during pupariation the secretory glue used to affix a newly formed puparium to a substrate. This essential event in the life history of Drosophila is regulated by the steroid hormone ecdysone in the late‐larval period. Ecdysone triggers a cascade of sequential gene activation that leads to glue secretion and initiates the developmentally‐regulated programmed cell death (PCD) of the larval salivary glands, which culminates 16 h after puparium formation (APF). We demonstrate here that, even after the larval salivary glands have completed what is perceived to be one of their major biological functions – glue secretion during pupariation – they remain dynamic and physiologically active up until the execution phase of PCD. We have used specific metabolic inhibitors and genetic tools, including mutations or transgenes for shi, Rab5, Rab11, vha55, vha68‐2, vha36‐1, syx1A, syx4, and Vps35 to characterize the dramatic series of cellular changes occurring in the SG cells between pupariation and 7–8 h APF. Early in the prepupal period, they are remarkably active in endocytosis, forming acidic vacuoles. Midway through the prepupal period, there is abundant late endosomal trafficking and vacuole growth, which is followed later by vacuole neutralization and disappearance via membrane consolidation. This work provides new insights into the function of Drosophila SGs during the early‐ to mid‐prepupal period.  相似文献   

2.
In this study, we describe an experimental system based on intravital two-photon microscopy for studying endocytosis in live animals. The rodent submandibular glands were chosen as model organs because they can be exposed easily, imaged without compromising their function and, furthermore, they are amenable to pharmacological and genetic manipulations. We show that the fibroblasts within the stroma of the glands readily internalize systemically injected molecules such as fluorescently conjugated dextran and BSA, providing a robust model to study endocytosis. We dynamically image the trafficking of these probes from the early endosomes to the late endosomes and lysosomes while also visualizing homotypic fusion events between early endosomes. Finally, we demonstrate that pharmacological agents can be delivered specifically to the submandibular salivary glands, thus providing a powerful tool to study the molecular machinery regulating endocytosis in a physiological context.  相似文献   

3.
Caco-2 cells grown in bicameral chambers are a model system to study intestinal iron absorption. Caco-2 cells exhibit constitutive transport of iron from the apical (luminal) chamber to the basal (serosal) chamber that is enhanced by apo-transferrin in the basal chamber, with the apo-transferrin undergoing endocytosis to the apical portion of the cell. With the addition of iron to the apical surface, divalent metal transporter 1 (DMT1) on the brush-border membrane (BBM) undergoes endocytosis. These findings suggest that in Caco-2 cells DMT1 and apo-transferrin may cooperate in iron transport through transcytosis. To prove this hypothesis, we determined by confocal microscopy that, after addition of iron to the apical chamber, DMT1 from the BBM and Texas red apo-transferrin from the basal chamber colocalized in a perinuclear compartment. Colocalization was also observed by isolating endosomes from Caco-2 cells after ingestion of ultra-small paramagnetic particles from either the basal or apical chamber. The isolated endosomes contained both transferrin and DMT1 independent of the chamber from which the paramagnetic particles were endocytosed. These findings suggest that iron transport across intestinal epithelia may be mediated by transcytosis.  相似文献   

4.
Abstract. The ribbon‐shaped salivary glands in Bulla striata were studied with light microscopy and transmission electron microscopy (TEM). Secretion is produced in tubules formed by two types of secretory cells, namely granular mucocytes and vacuolated cells, intercalated with ciliated cells. A central longitudinal duct lined by the same cell types collects the secretion and conducts it to the buccal cavity. In granular mucocytes, the nucleus is usually central and the secretory vesicles contain oval‐shaped granular masses attached to the vesicle membrane. Glycogen granules can be very abundant, filling the space around the secretory vesicles. These cells are strongly stained by PAS reaction for polysaccharides. Their secretory vesicles are also stained by Alcian blue, revealing acidic mucopolysaccharides, and the tetrazonium reaction detects proteins in minute spots at the edge of the vesicles, corresponding to the granular masses observed in TEM. Colloidal iron staining for acidic mucopolysaccharides in TEM reveals iron particles in the electron‐lucent region of the vesicles, while the granular masses are free of particles. In vacuolated cells, which are thinner and less abundant than the granular mucocytes, the nucleus is basal and the cytoplasm contains large electron‐lucent vesicles. These vesicles are very weakly colored by light microscopy techniques, but colloidal iron particles could be observed within them. The golf tee‐shaped ciliated cells contain some electron‐dense lysosomes in the apical region. In these cells, the elongated nucleus is subapically located, and bundles of microfibrils are common in the slender cytoplasmic stalk that reaches the basal lamina. The morphological, histochemical, and cytochemical data showed some similarities between salivary glands in B. striata and Aplysia depilans. These similarities could reflect the phylogenetic relationship between cephalaspidean and anaspidean opisthobranchs or result from a convergent adaptation to an identical herbivorous diet.  相似文献   

5.
Summary A major function of the larval salivary glands of Drosophila melanogaster is known to be the production of a mucopolysaccharide that serves as an adhesive during puparium formation. In order to localize the mucosubstances during development substrate histochemical methods were used, and the site of acid phosphatase was demonstrated by the ultrahistochemical lead-salt method. It could be shown that the glue-granules in the corpus cells of larval salivary glands as well as the large secretion vacuoles in the prepupal corpus cells give a positive -amylase-resistent PAS-reaction, which indicates neutral mucosubstances. Granular PAS-positive deposits in the larval and prepupal collum cells were reduced after preincubation with -amylase and may represent glycogen, which has also been seen in electron micrographs of these cells. The Hale-reaction gave a weak indication that acid mucosubstances are present in the larval glue granules and in the large prepupal secretory vacuoles. After digestion of sialic acid with -neuraminidase the weak indication was absent showing that the acid mucosubstances had been sialomucines. Ultrahistochemical demonstration of acid phosphatase indicated the presence of this enzyme in Golgi fields and lysosomal structures. Acid phosphatase seems to be missing in the large secretion vacuoles of the prepupal salivary gland.It is concluded, that the large vacuoles in the corpus cells of prepupal salivary glands represent a secretion product, obviously a mucosubstance. The lysosomal structures, containing acid phosphatase, may be accumulated in preparation for the autolysis of the gland which begins about two hours after the pupal moult, i.e. 15 hours after puparium formation.This investigation was supported by grants from the Deutsche Forschungsgemeinschaft (Ga 97/6).  相似文献   

6.
The Journey of Malaria Sporozoites in the Mosquito Salivary Gland   总被引:11,自引:0,他引:11  
The life cycle of malaria parasites in the mosquito vector is completed when the sporozoites infect the salivary gland and are ready to be injected into the vertebrate host. This paper describes the fine structure of the invasive process of mosquito salivary glands by malaria parasites. Plasmodium gallinaceum sporozoites start the invasion process by attaching to and crossing the basal lamina and then penetrating the host plasma membrane of the salivary cells. The penetration process appears to involve the formation of membrane junctions. Once inside the host cells, the sporozoites are seen within vacuoles attached by their anterior end to the vacuolar membrane. Mitochondria surround, and are closely associated with, the invading sporozoites. After the disruption of the membrane vacuole, the parasites traverse the cytoplasm, attach to, and invade the secretory cavity through the apical plasma membrane of the cells. Inside the secretory cavity, sporozoites are seen again inside vacuoles. Upon escaping from these vacuoles, sporozoites are positioned in parallel arrays forming large bundles attached by multilammelar membrane junctions. Several sporozoites are seen around and inside the secretory duct. Except for the penetration of the chitinous salivary duct, our observations have morphologically characterized the entire process of sporozoite passage through the salivary gland.  相似文献   

7.
The digestive system of the sea hare, Aplysia depilans , includes a pair of ribbon-shaped salivary glands. A central duct and a large blood vessel run close to each other along the length of these glands and both are surrounded by a layer of muscle cells. Three cell types form the glandular epithelium: granular cells, vacuolated cells and mucocytes. The granular cells possess cilia and spherical secretion granules, located primarily in the apical region. The granules of immature cells have a low electron density and are mainly formed by neutral polysaccharides with small amounts of proteins. The granules of mature cells are larger, have a high electron density and are mainly formed by proteins with lower amounts of neutral polysaccharides. Transition stages between immature and mature granular cells are observed. The vacuolated cells are large and frequently pyramidal in shape, but after the application of histochemical techniques almost all vacuoles remain uncoloured. The numerous vacuoles contain flocculent material in a clear background and the mitochondria possess large crystalline structures in the matrix. A pyramidal shape is also typical of the mucocytes, which are filled with vesicles containing granular masses surrounded by a network of secretion material. These large cells are strongly stained by Alcian blue, revealing the presence of acidic mucopolysaccharides. This is the first ultrastructural study of the salivary glands in opisthobranch gastropods.  相似文献   

8.
To investigate the role of filamentous actin in the endocytic pathway, we used the cell-permeant drug Jasplakinolide (JAS) to polymerize actin in intact polarized Madin–Darby canine kidney (MDCK) cells. The uptake and accumulation of the fluid-phase markers fluorescein isothiocyanate (FITC)-dextran and horseradish peroxidase (HRP) were followed in JAS-treated or untreated cells with confocal fluorescence microscopy, biochemical assays, and electron microscopy. Pretreatment with JAS increased the uptake and accumulation of fluid-phase markers in MDCK cells. JAS increased endocytosis in a polarized manner, with a marked effect on fluid-phase uptake from the basolateral surface but not from the apical surface of polarized MDCK cells. The early uptake of FITC-dextran and HRP was increased more than twofold in JAS-treated cells. At later times, FITC-dextran and HRP accumulated in clustered endosomes in the basal and middle regions of JAS-treated cells. The large accumulated endosomes were similar to late endosomes but they were not colabeled for other late endosome markers, such as rab7 or mannose-6-phosphate receptor. JAS altered transport in the endocytic pathway at a later stage than the microtubule-dependent step affected by nocodazole. JAS also had a notable effect on cell morphology, inducing membrane bunching at the apical pole of MDCK cells. Although other studies have implicated actin in endocytosis at the apical cell surface, our results provide novel evidence that filamentous actin is also involved in the endocytosis of fluid-phase markers from the basolateral membrane of polarized cells.  相似文献   

9.
The oesophagus and crop epithelium of Aplysia depilans consist in a single layer of columnar cells with apical microvilli, and some of them also possess cilia. Cell membrane invaginations, small vesicles, multivesicular bodies and many dense lysosomes were observed in the apical region of the cytoplasm. In most cells, a very large lipid droplet was observed above the nucleus and a smaller one was frequently found below the nucleus; glycogen granules are also present. Considering these ultrastructural features, it seems that these cells collect nutritive substances from the lumen by endocytosis, digest them in the apical lysosomes and store the resulting products. The cell bodies of mucus secreting flask-shaped cells are subepithelial in the oesophagus and intraepithelial in the crop. Histochemistry methods showed that the secretion stored in these cells contains acidic polysaccharides. Secretory vesicles with thin electron-dense filaments scattered in an electron-lucent background fill most of these cells, and the basal nucleus is surrounded by dilated rough endoplasmic reticulum cisternae containing small tubular structures. Considering the relatively low number of secretory cells, mucus production cannot be high. Moreover, since protein secreting cells were not observed in either oesophagus or crop, extracellular digestion in the lumen of these anterior segments of the digestive tract most probably depend on the enzymes secreted by the salivary and digestive glands.  相似文献   

10.
Summary The sweat glands of the antebrachial organ of the ring-tailed lemur are atypical apocrine glands which have some characteristics of eccrine sweat glands. The myoepithelial cells are large and consist of well-differentiated basal and apical regions. The secretory cells form a monolayer of tall, columnar cells filled with numerous secretory vacuoles and capped with differentiated apical blebs. The vacuoles are formed in the Golgi region and their contents are discharged into the lumen and into intercellular canaliculi. The blebs are pinched off at the luminal surface by a true apocrine mechanism. In addition to the usual organelles (abundant rough endoplasmic reticulum, prominent Golgi region, large mitochondria, pigment, secretory vacuoles), the secretory cells contain bundles of microtubules. Each microtubule is about 325–350 Å in diameter. The glands are larger and more active in the male. These sweat glands are distinctly different from the apocrine glands of the general body surface of L. catta.Publication No. 128 of the Oregon Regional Primate Research Center, supported in part by Grants FR 00163 and AM 08445 from the National Institutes of Health. The author expresses thanks to D. McLean for preparation of the diagram.  相似文献   

11.
The Drosophila salivary glands (SGs) were well known for the puffing patterns of their polytene chromosomes and so became a tissue of choice to study sequential gene activation by the steroid hormone ecdysone. One well‐documented function of these glands is to produce a secretory glue, which is released during pupariation to fix the freshly formed puparia to the substrate. Over the past two decades SGs have been used to address specific aspects of developmentally‐regulated programmed cell death (PCD) as it was thought that they are doomed for histolysis and after pupariation are just awaiting their fate. More recently, however, we have shown that for the first 3–4 h after pupariation SGs undergo tremendous endocytosis and vacuolation followed by vacuole neutralization and membrane consolidation. Furthermore, from 8 to 10 h after puparium formation (APF) SGs display massive apocrine secretion of a diverse set of cellular proteins. Here, we show that during the period from 11 to 12 h APF, the prepupal glands are very active in calcium oxalate (CaOx) extrusion that resembles renal or nephridial excretory activity. We provide genetic evidence that Prestin, a Drosophila homologue of the mammalian electrogenic anion exchange carrier SLC26A5, is responsible for the instantaneous production of CaOx by the late prepupal SGs. Its positive regulation by the protein kinases encoded by fray and wnk lead to increased production of CaOx. The formation of CaOx appears to be dependent on the cooperation between Prestin and the vATPase complex as treatment with bafilomycin A1 or concanamycin A abolishes the production of detectable CaOx. These data demonstrate that prepupal SGs remain fully viable, physiologically active and engaged in various cellular activities at least until early pupal period, that is, until moments prior to the execution of PCD.  相似文献   

12.
Two types of granulosecreting alveoles were found in salivary glands of hungry females by means of electron microscopy of ultrafine sections. Alveoles of the IInd type occur in the anterior helf of the gland. They are not numerous and consist of three types of secretory cells (A, B, C) surrounding the inneralveolar cavity. The secretory cells are separated from each other and from the basal membrane by the strands of the epithelial cells P. Three types of spherical inclusions were found in the secretory cells. They differ in size, electron density and intensity of staining of half-fine sections with toluidin blue. The apical cytoplasmatic membrane of secretory cells bears numerous microvilli. Alveoles of the IIIrd type, which constitute the main mass of the gland tissue, have a narrow slit-like inneralveolar cavity. The basal part of the alveole is formed by 3--4 large cells filled with large spherical electron-transparent vacuoles of the secretion. The apical part of the alveole is occupied by 9 to 11 cells E, whose cytoplasm is filled with numerous flat cisternae of granular endoplasmatic reticulum and small and medium secretory vacuoles of different electron density. Alveoles of the IInd and IIIrd type of I. persulcatus are not identical with those of Hyalomma asiaticum, Boophilus microplus and other members of the subfamily Amblyomminae.  相似文献   

13.
The mechanism by which plasma membrane proteins are transported to vacuoles for degradation has not been well characterized in plants. To clarify how plasma membrane proteins are degraded, we monitored the endocytotic pathway in tobacco suspension-cultured BY-2 cells with a fluorescent endocytosis marker, FM4-64. Because of the efficient and rapid delivery of endosomes to the vacuoles, endosomes were scarcely detectable. Interestingly, we found that E-64d, an inhibitor of papain family proteases, caused the accumulation of a large number of endosomes in the cells under the sucrose-starved condition. This result indicates that E-64d attenuates the fusion of endosomes with vacuoles. We identified two papain homologues, which are localized in the endosomes, with a biotinylated inhibitor. We designated them as endosome-localized papains (ENPs). Immunofluorescent analysis revealed that vacuolar sorting receptor, a marker of prevacuolar compartment (PVC), was localized in the endosomes. This result and their acidic nature show that the endosomes correspond to PVC. These results suggest that ENPs facilitate the final step in the vacuolar trafficking pathway under the sucrose-starved condition. We further examined the effects of E-64d on two transgenic Arabidopsis plants that constitutively express a fusion protein composed of green fluorescent protein (GFP) and a plasma membrane protein (GFP-PIP2a or GFP-LTI6b). GFP fluorescence was observed on the plasma membrane of root cells in these transgenic plants. Treatment with E-64d induced the accumulation of GFP-fluorescent endosomes and inhibited the degradation of these fusion proteins. No GFP fluorescence was observed in vacuoles in E-64d-treated transgenic plants. Taken together, these results suggest that endosomal proteases are required for the fusion of endosomes with vacuoles at the final step in the endocytotic pathway for degradation of plasma membrane proteins in plants.  相似文献   

14.
The neonatal Fc receptor (FcRn) transports IgG across epithelial cells and recycles serum IgG. FcRn binds IgG at the acidic pH of endosomes and releases IgG at the basic pH of blood. We expressed rat FcRn in polarized MDCK cells and demonstrated that it functions in transcytosis and recycling of IgG. In the absence of IgG, FcRn is distributed predominantly apically, but redistributes to basolateral locations upon IgG addition, indicating that ligand binding induces a signal that stimulates transcytosis. FcRn transcytoses IgG more efficiently in the apical to basolateral than the reverse direction when IgG is internalized by receptor-mediated endocytosis at acidic pH or by fluid phase endocytosis at basic pH. The PI 3-kinase inhibitor wortmannin disrupts basolateral recycling and transcytosis in both directions, but only minimally reduces apical recycling. Confocal imaging and quantitative IgG transport studies demonstrate that apically-internalized IgG recycles to the apical surface mainly from wortmannin-insensitive apical early endosomes, whereas FcRn-IgG complexes that transcytose to the basolateral surface pass through downstream Rab11-positive apical recycling endosomes and transferrin-positive common endosomal compartments.  相似文献   

15.
The cytoplasm of Rhynchosciara hollaenderi late larval, prepupal and pupal salivary gland cells was studied at the ultrastructural level. In the second half of the 4th instar, evidence of an intensive secretory activity is visible in the form of numerous secretory granules in the apical area of the cells. At the same stage, the endoplasmic reticulum cisternae adjacent to Golgi groups are active in the transfer of vesicular elements. At later stages this activity rapidly diminishes. Before the appearance of the DNA puffs, i.e. at the end of the 4th instar, mitochondria begin to show a granular deposit and normal mitochondria decrease in number. These with the granular deposit form clusters and initiate formation of single autophagic vacuoles before the appearance of the DNA puffs. Later, at the time, when the 2B puff opens, the autophagic vacuoles appear in great number. Simultaneously with the formation of the autophagic vacuoles the presence of acid phosphatase in the Golgi vesicles and in autophagic vacuoles was shown. In the last stages investigated (late pupae) acid phosphatase is present free in the cytoplasm and at the same time disappearance of free ribosomes, pycnosis of polytene chromosomes and breakage of nuclear membranes occur. It is concluded that the histolysis of the salivary gland cells begins before the large DNA puffs appear, then it becomes very intensive and continues after these puffs undergo regression.  相似文献   

16.
Tick salivary glands are important organs that enable the hematophagous feeding of the tick. We previously described the innervation of the salivary gland acini types II and III by a pair of protocerebral salivary gland neurons that produce both myoinhibitory peptide (MIP) and SIFamide (?imo et al., 2009b). In this study we identified authentic receptors expressed in the salivary glands for these neuropeptides. Homology-based searches for these receptors in the Ixodes scapularis genome sequence were followed by gene cloning and functional expression of the receptors. Both receptors were activated by low nanomolar concentrations of their respective ligands. The temporal expression patterns of the two ligands and their respective receptors suggest that the SIFamide signaling system pre-exists in unfed salivary glands, while the MIP system is activated upon initiation of feeding. Immunoreactivity for the SIFamide receptor in the salivary gland was detected in acini types II and III, surrounding the acinar valve and extending to the basal region of the acinar lumen. The location of the SIFamide receptor in the salivary glands suggests three potential target cell types and their probable functions: myoepithelial cell that may function in the contraction of the acini and/or the control of the valve; large, basally located dopaminergic granular cells for regulation of paracrine dopamine; and neck cells that may be involved in the control of the acinar duct and its valve.  相似文献   

17.
The cardiac and pyloric glands in the gastric mucosa of the South African hedgehog, Atelerix frontalis, are described. The cardiac area of the stomach contains proper cardiac glands and lacks undifferentiated fundic glands. The cardiac glands are simple tubular, coiled, and lined with columnar cells ultrastructurally similar to those of the gastric surface epithelium. Secretory granules with varying electron densities fill the apical cytoplasm of these cells. In contrast to other mammals, these glands lack mucous neck cells. The neck of the pyloric glands contains only a single cell type, whereas the basal regions of these glands contain “light” and “dark” cells. The secretory granules in the “dark” cells and the pyloric neck cells have a moderate electron density and often contain an electron dense core. An electron-lucent cytoplasm with numerous polysomes is characteristic of the “light” cells. Some “light” cells contain electron-dense granules in the apical cytoplasm. The presence of only neutral mucins in the cardiac gland cells denotes the absence of mucous neck cells. The acidic mucins within the pyloric neck cells seem to indicate that these cells are mucous neck cells, whereas the neutral mucins within the basally located pyloric gland cells show at least a partial functional difference from the pyloric neck cells. © 1993 Wiley-Liss, Inc.  相似文献   

18.
Brain iron-dyshomeostasis is an important cause of neurotoxicity in prion disorders, a group of neurodegenerative conditions associated with the conversion of prion protein (PrPC) from its normal conformation to an aggregated, PrP-scrapie (PrPSc) isoform. Alteration of iron homeostasis is believed to result from impaired function of PrPC in neuronal iron uptake via its ferrireductase activity. However, unequivocal evidence supporting the ferrireductase activity of PrPC is lacking. Kidney provides a relevant model for this evaluation because PrPC is expressed in the kidney, and ∼370 μg of iron are reabsorbed daily from the glomerular filtrate by kidney proximal tubule cells (PT), requiring ferrireductase activity. Here, we report that PrPC promotes the uptake of transferrin (Tf) and non-Tf-bound iron (NTBI) by the kidney in vivo and mainly NTBI by PT cells in vitro. Thus, uptake of 59Fe administered by gastric gavage, intravenously, or intraperitoneally was significantly lower in PrP-knock-out (PrP−/−) mouse kidney relative to PrP+/+ controls. Selective in vivo radiolabeling of plasma NTBI with 59Fe revealed similar results. Expression of exogenous PrPC in immortalized PT cells showed localization on the plasma membrane and intracellular vesicles and increased transepithelial transport of 59Fe-NTBI and to a smaller extent 59Fe-Tf from the apical to the basolateral domain. Notably, the ferrireductase-deficient mutant of PrP (PrPΔ51–89) lacked this activity. Furthermore, excess NTBI and hemin caused aggregation of PrPC to a detergent-insoluble form, limiting iron uptake. Together, these observations suggest that PrPC promotes retrieval of iron from the glomerular filtrate via its ferrireductase activity and modulates kidney iron metabolism.  相似文献   

19.
Banana bunchy top virus (BBTV) (Nanoviridae: Babuvirus) is transmitted by aphids of the genus Pentalonia in a circulative manner. The cellular mechanisms by which BBTV translocates from the anterior midgut to the salivary gland epithelial tissues are not understood. Here, we used multiple fluorescent markers to study the distribution and the cellular localization of early and late endosomes, macropinosomes, lysosomes, microtubules, actin filaments, and lipid raft subdomains in the gut and principal salivary glands of Pentalonia nigronervosa. We applied colabeling assays, to colocalize BBTV viral particles with these cellular compartments and structures. Our results suggest that multiple potential cellular processes, including clathrin‐ and caveolae‐mediated endocytosis and lipid rafts, may not be involved in BBTV internalization.  相似文献   

20.
Podisus nigrispinus Dallas (Hemiptera: Pentatomidae) is a zoophytophagous insect with a potential for use as a biological control agent in agriculture because nymphs and adults actively prey on various insects by inserting mouthparts and regurgitating the contents of the salivary glands inside the prey, causing rapid paralysis and death. However, the substances found in saliva of P. nigrispinus that causes the death of the prey are unknown. As a first step to identify the component of the saliva of P. nigrispinus, this study evaluated the ultrastructure and cytochemistry of the salivary glands of P. nigrispinus. The salivary system of P. nigrispinus has a pair of principal salivary glands, which are bilobed with a short anterior lobe and a long posterior lobe, and a pair of tubular accessory glands. The principal gland epithelium is composed of a single layer of cells enclosing a large lumen. Epithelial cells of the principal salivary gland vary from cubic to columnar shape, with one or two spherical and well-developed nuclei. Cells of the anterior lobe of the principal salivary gland have an apical surface with narrow, short, and irregular plasma membrane foldings; apical and perinuclear cytoplasm rich in rough endoplasmic reticulum; and mitochondria with tubular cristae. The basal portion of the secretory cells has mitochondria associated with many basal plasma membrane infoldings that are short but form large extracellular canals. Secretory granules with electron-dense core and electron-transparent peripheral are dispersed throughout the cytoplasm. Cells of the posterior lobe of the principal salivary gland are similar to those of the anterior lobe, except for the presence of mitochondria with transverse cristae. The accessory salivary gland cells are columnar with apical microvilli, have well-developed nucleus and cytoplasm rich in rough endoplasmic reticulum, and have secretory granules. Cytochemical tests showed positive reactions for carbohydrate, protein, and acid phosphatase in different regions of the glandular system. The principal salivary glands of P. nigrispinus do not have muscle cells attached to its wall, suggesting that saliva-releasing mechanism may occurs with the participation of some thorax muscles. The cytochemical and ultrastructural features suggest that the principal and accessory salivary glands play a role in protein synthesis of the saliva.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号