首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
We have investigated poly(amidoamine) (PAMAM) dendrimer interactions with supported 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) lipid bilayers and KB and Rat2 cell membranes using atomic force microscopy (AFM), enzyme assays, flow cell cytometry, and fluorescence microscopy. Amine-terminated generation 7 (G7) PAMAM dendrimers (10-100 nM) were observed to form holes of 15-40 nm in diameter in aqueous, supported lipid bilayers. G5 amine-terminated dendrimers did not initiate hole formation but expanded holes at existing defects. Acetamide-terminated G5 PAMAM dendrimers did not cause hole formation in this concentration range. The interactions between PAMAM dendrimers and cell membranes were studied in vitro using KB and Rat 2 cell lines. Neither G5 amine- nor acetamide-terminated PAMAM dendrimers were cytotoxic up to a 500 nM concentration. However, the dose dependent release of the cytoplasmic proteins lactate dehydrogenase (LDH) and luciferase (Luc) indicated that the presence of the amine-terminated G5 PAMAM dendrimer decreased the integrity of the cell membrane. In contrast, the presence of acetamide-terminated G5 PAMAM dendrimer had little effect on membrane integrity up to a 500 nM concentration. The induction of permeability caused by the amine-terminated dendrimers was not permanent, and leaking of cytosolic enzymes returned to normal levels upon removal of the dendrimers. The mechanism of how PAMAM dendrimers altered cells was investigated using fluorescence microscopy, LDH and Luc assays, and flow cytometry. This study revealed that (1) a hole formation mechanism is consistent with the observations of dendrimer internalization, (2) cytosolic proteins can diffuse out of the cell via these holes, and (3) dye molecules can be detected diffusing into the cell or out of the cell through the same membrane holes. Diffusion of dendrimers through holes is sufficient to explain the uptake of G5 amine-terminated PAMAM dendrimers into cells and is consistent with the lack of uptake of G5 acetamide-terminated PAMAM dendrimers.  相似文献   

3.
The barrier functions of the stratum corneum and the epidermal layers present a tremendous challenge in achieving effective transdermal delivery of drug molecules. Although a few reports have shown that poly(amidoamine) (PAMAM) dendrimers are effective skin-penetration enhancers, little is known regarding the fundamental mechanisms behind the dendrimer-skin interactions. In this Article, we have performed a systematic study to better elucidate how dendrimers interact with skin layers depending on their size and surface groups. Franz diffusion cells and confocal microscopy were employed to observe dendrimer interactions with full-thickness porcine skin samples. We have found that smaller PAMAM dendrimers (generation 2 (G2)) penetrate the skin layers more efficiently than the larger ones (G4). We have also found that G2 PAMAM dendrimers that are surface-modified by either acetylation or carboxylation exhibit increased skin permeation and likely diffuse through an extracellular pathway. In contrast, amine-terminated dendrimers show enhanced cell internalization and skin retention but reduced skin permeation. In addition, conjugation of oleic acid to G2 dendrimers increases their 1-octanol/PBS partition coefficient, resulting in increased skin absorption and retention. Here we report that size, surface charge, and hydrophobicity directly dictate the permeation route and efficiency of dendrimer translocation across the skin layers, providing a design guideline for engineering PAMAM dendrimers as a potential transdermal delivery vector.  相似文献   

4.
Sunlight-induced C to T mutation hotspots in skin cancers occur primarily at methylated CpG sites that coincide with sites of UV-induced cyclobutane pyrimidine dimer (CPD) formation. The C or 5-methyl-C in CPDs are not stable and deaminate to U and T, respectively, which leads to the insertion of A by DNA polymerase η and defines a probable mechanism for the origin of UV-induced C to T mutations. We have now determined the photoproduct formation and deamination rates for 10 consecutive T=mCG CPDs over a full helical turn at the dyad axis of a nucleosome and find that whereas photoproduct formation and deamination is greatly inhibited for the CPDs closest to the histone surface, it is greatly enhanced for the outermost CPDs. Replacing the G in a T=mCG CPD with A greatly decreased the deamination rate. These results show that rotational position and flanking sequence in a nucleosome can significantly and synergistically modulate CPD formation and deamination that contribute to C to T mutations associated with skin cancer induction and may have influenced the evolution of the human genome.  相似文献   

5.
Conventional dendrimers are spherical symmetrically branched polymers ending with active surface functional groups. Polyamidoamine (PAMAM) dendrimers have been widely studied as gene delivery vectors and have proven effective at delivering DNA to cells in vitro. However, higher‐generation (G4‐G8) PAMAM dendrimers exhibit toxicity due to their high cationic charge density and this has limited their application in vitro and in vivo. Another limitation arises when attempts are made to functionalize spherical dendrimers as targeting moieties cannot be site‐specifically attached. Therefore, we propose that lower‐generation asymmetric dendrimers, which are likely devoid of toxicity and to which site‐specific attachment of targeting ligands can be achieved, would be a viable alternative to currently available dendrimers. We synthesized and characterized a series of peptide‐based asymmetric dendrimers and compared their toxicity profile and ability to condense DNA to spherical PAMAM G1 dendrimers. We show that asymmetric dendrimers are minimally toxic and condense DNA into stable toroids which have been reported necessary for efficient cell transfection. This paves the way for these systems to be conjugated with targeting ligands for gene delivery in vitro and in vivo. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

6.
Dendrimers are a relatively new and still not fully examined group of polybranched polymers. In this study polyamidoamine dendrimers with hydroxyl surface groups (PAMAM-OH) of third, fourth and fifth generation (G3, G4 and G5) were examined for their ability to influence the activity of human erythrocyte plasma membrane adenosinetriphosphatases (ATPases). Plasma membrane ATPases are a group of enzymes related, among others, to the maintenance of ionic balance inside the cell. An inhibition of their activity may result in a disturbance of cell functioning. Two of examined dendrimers (G4 and G5) were found to inhibit the activity of Na(+)/K(+) ATPase and Ca(2+) ATPase by 20-30%. The observed effect was diminished when higher concentrations of dendrimers were used. The experiment with the use of pyrene as fluorescent probe sensitive to the changes in microenvironment's polarity revealed that it was an effect of dendrimers' self-aggregation. Additional studies showed that PAMAM-OH dendrimers were able to decrease the fluidity of human erythrocytes plasma membrane. Obtained results suggest that change in plasma membrane fluidity was not caused by the dendrimer-lipid interaction, but dendrimer-protein interaction. Different pattern of influence of dendrimers on ATPases activity and erythrocyte membrane fluidity suggests that observed change in ATPases activity is not a result of dendrimer-lipid interaction, but may be related to direct interaction between dendrimers and ATPases.  相似文献   

7.
8.
The aim of this work was to study the effect of phosphorus-containing dendrimers (generations G3 and G4) on the fibrillation of α-synuclein (ASN). The inhibition of fibril formation (filamentous and aggregates) is a potential therapeutic strategy for neurodegenerative disorders such as Parkinson's and other motor disorder neurodegenerative diseases. The interaction between phosphorus-containing dendrimers and ASN was studied by fluorescence spectroscopy. The decrease in the fluorescence intensity of intrisinic tyrosine was the most marked change in the fluorescence intensity observed upon addition of dendrimers. Furthermore, the effect of dendrimers on ASN fibril formation was studied using circular dichroism (CD) spectroscopy and CD studies were complemented by fluorescence assays using the dye thioflavin T (ThT). The results showed that phosphorus-containing dendrimers G3 and G4 inhibited fibril formation, when they were used in the ASN/dendrimer ratios 1:0.1 and 1:0.5. However, the higher concentrations of dendrimers did not show this effect.  相似文献   

9.
Amino-terminated dendrimers are well-defined synthetic hyperbranched polymers and have previously been shown to destabilize aggregates of the misfolded, pathogenic, and partially protease-resistant form of the prion protein (PrPSc), transforming it into a partially dissociated, protease-sensitive form with strongly reduced infectivity. The mechanism behind this is not known, but a low pH, creating multiple positively charged primary amines on the dendrimer surface, increases the efficiency of the reaction. In the present study, surface amines of the dendrimers were modified to yield either guanidino surface groups (being positively charged at neutral pH) or urea groups (uncharged). The ability of several generations of modified dendrimers and unmodified amino-terminated dendrimers to deplete PrPSc from persistently PrPSc-infected cells in culture (SMB cells) was studied. It was found that destabilization correlated with both the generation number of the dendrimer, with higher generations being more efficient, and the charge density of the surface groups. Urea-decorated dendrimers having an uncharged surface were less efficient than positively charged unmodified- (amino) and guanidino-modified dendrimers. The most efficient dendrimers (generation 4 (G4) and G5-unmodified and guanidino dendrimers) cleared PrPSc completely by incubation for 4 days at less than 50 nM. In contrast to both unmodified and guanidine-modified dendrimers, the uncharged urea dendrimers showed much lower cytotoxicity toward noninfected SMB cells. Therapeutic uses of modified dendrimers are indicated by the low concentrations of dendrimers needed.  相似文献   

10.
Cationic polymers such as poly(amidoamine), PAMAM, dendrimers have been used to electrostatically complex siRNA molecules forming dendriplexes for enhancing the cytoplasmic delivery of the encapsulated cargo. However, excess PAMAM dendrimers is typically used to protect the loaded siRNA against enzymatic attack, which results in systemic toxicity that hinders the in vivo use of these particles. In this paper, we evaluate the ability of G4 (flexible) and G5 (rigid) dendrimers to complex model siRNA molecules at low +/− ratio of 2/1 upon incubation for 20 minutes and 24 hours. We examine the ability of the formed G4 and G5 dendriplexes to shield the loaded siRNA molecules and protect them from degradation by RNase V1 enzymes using atomic force microscopy (AFM). Results show that G4 and G5 dendrimers form similar hexagonal complexes upon incubation with siRNA molecules for 20 minutes with average full width of 43±19.3 nm and 62±8.3 at half the maximum height, respectively. AFM images show that these G4 and G5 dendriplexes were attacked by RNase V1 enzyme leading to degradation of the exposed RNA molecules that increased with the increase in incubation time. In comparison, incubating G4 and G5 dendrimers with siRNA for 24 hours led to the formation of large particles with average full width of 263±60 nm and 48.3±2.5 nm at half the maximum height, respectively. Both G4 and G5 dendriplexes had a dense central core that proved to shield the loaded RNA molecules from enzymatic attack for up to 60 minutes. These results show the feasibility of formulating G4 and G5 dendriplexes at a low N/P (+/−) ratio that can resist degradation by RNase enzymes, which reduces the risk of inducing non-specific toxicity when used in vivo.  相似文献   

11.
Pyridoxal was covalently attached to polyethylenimine polymers, but the resulting materials were found to degrade rapidly. In comparison, the dendrimeric pyridoxals, which possess only one pyridoxal unit at the core of every dendrimer molecule were found to be relatively stable compounds. A total of 12 poly(amidoamine) type dendrimers were synthesized. They range from G1 to G6 with either NMe(2) or NHAc termini. The NMe(2)-terminated pyridoxal dendrimers racemize alpha-amino acids 50-100 times faster than does simple pyridoxal, while the NHAc-terminated pyridoxal dendrimers racemize alpha-amino acids only 3-5 times faster than does simple pyridoxal. Both the NMe(2)- and NHAc-terminated pyridoxal dendrimers decarboxylate 2-amino-2-phenyl-propionic acid 1-3 times faster than simple pyridoxal. The interior polarity in the pyridoxal dendrimers is similar to that of 85:15 water-DMF solution. Furthermore, we successfully incorporated eight lauryl groups to the G5 pyridoxal dendrimer at known positions. The laurylated dendrimer exhibits lower racemization and decarboxylation rates than do the unlaurylated ones, in contrast to the positive rate effects of laurylation in polyethylenimine-pyridoxamines in our previous transamination studies.  相似文献   

12.
Novel polyester-co-polyether dendrimers consisting of a hydrophilic core were synthesized by a combination of convergent and divergent syntheses. The core was synthesized from biocompatible moieties, butanetetracarboxylic acid and aspartic acid, and the dendrons from PEO (poly(ethylene oxide)), dihydroxybenzoic acid or gallic acid, and PEG monomethacrylate. The dendrimers, Den-1-(G 2) (second generation dendrimer-1) and Den-2-(G 2) (second generation dendrimer-2) consisting of 16 and 24 allyl surface groups, respectively, were obtained by coupling the dendrons to the core. The dendrimer (Den-1-(G 2)-OH) with hydroxyl groups at the surface was synthesized by oxidation of the allyl functional groups of Den-1-(G 2), which was divergently coupled to the dendrons to obtain the third generation dendrimer Den-1-(G 3) consisting of 32 surface groups. The modifications in surface groups and generation of dendrimers were shown to influence the shape of dendrimers in the AFM studies. The aggregation as well as self-assembly of dendrimers was observed at high concentration in water by light scattering studies; however, it was reduced on dilution and in the presence of sodium chloride. Dendrimers demonstrated good ability to encapsulate the guest molecule, with loading of 15.80 and 6.47% w/w for rhodamine and beta-carotene, respectively. UV spectroscopy proved the absence of any pi-pi complexation between the dendrimer and encapsulated compounds. (1)H NMR and FTIR studies showed that the physical entrapment and/or hydrogen bonding by PEO in the interior and branch of the dendrimer are the mechanisms of encapsulation. The release of the encapsulated compounds was found to be slow and sustained, suggesting that these dendrimers can serve as potential drug delivery vehicles.  相似文献   

13.
In this study the ability of three polyamidoamine (PAMAM) dendrimers with different surface charge (positive, neutral and negative) to interact with a negatively charged protein (porcine pepsin) was examined. It was shown that the dendrimer with a positively charged surface (G4 PAMAM-NH2), as well as the dendrimer with a neutral surface (G4 PAMAM-OH), were able to inhibit enzymatic activity of pepsin. It was also found that these dendrimers act as mixed partially non-competitive pepsin inhibitors. The negatively charged dendrimer (G3.5 PAMAM-COOH) was not able to inhibit the enzymatic activity of pepsin, probably due to the electrostatic repulsion between this dendrimer and the protein. No correlation between changes in enzymatic activity of pepsin and alterations in CD spectrum of the protein was observed. It indicates that the interactions between dendrimers and porcine pepsin are complex, multidirectional and not dependent only on disturbances of the secondary structure.  相似文献   

14.
The synthesis of benzylpenicilloyl-containing dendrimers has been achieved by a convenient procedure involving quantitative functionalization of the terminal amino groups of the three Starbust PAMAM generations used (G(n); n = 0, 1, 2). All these densely penicilloylated dendrimers (G(n)P) exhibit similar, simple NMR spectroscopic data suggesting highly symmetric structures and a monodisperse nature, and the results obtained from MALDI-TOF-MS demonstrate their exact chemical composition. The use of PAMAM dendrimers has allowed us to synthesize, for the first time, carrier benzylpenicilloyl conjugates (G(n)P) of precisely defined chemical structure. The attempts to synthesize G(2)P show that forced experimental conditions are not always useful for the functionalization of the dendrimer, especially in introducing bulky groups. The initial results with sera from patients with different RAST levels were positive and thus suggestive that inhibition occurs, so recognition exists; we can therefore conclude that the hapten-carrier (dendrimer) conjugates studied mimic recognition with natural hapten-carrier (protein) conjugates.  相似文献   

15.
HeLa 229 cells were treated with methotrexate (MTX) and doxorubicin (DOX), utilizing fourth generation (G4), amine terminated poly(amidoamine) {PAMAM} dendrimer as the drug carrier. In vitro kinetic studies of the release of both MTX and DOX in presence and absence of G4, amine terminated PAMAM dendrimers suggest that controlled drug release can be achieved in presence of the dendrimers. The cytotoxicity studies indicated improved cell death by dendrimer-drug combination, compared to the control experiments with dendrimer or drug alone at identical experimental conditions. Furthermore, HeLa 229 cells were imaged for the first time utilizing the intrinsic emission from the PAMAM dendrimers and drugs, without incorporating any conventional fluorophores. Experimental results collectively suggest that the decreased rate of drug efflux in presence of relatively large sized PAMAM dendrimers generates high local concentration of the dendrimer-drug combination inside the cell, which renders an easy way to image cell lines utilizing the intrinsic emission properties of PAMAM dendrimer and encapsulated drug molecule.  相似文献   

16.
Treatments specific to the medical problems caused by methamphetamine (METH) abuse are greatly needed. Toward this goal, we are developing new multivalent anti-METH antibody fragment-nanoparticle conjugates with customizable pharmacokinetic properties. We have designed a novel anti-METH single chain antibody fragment with an engineered terminal cysteine (scFv6H4Cys). Generation 3 (G3) polyamidoamine dendrimer nanoparticles were chosen for conjugation due to their monodisperse properties and multiple amine functional groups. ScFv6H4Cys was conjugated to G3 dendrimers via a heterobifunctional PEG cross-linker that is reactive to a free amine on one end and a thiol group on the other. PEG modified dendrimers were synthesized by reacting the PEG cross-linker with dendrimers in a stoichiometric ratio of 11:1, which were further reacted with 3-fold molar excess of anti-METH scFv6H4Cys. This reaction resulted in a heterogeneous mix of G3-PEG-scFv6H4Cys conjugates (dendribodies) with three to six scFv6H4Cys conjugated to each dendrimer. The dendribodies were separated from the unreacted PEG modified dendrimers and scFv6H4Cys using affinity chromatography. A detailed in vitro characterization of the PEG modified dendrimers and the dendribodies was performed to determine size, purity, and METH binding function. The dendribodies were found to have affinity for METH identical to that of the unconjugated scFv6H4Cys in saturation binding assays, whereas the PEG modified dendrimers had no affinity for METH. These data suggest that an anti-METH scFv can be successfully conjugated to a PEG modified dendrimer nanoparticle with no adverse effects on METH binding properties. This study is a critical step toward preclinical characterization and development of a novel nanomedicine for the treatment of METH abuse.  相似文献   

17.
The BLM-system for studying the electrophysical properties of bilayer lipid membranes (BLM) was applied to investigate interactions between polyamidoamine (PAMAM) dendrimers and lipid bilayers. The cationic PAMAM G5 dendrimer effectively disrupted planar phosphatidylcholine membranes, while the hydroxyl PAMAM-OH G5 and carboxyl PAMAM G4.5 dendrimers had no significant effect on them.  相似文献   

18.
Second-generation (G2) polyamidoamine (PAMAM) dendrimers are branched polymers containing 16 surface primary amine groups. Due to their structural properties, these polymers can be used as universal carriers in various drug delivery systems. Amine-terminated PAMAM dendrimers are characterized by a high positive surface charge, leading to effective but nonspecific interactions with negatively charged cell plasmatic membranes. To reduce the nonspecific internalization of PAMAM dendrimers, their primary amine groups are often modified by acetic or succinic anhydrides, polyethylene glycol derivatives and other compounds. In this work, the role of primary amine groups, which are localized on the surface of doxorubicin-conjugated (Dox) dendrimers, was studied with regard to their intracellular distribution and internalization rates using SKOV3 human ovarian adenocarcinoma cells. It was demonstrated that all Dox-labeled G2-derivatives containing different numbers of acetamide groups synthesized in this work show high rates of cellular uptake at 37°С. As expected, the conjugate carrying the maximum number of primary amine groups demonstrated the highest rates of binding and endocytosis. At the same time, the G2-Dox conjugate containing the maximum number of acetamide groups showed colocalization with LAMP2, a marker of lysosomes and late endosomes, as well as the highest level of cytotoxic activity against SKOV3 cells. We conclude that second-generation PAMAM dendrimers are characterized by varied pathways of internalization and intracellular distribution due to the number of primary amine groups on their surface and, as a consequence, a different surface charge.  相似文献   

19.
Stopped-flow circular dichroism and fluorescence spectroscopy are used to characterize the assembly of complexes consisting of plasmid DNA bound to the cationic lipids dimethyldioctadecylammonium bromide and 1, 2-dioleoyl- 3-trimethylammonium-propane and a series of polyamidoamine dendrimers. The kinetics of complexation determined from the stopped-flow circular dichroism measurements suggests complexation occurs within 50 ms. Further analysis, however, was precluded by the presence of mixing (shear) artifacts. Stopped-flow fluorescence employing the high-affinity DNA dyes Hoechst 33258 and YOYO-1 was able to resolve two sequential steps in the assembly of complexes that are assigned to binding/dehydration and condensation events. The rates of each process were determined over the temperature range of 10-50 degrees C and activation energies were determined from the slope of Arrhenius plots. The behavior of polyamidoamine dendrimers can be separated into two classes based on their differing binding modes: generation 2 and the larger generations (G4, G7, and G9). The larger generations have activation energies for binding that follow the trend G4 > G7 > G9. The activation energies for condensation (compaction) of complexes composed of these same dendrimers have the opposite trend G9 > G7 > G4. It is postulated that a balance between a more energetically favorable condensation and less favorable binding may prove beneficial in enhancing gene delivery.  相似文献   

20.
α-Synuclein (ASN) aggregation plays a key role in neurodegenerative disorders including Parkinson's disease, and inhibition of fibril formation is a potential therapeutic strategy for these conditions. The aim of the present study was to investigate polyamidoamine (PAMAM) dendrimers (generations 4 and 3.5) as inhibitors of fibril formation in vitro by examining their interaction with ASN intrinsic tyrosine fluorescence. Furthermore, the effect of dendrimers on ASN aggregation was studied using circular dichroism (CD) spectroscopy and CD studies were complemented by a fluorescence assays using the dye thioflavin T (ThT). The PAMAM G4 dendrimer caused an increase in tyrosine residue fluorescence, and inhibited fibrillation of ASN; inhibited fibrillation was not observed with PAMAM G3.5 dendrimers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号