首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We hypothesized that impaired nitric oxide (NO)-dependent dilation (endothelial dysfunction) in type 2 diabetes results, in part, from elevated production of superoxide (O(2)(*-)) induced by the interaction of advanced glycation end products (AGE)/receptor for AGE (RAGE) and TNF-alpha signaling. We assessed the role of AGE/RAGE and TNF-alpha signaling in endothelial dysfunction in type 2 diabetic (Lepr(db)) mice by evaluation of endothelial function in isolated coronary resistance vessels of normal control (nondiabetic, m Lepr(db)) and diabetic mice. Although dilation of vessels to the endothelium-independent vasodilator sodium nitroprusside (SNP) was not different between diabetic and control mice, dilation to the endothelium-dependent agonist acetylcholine (ACh) was reduced in diabetic vs. control mice. The activation of RAGE with RAGE agonist S100b eliminated SNP-potentiated dilation to ACh in Lepr(db) mice. Administration of a soluble form of RAGE (sRAGE) partially restored dilation in diabetic mice but did not affect dilation in control mice. The expression of RAGE in coronary arterioles was markedly increased in diabetic vs. control mice. We also observed in diabetic mice that augmented RAGE signaling augmented expression of TNF-alpha, because this increase was attenuated by sRAGE or NF-kappaB inhibitor MG132. Protein and mRNA expression of NAD(P)H oxidase subunits including NOX-2, p22(phox), and p40(phox) increased in diabetic compared with control mice. sRAGE significantly inhibited the expression of NAD(P)H oxidase in diabetic mice. These results indicate that AGE/RAGE signaling plays a pivotal role in regulating the production/expression of TNF-alpha, oxidative stress, and endothelial dysfunction in type 2 diabetes.  相似文献   

2.
As a serious metabolic disease, diabetes causes series of complications that seriously endanger human health. The liver is a key organ for metabolizing glucose and lipids, which substantially contributes to the development of insulin resistance and type 2 diabetes mellitus (T2DM). Exogenous fibroblast growth factor 1 (FGF1) has a great potential for the treatment of diabetes. Receptor of advanced glycation end products (RAGE) is a receptor for advanced glycation end products that involved in the development of diabetes-triggered complications. Previous study has demonstrated that FGF1 significantly ameliorates diabetes-mediated liver damage (DMLD). However, whether RAGE is involved in this process is still unknown. In this study, we intraperitoneally injected db/db mice with 0.5 mg/kg FGF1. We confirmed that FGF1 treatment not only significantly ameliorates diabetes-induced elevated apoptosis in the liver, but also attenuates diabetes-induced inflammation, then contributes to ameliorate liver dysfunction. Moreover, we found that diabetes triggers the elevated RAGE in hepatocytes, and FGF1 treatment blocks it, suggesting that RAGE may be a key target during FGF1 treatment of diabetes-induced liver injury. Thus, we further confirmed the role of RAGE in FGF1 treatment of AML12 cells under high glucose condition. We found that D-ribose, a RAGE agonist, reverses the protective role of FGF1 in AML12 cells. These findings suggest that FGF1 ameliorates diabetes-induced hepatocyte apoptosis and elevated inflammation via suppressing RAGE pathway. These results suggest that RAGE may be a potential therapeutic target for the treatment of DMLD.  相似文献   

3.
Endothelial progenitor cells (EPCs) exhibit impaired function in the context of diabetes, and advanced glycation end products (AGEs), which accumulate in diabetes, may contribute to this. In the present study, we investigated the mechanism by which AGEs impair late EPC function. EPCs from human umbilical cord blood were isolated, and incubated with AGE-modified albumin (AGE-albumin) at different concentrations found physiologically in plasma. Apoptosis, migration, and tube formation assays were used to evaluate EPC function including capacity for vasculogenesis, and expression of the receptor for AGEs (RAGE), Akt, endothelial nitric oxide synthase (eNOS), and cycloxygenase-2 (COX-2) were determined. Anti-RAGE antibody was used to block RAGE function. AGE-albumin concentration-dependently enhanced apoptosis and depressed migration and tube formation, but did not affect proliferation, of late EPCs. High AGE-albumin increased RAGE mRNA and protein expression, and decreased Akt and COX-2 protein expression, whilst having no effect on eNOS mRNA or protein in these cells. These effects were inhibited by co-incubation with anti-RAGE antibody. These results suggest that RAGE mediates the AGE-induced impairment of late EPC function, through down-regulation of Akt and COX-2 in these cells.  相似文献   

4.
Cardiovascular complications are a leading cause of death in patients with type 2 diabetes mellitus (T2DM). Diastolic dysfunction is one of the earliest manifestations of diabetes-induced changes in left ventricular (LV) function, and results from a reduced rate of relaxation and increased stiffness. The mechanisms responsible for increased stiffness are not completely understood. Chronic hyperglycemia, advanced glycation endproducts (AGEs), and increased levels of proinflammatory and profibrotic cytokines are molecular pathways known to be involved in regulating extracellular matrix (ECM) synthesis and accumulation resulting in increased LV diastolic stiffness. Experiments were conducted using a genetically-induced mouse model of T2DM generated by a point mutation in the leptin receptor resulting in nonfunctional leptin receptors (db/db murine model). This study correlated changes in LV ECM and stiffness with alterations in basal activation of signaling cascades and expression of profibrotic markers within primary cultures of cardiac fibroblasts from diabetic (db/db) mice with nondiabetic (db/wt) littermates as controls. Primary cultures of cardiac fibrobroblasts were maintained in 25 mM glucose (hyperglycemic-HG; diabetic db/db) media or 5 mM glucose (normoglycemic-NG, nondiabetic db/wt) media. The cells then underwent a 24-hour exposure to their opposite (NG; diabetic db/db) media or 5 mM glucose (HG, nondiabetic db/wt) media. Protein analysis demonstrated significantly increased expression of type I collagen, TIMP-2, TGF-β, PAI-1 and RAGE in diabetic db/db cells as compared to nondiabetic db/wt, independent of glucose media concentration. This pattern of protein expression was associated with increased LV collagen accumulation, myocardial stiffness and LV diastolic dysfunction. Isolated diabetic db/db fibroblasts were phenotypically distinct from nondiabetic db/wt fibroblasts and exhibited a profibrotic phenotype in normoglycemic conditions.  相似文献   

5.
6.
Accelerated formation and accumulation of advanced glycation end products, as well as increased flux of glucose through polyol pathway, have been implicated in the pathogenesis of diabetic vascular complications. We investigated effects of advanced glycation end products on the levels of aldose reductase mRNA, protein, and activity in human microvascular endothelial cells. When endothelial cells were cultured with highly glycated bovine serum albumin, aldose reductase mRNA in endothelial cells demonstrated concentration-dependent elevation. The increase in aldose reductase mRNA was accompanied by elevated protein expression and enzyme activity. Significant increase in the enzyme expression was also observed when endothelial cells were cultured with serum obtained from diabetic patients with end-stage renal disease. Pretreatment of the endothelial cells with probucol or vitamin E prevented the advanced glycation end products-induced increases in aldose reductase mRNA and protein. Electrophoretic mobility shift assays using the nuclear extracts of the endothelial cells treated with advanced glycation end products showed enhancement of specific DNA binding activity for AP-1 consensus sequence. These results indicate that accelerated formation of advanced glycation end products in vivo may elicit activation of the polyol pathway, possibly via augmented oxidative stress, and amplify endothelial cell damage leading to diabetic microvascular dysfunction.  相似文献   

7.
Recent studies suggested that interruption of the interaction of advanced glycation end products (AGEs), with the signal-transducing receptor receptor for AGE (RAGE), by administration of the soluble, extracellular ligand-binding domain of RAGE, reversed vascular hyperpermeability and suppressed accelerated atherosclerosis in diabetic rodents. Since the precise molecular target of soluble RAGE in those settings was not elucidated, we tested the hypothesis that predominant specific AGEs within the tissues in disorders such as diabetes and renal failure, N(epsilon)-(carboxymethyl)lysine (CML) adducts, are ligands of RAGE. We demonstrate here that physiologically relevant CML modifications of proteins engage cellular RAGE, thereby activating key cell signaling pathways such as NF-kappaB and modulating gene expression. Thus, CML-RAGE interaction triggers processes intimately linked to accelerated vascular and inflammatory complications that typify disorders in which inflammation is an established component.  相似文献   

8.
Cellular interactions with advanced glycation end products (AGE)-modified proteins are known to induce several biological responses, not only endocytic uptake and degradation, but also the induction of cytokines and growth factors, combined responses that may be linked to the development of diabetic vascular complications. In this study we demonstrate that A549 cells, a human pulmonary epithelial cell line, possess a specific binding site for AGE-modified bovine serum albumin (AGE-BSA) (K(d) = 27.8 nM), and additionally for EN-RAGE (extracellular newly identified RAGE binding protein) (K(d) = 118 nM). Western blot and RT-PCR analysis showed that RAGE (receptor for AGE) is highly expressed on A549 cells, while the expression of other known AGE-receptors such as galectin-3 and SR-A (class A scavenger receptor), are below the level of detection. The binding of (125)I-AGE-BSA to these cells is inhibited by unlabeled AGE-BSA, but not by EN-RAGE. In contrast, the binding of (125)I-EN-RAGE is significantly inhibited by unlabeled EN-RAGE and soluble RAGE, but not by AGE-BSA. Our results indicate that A549 cells possess at least two binding sites, one specific for EN-RAGE and the other specific for AGE-BSA. The latter receptor on A549 cells is distinct from the scavenger receptor family and RAGE.  相似文献   

9.
The elevated glycation of macromolecules by the reactive dicarbonyl and α-oxoaldehyde methylglyoxal (MG) has been associated with diabetes and its complications. We have identified a rare flavone, fisetin, which increases the level and activity of glyoxalase 1, the enzyme required for the removal of MG, as well as the synthesis of its essential co-factor, glutathione. It is shown that fisetin reduces two major complications of diabetes in Akita mice, a model of type 1 diabetes. Although fisetin had no effect on the elevation of blood sugar, it reduced kidney hypertrophy and albuminuria and maintained normal levels of locomotion in the open field test. This correlated with a reduction in proteins glycated by MG in the blood, kidney and brain of fisetin-treated animals along with an increase in glyoxalase 1 enzyme activity and an elevation in the expression of the rate-limiting enzyme for the synthesis of glutathione, a co-factor for glyoxalase 1. The expression of the receptor for advanced glycation end products (RAGE), serum amyloid A and serum C-reactive protein, markers of protein oxidation, glycation and inflammation, were also increased in diabetic Akita mice and reduced by fisetin. It is concluded that fisetin lowers the elevation of MG-protein glycation that is associated with diabetes and ameliorates multiple complications of the disease. Therefore, fisetin or a synthetic derivative may have potential therapeutic use for the treatment of diabetic complications.  相似文献   

10.
BACKGROUND: Reactive glucose-protein intermediates and advanced glycation endproducts (AGEs) are shown to colocalize with atheromatous lesions and to trigger complex chemical and biological responses through interaction with vessel wall elements. In diabetes and renal insufficiency, atherosclerosis is common, as are elevated levels of serum and vascular tissue AGEs. In the present study, AGEs supplied exogenously to normal animals elicited vascular and renal pathology. MATERIALS AND METHODS: Nondiabetic rabbits were injected intravenously with low doses of AGE-modified rabbit serum albumin (AGE-RSA, 16 mg/kg/day) for 4 months alone, or combined with a brief terminal period (2 weeks) of a cholesterol-rich diet (CRD) (2% cholesterol, 10% corn oil). AGE-RSA associated expression of vascular cell adhesion molecules and the development of atheromatous changes within the aorta were determined by immunohistology. RESULTS: The AGE content of aortic tissue increased by 2.2-fold in AGE-treated and by 3.2-fold in AGE + CRD-treated rabbits compared with normal saline-treated control rabbits (p < 0.025 and 0.001, respectively). Serum AGE levels in AGE groups rose up to 3-fold above the controls (p < 0.025 and p < 0.01). Ascending aortic sections from AGE-treated rabbits showed significant focal intimal proliferation, enhanced endothelial cell adhesion with infrequent intimal macrophages. oil-red-O staining lipid deposits and positive focal expression of vascular cell adhesion molecule-1 (VCAM-1), and intercellular adhesion molecule-1 (ICAM-1), a pattern not observed in controls. These AGE-induced changes were markedly enhanced in animals cotreated with AGEs and a brief period of CRD. Lesions consisted of multifocal atheromas, containing foam cells, massive lipid droplets, and strong endothelial expression of VCAM-1 and ICAM-1 restricted to the affected areas. CONCLUSIONS: This study provides in vivo evidence for a causal relationship between chronic AGE accumulation and atherosclerosis independent of diabetic hyperglycemia, and suggests the utility of this animal model for the study of diabetic vascular disease in relation to glycation.  相似文献   

11.
Obesity and type 2 diabetes are associated with nonalcoholic steatohepatitis (NASH), but an obese/diabetic animal model that mimics human NASH remains undefined. We examined the induction of steatohepatitis and liver fibrosis in obese and type 2 diabetic db/db mice in a nutritional model of NASH and determined the relationship of the expressions of osteopontin (OPN) and leptin receptors to the pathogenesis of NASH. db/db mice and the corresponding lean and nondiabetic db/m mice were fed a diet deficient in methionine and choline (MCD diet) or control diet for 4 wk. Leptin-deficient obese and diabetic ob/ob mice fed similar diets were used for comparison. MCD diet-fed db/db mice exhibited significantly greater histological inflammation and higher serum alanine aminotransferase levels than db/m and ob/ob mice. Trichrome staining showed marked pericellular fibrosis in MCD diet-fed db/db mice but no significant fibrosis in db/m or ob/ob mice. Collagen I mRNA expression was increased 10-fold in db/db mice, 4-fold in db/m mice, and was unchanged in ob/ob mice. mRNA expressions of OPN, TNF-alpha, TGF-beta, and short-form leptin receptors (Ob-Ra) were significantly increased in db/db mice compared with db/m or ob/ob mice. Parallel increases in OPN and Ob-Ra protein levels were observed in db/db mice. Cultured hepatocytes expressed only Ob-Ra, and leptin stimulated OPN mRNA and protein expression in these cells. In conclusion, our results demonstrate the development of an obese/diabetic experimental model for NASH in db/db mice and suggest an important role for Ob-Ra and OPN in the pathogenesis of NASH.  相似文献   

12.
BACKGROUND: Lysozyme (LZ), a host-defense protein, contains an 18 amino-acid domain with high affinity binding for sugar-derived proteins or lipids, called advanced glycation endproducts (AGE), that are implicated in diabetes- and age-dependent complications (DC). MATERIALS AND METHODS: A) The effects of LZ on AGE- removal were tested in vivo. LZ was injected (200 ug/day, i.p., X2 weeks) in non-obese diabetic (NOD), db/db (+/+) mice, and non-diabetic, AGE-infused Sprague-Dawley rats. B) LZ: AGE interactions with macrophage-like T1B-183 cells (Mf) and mesangial cells (MC) were tested in vitro. RESULTS: A) In NOD mice, LZ reduced the elevated basal serum AGE (sAGE) (p < 0.05), enhanced urinary AGE (uAGE) excretion by approximately 2-fold (p < 0.01), while it reduced albuminuria (UA), p < 0.005. In db/db mice, LZ infusion also reduced the elevated sAGE (p < 0.05), doubled uAGE excretion (p < 0.05), and decreased UA (p < 0.01). In addition, LZ maintained normal sAGE in normal rats infused with AGE-BSA, as it doubled the urinary AGE (uAGE) clearance (p < 0.01). B) LZ stimulated the uptake and degradation of (125) I-labeled AGE-BSA and (25) I-human serum AGE by Mf, while suppressing AGE-induced TNFalpha and IGF-I production. In MC, LZ suppressed the AGE-promoted PDGF-B, alpha1 type IV collagen, and tenascin mRNA levels, and restored the AGE-suppressed expression and activity of MMP-9, but not MMP-2. CONCLUSION: LZ may act to: a) accelerate renal in-vivo AGE clearance, b) suppress macrophage and mesangial cell- specific gene activation in vitro, and c) improve albuminuria due to diabetes. These data suggest that LZ by sequestering AGEs may protect against diabetic renal damage.  相似文献   

13.
14.
15.
Advanced glycation end-products (AGE) are a group of heterogeneous molecules found in higher levels during diabetes, end stage renal failure and aging. Vascular alteration is correlated with their accumulation as during retinopathy or glomerulosclerosis. Glycation of extracellular matrix proteins is associated with diabetic angiopathy. AGE stimulate endothelial cell via the interaction with the receptor RAGE, leading to an inflammatory state with increased adhesion molecule expression, chemoattractant factor and tissue factor production. RAGE activation by AGE triggers reactive oxygen species production by NADPH oxydase. Agents that inhibit AGE formation, stimulate their degradation or neutralize their binding to RAGE represent new approaches to limit the deleterious activities of AGE.  相似文献   

16.
Advanced glycation end products (AGEs) are formed by the non-enzymatic glycation of proteins by reducing carbohydrates or α-oxo-aldehydes such as glyoxal and methylglyoxal and further rearrangements, eliminations and oxidations. AGE-modifications alter peptide structure, function and stability and accumulate under several pathophysiological conditions such as diabetes and are considered a biomarker of ageing. PDGF is a major regulator of wound healing, which is impaired in hyperglycaemia and ageing. We analyzed whether glycated PDGF has impaired activity in cell culture models and occurs in human subjects. PDGF was AGE-modified by the α-oxo-aldehydes glyoxal and methylglyoxal, which was shown by Western-blotting using α-carboxymethyllysine (CML) or α-arginine-pyrimidine (Arg-Pyr) antibodies. In mouse AKR-2B fibroblasts, this AGE-modified PDGF exhibited reduced signalling to AKT and ERK resulting in decreased cell proliferation. In the human osteosarcoma cell line 143B, PDGF signalling towards the AKT-kinase was decreased when using modified PDGF-AA, -AB, and -BB whereas the constitutive active ERK was not affected. Secreted proteins from collagen-activated platelets from diabetic subjects contained more CML-modified proteins compared to healthy controls. PDGF protein as a platelet protein coprecipitated in immunoprecipitation experiments with α-CML-antiserum. In summary, our data suggest that AGE-modification of PDGF contributes to reduced wound healing in diabetic patients.  相似文献   

17.
18.
Inositol phosphoglycan molecules containing either D-chiro-inositol or myo-inositol have been isolated from various mammalian tissues and are putative mediators of insulin action. Urinary excretion of inositols appears to be altered in diabetes mellitus; however, the relationships with different types of diabetes are unclear. The objective of this study was to determine the urinary excretion of chiro- and myo-inositol in diabetic animal models, including streptozotocin (STZ) rats, db/db mice, and fa/fa Zucker rats. In STZ rats (type 1 diabetes), 12-hr urinary excretion of chiro-inositol was elevated 336-fold and myo-inositol excretion was elevated 47-fold compared with their nondiabetic counterparts. When corrected for creatinine, chiro-inositol excretion was 259-fold higher and myo-inositol excretion was 36-fold higher in STZ rats than in normal rats. The same pattern was observed in db/db mice (type 2 diabetes), where 12-hr urinary chiro-inositol excretion was elevated 247-fold compared with normal mice. When corrected for creatinine, chiro-inositol excretion was 2455-fold higher and urinary myo-inositol excretion was elevated 8.5-fold in db/db mice compared with normal mice. The fa/fa Zucker rats (impaired glucose tolerance) had a pattern of urinary inositol excretion that was similar to the nondiabetic animals (lean Zucker rats, C57BL/6 mice, and Sprague-Dawley rats). In summary, urinary chiro-inositol and myo-inositol excretion was elevated in animal models of type 1 and type 2 diabetes mellitus, concomitant with hyperglycemia and glucosuria.  相似文献   

19.
20.
Advanced glycation end products (AGEs) are known to be involved in the pathogenesis of several diseases, in particular diabetes, via signaling through their receptor. Numerous studies have been carried out on protein-sugar interactions at very high concentrations of the latter. The objective of this investigation was to determine the effects of nonenzymatic glycation induced by reducing sugars on the secondary structure of human serum albumin (HSA) under different physiological conditions and to correlate that with expression of RAGE (receptor for advanced glycation end products) on HUVECs (human umbilical vein endothelial cells) in a controlled hemodynamic environment. Our results indicate that RAGE expression is shear stress modulated and that glycated HSA enhances the expression further. The secondary structure of AGE-HSA derived from glucose at 20 mM contains higher α-helical content and elicits maximum expression of the receptor. The effect of shear stress at 10 dynes cm(-2) is independent of AGE-HSA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号