首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract. Spatial heterogeneity, an important characteristic in semi‐arid grassland vegetation, may be altered through grazing by large herbivores. We used Moran's I, a measure of autocorrelation, to test the effect of livestock grazing on the fine scale spatial heterogeneity of dominant plant species in the shortgrass steppe of northeastern Colorado. Autocorrelation in ungrazed plots was significantly higher than in grazed plots for the cover of the dominant species Bouteloua gracilis, litter cover and density of other bunchgrasses. No species had higher autocorrelation in grazed compared to ungrazed sites. B. gracilis cover was significantly auto‐correlated in seven of eight 60‐yr ungrazed exclosures, four of six 8‐yr exclosures, and only three of eight grazed sites. Autocorrelograms showed that B. gracilis cover in ungrazed sites was frequently and positively spatially correlated at lag distances less than 5 m. B. gracilis cover was rarely autocorrelated at any sampled lag distance in grazed sites. The greater spatial heterogeneity in ungrazed sites appeared linked to patches characterized by uniformly low cover of B. gracilis and high cover of C3 grasses. This interpretation was supported by simple simulations that modified data from grazed sites by reducing the cover of B. gracilis in patches of ca. 8 m diameter and produced patterns quite similar to those observed in ungrazed sites. In the one exclosure where we intensively sampled soil texture, autocorrelation coefficients for sand content and B. gracilis cover were similar at lag distances up to 12 m. We suggest that the negative effect of sand content on B. gracilis generates spatial heterogeneity, but only in the absence of grazing. An additional source of heterogeneity in ungrazed sites may be the negative interaction between livestock exclusion and B. gracilis recovery following patchy disturbance.  相似文献   

2.
Selective sheep grazing in the Patagonian Monte induces the reduction of total and perennial grass cover, species replacement within life forms, and the increase in dominance of long-lived evergreen woody plants with slow growth rates and high concentration of secondary compounds in leaves. We hypothesized that these changes in the canopy structure induced by sheep grazing will affect the mass, chemistry and decomposability of leaf litter and fine roots. We selected two sites in the Patagonian Monte, representative of ungrazed and grazed vegetation states. At each site, we assessed canopy structure (total cover and absolute and relative grass and shrub cover), monthly leaf litterfall, and fine-root biomass and production in the upper soil (15 cm). We also estimated the rates of mass, C, soluble phenolics, lignin and N decay in litterbags containing both leaf litter and fine roots of each site under field conditions during two consecutive years. The ungrazed site exhibited higher total plant cover, absolute and relative grass- and shrub-cover than the grazed one. Leaf litterfall was lower at the grazed site than at the ungrazed site. Fine-root production did not vary between sites. Leaf litter and fine root tissues had higher concentration of secondary compounds at the grazed than at the ungrazed site. However, fine roots showed lower mass and C decay than leaf litter, attributable to the predominant secondary compound (lignin and soluble phenolics, respectively). Leaf litter decomposed slower but released more N during decay at the ungrazed than at the grazed site, probably due to its low concentration of secondary compounds. We concluded that changes in canopy structure induced by grazing disturbance such as those explored in our study could reduce leaf litterfall mass and increase the concentration of secondary compounds of both leaf litter and fine roots leading to slow N release to soil during decay.  相似文献   

3.
The experiment utilized a fenceline contrast in vegetation and soil condition that was clearly visible on Landsat imagery. Measurements of vegetation cover, soil structure and chemistry, and infiltration were made. The greatest vegetation change was at the soil surface where the loss of litter and lichen crust cover under heavy grazing accompanied the loss of perennial shrubs. Although grazing caused changes in soil structure and chemistry to less than 10 cm in depth, these changes are quite significant for plant growth. Consistent differences in the infiltration of applied rainfall at two intensities were measured between the grazed and ungrazed sites. At both intensities of application the absence of a lichen crust increased infiltration three-fold on the heavily grazed site compared with the ungrazed site. The implications of these observations on the long-term functioning of this landscape are discussed.  相似文献   

4.
Fahnestock  Jace T.  Detling  James K. 《Plant Ecology》1999,144(2):145-157
We investigated the effects of short- and long-term ungulate grazing on plant species cover and composition in arid lowland and more mesic upland communities of the Pryor Mountain Wild Horse Range (PMWHR). Measurements were taken over two years which differed significantly in growing season precipitation. Interannual differences in plant cover were significantly greater than differences between grazed and ungrazed communities. In the arid lowlands total plant cover decreased from 47% in 1993, a relatively wet year, to 29% in 1994, a relatively dry year. In the more mesic uplands total plant cover decreased from 107% in 1993 to 56% in 1994. The magnitude of change in cover was greatest in the grasses, especially for Pseudoroegneria spicata, the most abundant species in the lowland communities, which decreased from 21% cover in 1993 to 11% in 1994. There was not a consistent effect of herbivory on plant cover across sites, but its effects, particularly on the dominant perennial grasses, were conspicuous at some sites. For instance, in the lowlands cover of P. spicata was 3–12% in long-term grazed sites and 9–28% in short- to long-term ungrazed sites. Our study indicates that abiotic factors (e.g., precipitation) are more likely than grazing to affect abundances of key plant species, and hence ecosystem dynamics, in the PMWHR, and that the effects of herbivory are more localized and more prevalent in the lowland grasses than in the other plant functional groups.  相似文献   

5.
To control shrubs, which are increasing in dominance in wetlands worldwide, winter burning may be an important tool, especially from the perspective of minimizing urban hazards. The goal of this project was to determine if winter burning was successful in reducing the dominance (mean percentage cover and maximum height) of Cornus sericea in sedge meadows in southern Wisconsin, where shrubs proliferated after cattle were excluded. Experimental burn and control plots were set up within sedge meadows, including an ungrazed “reference” site that had been little, if ever, grazed and a “historically grazed” site, a recovery site that had not been grazed by cattle since 1973. None of the dominant species including C. sericea was significantly affected by burning for either mean percentage cover or maximum height (analysis of variance: no burning × species interaction). Both mean percentage cover and maximum height were only weakly related to burning (28.1 and 14.3% of the variability contributed to the cumulative percentage of the coefficient of determination, respectively) at both sites based on non‐metric multidimensional scaling analysis. Although species richness increased in burned plots in 1999 and 2000, no differences were apparent between pre‐burned and unburned plots in 1997 and unburned plots in 1999 and 2000 (analysis of variance: year × burning interaction). After burning in the ungrazed site, herbaceous species appeared that had not been detected for decades, including Chelone glabra and Lathyrus palustris. Exotic species were present in both the ungrazed reference and recovery site. Although winter burning treatments did not reduce the dominance of woody shrub species in the site recovering from cattle grazing, burning was useful in stimulating the maintenance of species richness in the ungrazed sedge meadow.  相似文献   

6.
Abstract. Models of semiarid vegetation dynamics were evaluated to explain changes in the grassland of interior South Island, New Zealand. Annual records were taken for six years of plant species height frequency and percentage ground cover in five plots established in 1986. One subplot at each site was fenced to exclude sheep, one to exclude rabbits and sheep, and one remained unfenced as a control. Records from 1986–1992 were analysed by ordination. The overall pattern of vegetation change shows considerable year-to-year variation. At some sites, variation in vegetation composition between years was as great as, or greater than, that between grazed and ungrazed subplots. Such variation is particularly evident in grazed vegetation, perhaps because it is under greater stress than ungrazed vegetation. At one site changes in vegetation total cover and species composition could be statistically related to rainfall during the first half of the growing season. The only general trends following cessation of grazing were for perennials to increase in frequency, and for year-to-year changes to become smaller with time. Total vegetation cover values seldom changed as a result of cessation of grazing, but tended to follow year-to-year changes in species frequency. The results do not in general support switch/state-and-transition models of semi-arid vegetation dynamics. Vegetation change follows changes in grazing and climate with little lag. This most closely conforms with the Pulse-phase dynamic model.  相似文献   

7.
To arctic breeding geese, the salt marshes of the International Wadden Sea are important spring staging areas. Many of these marshes have always been grazed with livestock (mainly cattle and sheep). To evaluate the influence of livestock grazing on composition and structure of salt-marsh communities and its consequences for habitat use by geese, a total of 17 pairs of grazed and ungrazed marshes were visited both in April and May 1999, and the accumulated grazing pressure by geese was estimated using dropping counts. Observed grazing pressure was related to management status and to relevant vegetation parameters.The intensity of livestock grazing influences the vegetation on the marsh. Salt marshes that are not grazed by livestock are characterised by stands with a taller canopy, a lower cover of grasses preferred by geese, and a higher cover of plants that are not preferred.Overall goose-dropping densities are significantly lower in ungrazed marshes compared to marshes grazed by livestock. Some ungrazed marshes had comparatively high goose grazing pressure, and these were all natural marshes on a sandy soil, or artificial mainland marshes with a recent history of intensive livestock grazing. Goose grazing is associated with a short canopy. The plant communities with short canopy, dominated by Agrostis stolonifera, Festuca rubra and Puccinellia maritima, together account for 85% of all goose droppings in our data.The sites that were not visited by geese differed very little from those that were visited, in the parameters we measured. This might indicate that there was no shortage of available habitat for spring staging geese in the Wadden Sea, in the study period.  相似文献   

8.
Reindeer Rangifer tarandus L. grazing shapes forest vegetation, microclimate, and soil respiration in Lapland, especially due to grazing on lichens (Cladina). We studied how these changes and their magnitude affect ground‐dwelling species of beetle families Carabidae (predators) and Curculionidae (herbivores), by using pitfall traps to collect invertebrates from pairs of grazed and ungrazed study plots over a wide range of site types. Changes in abundance, composition, richness and diversity of beetle assemblage were tested in relation to magnitude of the impacts on vegetation. The species compositions of Carabidae and Curculionidae differed between grazed and ungrazed plots in all sites. The relative difference between grazed and ungrazed plots in the number of individuals increased linearly with the impact of reindeer on vegetation cover. Carabid beetles, as a family, were more common in grazed plots in all sites. Curculionid beetles were more common in ungrazed plots in the birch dominated sites. This difference was mainly due to the species that feeds on deciduous leaves. In the pine dominated sites with high Cladina cover and more changes in ground vegetation, the number of curculionids feeding on conifers was higher in grazed plots. Species richness and diversity (H’) of both families were higher in grazed plots. Of the total 27 species, 11 were found only in grazed plots, while not a single species was found only in ungrazed plots. The relative difference between plots in diversity and evennes (H’/H'max) had humped response to the difference in Cladina cover. The diversity values were greater in grazed plots at the intermediate levels of grazing impact, and only in sites with very low or extremely high Cladina cover difference was the diversity higher in ungrazed plots. The response of beetle diversity resembled the hypotheses suggested for the relationship between grazing and vegetation diversity: greatest positive effect at intermediate grazing intensity and negative effects at unproductive sites.  相似文献   

9.
Abstract. Question: What are the grazing effects in the spatial organization and the internal structure of high and low cover patches from a two‐phase vegetation mosaic? Location: Patagonian steppe, Argentina. Methods: We mapped vegetation under three different grazing conditions: ungrazed, lightly grazed and heavily grazed. We analysed the spatial patterns of the dominant life forms. Also, in each patch type, we determined density, species composition, richness, diversity, size structure and dead biomass of grasses under different grazing conditions. Results: The vegetation was spatially organized in a two‐phase mosaic. High cover patches resulted from the association of grasses and shrubs and low cover patches were represented by scattered tussock grasses on bare ground. This spatial organization was not affected by grazing, but heavy grazing changed the grass species involved in high cover patches and reduced the density and cover of grasses in both patch types. Species richness and diversity in high cover patches decreased under grazing conditions, whereas in low cover patches it remained unchanged. Also, the decrease of palatable grasses was steeper in high cover patches than in low cover patches under grazing conditions. Conclusions: We suggest that although grazing promotes or inhibits particular species, it does not modify the mosaic structure of Patagonian steppe. The fact that the mosaic remained unchanged after 100 years of grazing suggests that grazing does not compromize population processes involved in maintaining patch structure, including seed dispersal, establishment or biotic interactions among life forms.  相似文献   

10.
Abstract. The relationship between intensity and timing of cattle grazing on changes in the size and composition of the soil seed bank were investigated in a 3‐yr study in a Mediterranean grassland in northeastern Israel. Treatments included manipulations of stocking rates and of grazing regimes, in a factorial design. The retrieved soil seed bank community was rich in species, with 133 species accounting for 80% of the 166 species recorded at the site. Within the seed bank, 89% of the species were annuals. Seed bank dynamics was analysed in terms of plant functional groups and germination strategies. In terms of total seed bank density and including all functional groups, 42% of the seeds present in the soil did not germinate under watering conditions. The dormancy level differed greatly among functional groups. The seed bank of annual legumes, crucifers, annual thistles and annual forbs had a large fraction of non‐germinated seeds and characterized areas grazed early in the growing season under high and very high grazing intensity. These functional groups were considered to have a higher potential for persistent seed banks production. In contrast, short and tall annual grasses and tall perennial grasses, that were dominant in ungrazed or moderately grazed paddocks, generally had seed banks with a very small fraction of non‐germinated seeds. Seed bank densities varied widely between grazing treatments and years. Under continuous grazing, heavy grazing pressure reduced seed bank densities of grasses and crucifers in comparison to moderate grazing. The greatest reduction on the seed bank densities resulted from heavy grazing concentrated during the seed‐set stages.  相似文献   

11.
A perennial ryegrass sward was established in the autumn of 1989 in an enclosed 0.3 ha site and was exposed to captive wild rabbit (Oryctolagus cuniculus) grazing. Rabbit numbers were varied from 16 rabbits ha-1 in winter to 55 rabbits ha-1 corresponding to natural fluctuations in the field. The original sward was grown for three seasons (1989/1990 to 1990/1991) and a range of grazing regimes imposed. In 1989/1990 four grazing regimes were arranged in a replicated split block design in the experimental area. These were ungrazed, winter grazed, spring grazed and totally grazed. In the second year of the experiment all plots were exposed to grazing with the exception of the originally protected plots. This was to examine the effects of longer-term grazing damage on a ryegrass sward. In the final year half of all treatments were protected to study recovery of a sward which had been damaged previously. The remainder of the plots were exposed to grazing. Three cuts were harvested in each year and the productivity assessed in terms of yield and botanical composition. There was a significant reduction in ryegrass proportion in grazed swards following the first winter of grazing, while clover, other grasses and weeds were enhanced. The promotion of clover content in grazed swards was a feature throughout the 3 yr of the study. In the second year, protection of grazed swards led to a restoration of yields, although the botanical composition remained altered. The exposure of previously ungrazed plots in the final year of the experiment showed that these swards were particularly attractive to rabbits and they suffered the greatest yield losses relative to the protected plots at the first cut in 1991. In this year dry weather conditions were experienced following the first cut and demonstrated that yield losses are exacerbated when rabbit grazing is compounded with adverse growing conditions. The results overall indicate that protection of ryegrass swards at the establishment phase is important, but that a degree of recovery is possible by providing protection at a later stage, although the ryegrass component is still impaired in swards which suffer early damage.  相似文献   

12.
Soil net N-mineralization rate was measured along a successional gradient in salt-marsh sites that were grazed by vertebrate herbivores, and in 5-year-old exclosures from which the animals were excluded. Mineralization rate was significantly higher at ungrazed than at grazed sites. In the absence of grazing, mineralization rate increased over the course of succession, whereas it remained relatively low when sites were grazed. The largest differences in mineralization rate between grazed and ungrazed sites were found at late successional stages where grazing pressure was lowest. The amount of plant litter was significantly lower at grazed sites. In addition, the amount of litter and potential litter (non-woody, live shoots) was linearly related to net N-mineralization rate. This implies that herbivores reduced mineralization rate by preventing litter accumulation. Bulk density was higher at grazed salt-marsh sites than at ungrazed sites. This factor may also have contributed to the differences in net N-mineralization rate between grazed and ungrazed sites. Received: 30 November 1997 / Accepted: 27 August 1998  相似文献   

13.
Abstract In eastern Australia the practice of grazing cattle in eucalypt forests and woodlands, as a supplementary activity to farmland grazing, is widespread. It is typically accompanied by burning at frequent intervals by graziers to promote more nutritious and digestible growth of the ground cover for their livestock. Collectively, these forest grazing practices affect understorey structure, which in turn affects other biotic and abiotic components of these ecosystems. In order to test how significant the effects of forest grazing practices are relative to the effects of other management practices and environmental variables and the degree to which grazing practices determine understorey vegetation structure, we surveyed 58 sites on the northern tablelands of New South Wales, Australia. All sites were located in eucalypt forest and were stratified by grazing status (presence or absence): time since logging, time since wildfire, geology, aspect, slope and topographic position. At each site an index of vegetation complexity and the most abundant plant species were recorded. The data were analysed by a backwards stepwise multiple regression. Grazing practices had the greatest influence on understorey vegetation complexity of any of the measured attributes. The grazed sites were characterized by a significantly lower vegetation complexity score, different dominant understorey species, reduced or absent shrub layers, and an open, simplified and more grassy understorey structure compared with ungrazed sites. Time since logging and time since wildfire also significantly affected understorey structure. Our results indicate that cattle grazing practices (i.e. grazing and the associated frequent fire regimes) can have major effects on forest structure and composition at a regional level.  相似文献   

14.
森林放牧是中国东北虎豹国家公园内影响最广泛且强度最大的人类干扰之一。研究放牧对有蹄类动物食物资源的影响,是估算当前状态下东北虎和东北豹主要猎物承载力的关键,可以为国家公园的管理提供有效的科学依据。本研究于2016年在中国东北虎豹国家公园东部的牧场和非牧场区域分层抽取50个林下样地设置围栏对照实验,于2017年生长季进行灌草层植被调查 (每个样地的围栏与对照各随机调查3个1m×1m的样方,共调查300个植物样方) ,并应用红外相机技术获取对照样地内有蹄类动物丰富度和活动情况,研究放牧对研究区灌草层植物及动物的影响。研究结果显示:在生长季内,森林放牧显著降低林下灌草层植物生物量 (减少约24%),牧场样地的嫩枝叶显著降低。除禾草外,牧场样地中其他类别植物的氮含量均显著高于非牧场样地 (平均超出非牧场样地25 %)。非牧场样地梅花鹿的相 对丰富度指数 (RAI) 显著高于牧场样地,而狍与野猪的相对丰富度指数 (RAI) 在这两类样地之间没有显著差别。研究结果表明,东北虎豹国家公园东部森林放牧,减少了有蹄类动物灌草层食物资源,降低了有蹄类动物的多度。建议停止森林放牧,恢复有蹄类动物栖息地。  相似文献   

15.
The effects of stock grazing on native grassy ecosystems in temperate southern Australia are well documented. However, less is known about the potential of ecosystems to recover after a long history of stock grazing and, in particular, whether the removal of stock will have positive, negative or neutral impacts on biodiversity. We examined the response of understorey vegetation to the removal of sheep grazing in a herb‐rich Eucalyptus camaldulensis (red gum) woodland in western Victoria. Using a space‐for‐time chronosequence, woodlands were stratified into groups based on their time‐since‐grazing removal; these were long‐ungrazed (>20 years), intermediate‐time‐since‐grazing (9–14 years), recently ungrazed (5 years) and continuously grazed. We found significantly higher species density in long‐ungrazed sites relative to sites with a more recent grazing history. No differences were found in species density between continuously grazed sites and those ungrazed in the previous 14 years. Species composition differed with time‐since‐grazing removal and indicator species analysis detected several native species (including tall native geophytes and herbs) associated with long‐ungrazed sites that were absent or in low abundance in the more recently grazed sites. Seven of the eight species significantly associated with continuously grazed sites were exotic. Removal of sheep grazing in red gum woodlands can have positive benefits for understorey diversity but it is likely that recovery of key indicators such as native species will be slow.  相似文献   

16.
Question: What are the changes in vegetation structure, soil attributes and mesofauna associated with grazing in mesic grasslands? Location: Southern Campos of the Río de la Plata grasslands, in south‐central Uruguay. Methods: We surveyed seven continuously grazed and ungrazed paired plots. Plant and litter cover were recorded on three 5‐m interception lines placed parallel to the fence in each plot. We extracted soil fauna from a 10 cm deep composite sample and analysed the oribatids. Soil attributes included bulk density, water content, organic carbon (in particulate and mineral associated organic matter) and nitrogen content and root biomass at different depths. Changes in floristic, Plant Functional Types and mesofauna composition were analysed by Non‐metric Multidimensional Scaling. Results: Species number was lower in ungrazed than in grazed plots. Of 105 species in grazed plots only three were exotics. Shrub and litter cover were significantly higher inside the exclosures, while the cover of Cyperaceae‐Juncaceae was lower. Grazing treatments differed significantly in plant and oribatid species composition. Grazing exclusion significantly reduced soil bulk density and increased soil water content. Carbon content in particulate organic matter was lower in the upper soil of ungrazed sites, but deeper in the profile, grazing exclosures had 8% more carbon in the mineral associated organic matter. Conclusions Our results generally agree with previous studies but deviate from the results of previous analyses in (1) the increase of shrub cover in ungrazed sites; (2) the redistribution of the soil organic carbon in the profile and (3) the low invasibility of the prairies regardless of grazing regime.  相似文献   

17.
Abstract. A regional vegetation survey of the temperate grassy woodlands (temperate savanna) in Australia was designed to assess the effects of clearing and grazing on the composition of vegetation remnants and the adjacent pasture matrix. Vegetation was sampled across a range of habitats using 77 0.1024‐ha quadrats; the relative abundance of species was recorded. Classification analysis clustered the sites into three main groups that corresponded to intensity of grazing/clearing followed by groups based on underlying lithology (basalt, metasediment, granites). Using Canonical Correspondence Analysis, exogenous disturbance and environmental variables were related to the relative abundance of species; grazing intensity had the highest eigenvalue (0.27) followed by tree canopy cover (0.25), lithology (0.18), altitude (0.17) and slope (0.10). Based on two‐dimensional ordination scores, six species response groups were defined relating to intensity of pastoralism and nutrient status of the landscape. Abundance and dominance of native shrubs, sub‐shrubs, twiners and geophytes were strongly associated with areas of less‐intense pastoralism on low‐nutrient soils. The strongest effects on species richness were grazing followed by canopy cover. Continuously grazed sites had lower native species richness across all growth forms except native grasses. There was no indication that intermediate grazing intensities enhanced forb richness as a result of competitive release. Species richness for all native plants was lowest where trees were absent especially under grazed conditions. Canopy cover in ungrazed sites appeared to promote the co‐existence of shrubs with the herbaceous layer. Predicted declines in forb richness in treeless, ungrazed, sites were not detected. The lack of a disturbance‐mediated enhancement of the herbaceous layer was attributed to habitat heterogeneity at 0.1 ha sampling scale.  相似文献   

18.
Abstract. Long-term (45-yr) basal area dynamics of dominant graminoid species were analyzed across three grazing intensity treatments (heavily grazed, moderately grazed and ungrazed) at the Texas A&M University Agricultural Research Station on the Edwards Plateau, Texas. Grazing intensity was identified as the primary influence on long-term variations in species composition. Periodic weather events, including a severe drought (1951–1956), had little direct influence on composition dynamics. However, the drought interacted with grazing intensity in the heavily grazed treatment to exacerbate directional changes caused by grazing intensity. Species response to grazing was individualistic and noisy. Three response groups were identified. Taller, more productive mid-grasses were most abundant under moderate or no grazing. Short grasses were most abundant under heavy grazing. Intermediate species were most abundant under moderate grazing and opportunistic to weather patterns. Graminoid diversity increased with the removal or reduction of grazing intensity. The moderately and ungrazed treatments appeared most resistant to short-term weather fluctuations, while the heavily grazed treatment demonstrated significant resilience when grazing intensity was reduced after over 110 yr of overgrazing. Identification of a ‘climax’ state is difficult. Significant directional change, which took nearly 20 yr, appears to continue in the ungrazed treatment after 45 yr of succession. The observed, relatively linear patterns of perennial grass composition within the herbaceous patches of this savanna were generally explained by traditional Clementsian succession. However, when dynamics of the herbaceous community are combined with the woody component of this savanna, the frequency and intensity of fire becomes more important. Across the landscape, successional changes follow several pathways. When vegetation change is influenced by several factors, a multi-scale model is necessary to demonstrate interactions and feedbacks and accurately describe successional patterns. Absence of fires, with or without grazing, leads ultimately to a Juniperus/Quercus woodland with grazing intensity primarily influencing the fuel load and hence fire intensity.  相似文献   

19.
Abstract. The separate and combined effects of fire and cattle grazing on structure and diversity of productive Mediterranean grasslands in northern Israel were examined within a set of climatically and edaphically similar sites. Cover and height of green and dry plants in winter, and species richness and diversity in spring, were measured in paired transects on both sides of cattle fences, and on both sides of boundaries of both incidental and experimentally lit fires. Early in the first growing season after a fire, plant cover as well as height of green plants were reduced, compared to unburnt grassland. These structural effects of fire were similar to the effects of grazing, but they were greater in ungrazed than in grazed grasslands, indicating a fire-grazing interaction. The effects of fire were considerably attenuated in the second growing season after the fire. Species richness and diversity tended to be higher in grazed than in adjacent ungrazed grasslands. Richness consistently increased after a fire only in grazed grasslands with a strong perennial component. In ungrazed grasslands, and in predominantly annual grasslands, fires reduced species richness and diversity at least as often as they increased it. Fire and grazing should be regarded as two agents with distinct and interactive effects on the community, rather than as two alternative mechanisms of a general disturbance factor.  相似文献   

20.
Abstract. The response of geophyte species diversity and frequency of individual geophyte species to cattle grazing was measured at 68 site pairs along fences separating ungrazed from grazed grassland and woodland on different geological formations in northern Israel. Over all site pairs, geophyte species density per 4 m2 was significantly greater in grazed (2.37) than in protected (1.96) sites of the same site pair. There was considerable variation between site pairs in the magnitude and in the direction of the grazing effect. Part of this variation could be explained by differences in site altitude and in geological formation. The positive effect of grazing on geophyte diversity was lower in sites with low productivity. Of 22 geophyte taxa for which sufficient data were available, nine indicated greater frequency in grazed sites compared to only two in ungrazed sites. In 11 other taxa the response was not consistent. A positive response to grazing was most common in geophytes with narrow leaves of the Iridaceae, Liliaceae and allied families. Conservation of the entire geophyte flora in Mediterranean vegetation requires livestock grazing at moderate to high intensities in parts of the area of each community, and light or no grazing in other parts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号