首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 798 毫秒
1.
The influence of growth medium on cometabolic degradation of polycyclic aromatic hydrocarbons (PAHs) was investigated when Sphingomonas sp. strain PheB4 isolated from surface mangrove sediments was grown in either phenanthrene-containing mineral salts medium (PMSM) or nutrient broth (NB). The NB-grown culture exhibited a more rapid cometabolic degradation of single and mixed non-growth substrate PAHs compared to the PMSM-grown culture. The concentrations of PAH metabolites were also lower in NB-grown culture than in PMSM-grown culture, suggesting that NB-grown culture removed metabolites at a faster rate, particularly, for metabolites produced from cometabolic degradation of a binary mixture of PAHs. Cometabolic pathways of single PAH (anthracene, fluorene, or fluoranthene) in NB-grown culture showed similarity to that in PMSM-grown culture. However, cometabolic pathways of mixed PAHs were more diverse in NB-grown culture than that in PMSM-grown culture. These results indicated that nutrient rich medium was effective in enhancing cometabolic degradation of mixed PAHs concomitant with a rapid removal of metabolites, which could be useful for the bioremediation of mixed PAHs contaminated sites using Sphingomonas sp. strain PheB4.  相似文献   

2.
Mycobacterium sp. strain AP1 grew with pyrene as a sole source of carbon and energy. The identification of metabolites accumulating during growth suggests that this strain initiates its attack on pyrene by either monooxygenation or dioxygenation at its C-4, C-5 positions to give trans- or cis-4,5-dihydroxy-4,5-dihydropyrene, respectively. Dehydrogenation of the latter, ortho cleavage of the resulting diol to form phenanthrene 4,5-dicarboxylic acid, and subsequent decarboxylation to phenanthrene 4-carboxylic acid lead to degradation of the phenanthrene 4-carboxylic acid via phthalate. A novel metabolite identified as 6,6'-dihydroxy-2,2'-biphenyl dicarboxylic acid demonstrates a new branch in the pathway that involves the cleavage of both central rings of pyrene. In addition to pyrene, strain AP1 utilized hexadecane, phenanthrene, and fluoranthene for growth. Pyrene-grown cells oxidized the methylenic groups of fluorene and acenaphthene and catalyzed the dihydroxylation and ortho cleavage of one of the rings of naphthalene and phenanthrene to give 2-carboxycinnamic and diphenic acids, respectively. The catabolic versatility of strain AP1 and its use of ortho cleavage mechanisms during the degradation of polycyclic aromatic hydrocarbons (PAHs) give new insight into the role that pyrene-degrading bacterial strains may play in the environmental fate of PAH mixtures.  相似文献   

3.
AIM: The aim of this study was to further characterize a bacterial culture (VUN 10,010) capable of benzo[a]pyrene cometabolism. METHODS AND RESULTS: The bacterial culture, previously characterized as a pure culture of Stenotrophomonas maltophilia (VUN 10,010), was found to also contain another bacterial species (Mycobacterium sp. strain 1B), capable of degrading a similar range of PAH substrates. Analysis of its 16S rRNA gene sequence and growth characteristics revealed the strain to be a fast-growing Mycobacterium sp., closely related to other previously isolated PAH and xenobiotic-degrading mycobacterial strains. Comparison of the PAH-degrading characteristics of Mycobacterium sp. strain 1B with those of S. maltophilia indicated some similarities (ability to degrade phenanthrene and pyrene), but some differences were also noted (S. maltophilia able to degrade fluorene, but not fluoranthene, whereas Mycobacterium sp. strain 1B can degrade fluoranthene, but not fluorene). Unlike the S. maltophilia culture, there was no evidence of benzo[a]pyrene degradation by Mycobacterium sp. strain 1B, even in the presence of other PAHs (ie pyrene) as co-metabolic substrates. Growth of Mycobacterium sp. strain 1B on other organic carbon sources was also limited compared with the S. maltophilia culture. CONCLUSIONS: This study isolated a Mycobacterium strain from a bacterial culture capable of benzo[a]pyrene cometabolism. The Mycobacterium strain displays different PAH-degrading characteristics to those described previously for the PAH-degrading bacterial culture. It is unclear what role the two bacterial strains play in benzo[a]pyrene cometabolism, as the Mycobacterium strain does not appear to have endogenous benzo[a]pyrene degrading ability. SIGNIFICANCE AND IMPACT OF THE STUDY: This study describes the isolation and characterization of a novel PAH-degrading Mycobacterium strain from a PAH-degrading culture. Further studies utilizing this strain alone, and in combination with other members of the consortium, will provide insight into the diverse roles different bacteria may play in PAH degradation in mixed cultures and in the environment.  相似文献   

4.
Mycobacterium sp. strain AP1 grew with pyrene as a sole source of carbon and energy. The identification of metabolites accumulating during growth suggests that this strain initiates its attack on pyrene by either monooxygenation or dioxygenation at its C-4, C-5 positions to give trans- or cis-4,5-dihydroxy-4,5-dihydropyrene, respectively. Dehydrogenation of the latter, ortho cleavage of the resulting diol to form phenanthrene 4,5-dicarboxylic acid, and subsequent decarboxylation to phenanthrene 4-carboxylic acid lead to degradation of the phenanthrene 4-carboxylic acid via phthalate. A novel metabolite identified as 6,6′-dihydroxy-2,2′-biphenyl dicarboxylic acid demonstrates a new branch in the pathway that involves the cleavage of both central rings of pyrene. In addition to pyrene, strain AP1 utilized hexadecane, phenanthrene, and fluoranthene for growth. Pyrene-grown cells oxidized the methylenic groups of fluorene and acenaphthene and catalyzed the dihydroxylation and ortho cleavage of one of the rings of naphthalene and phenanthrene to give 2-carboxycinnamic and diphenic acids, respectively. The catabolic versatility of strain AP1 and its use of ortho cleavage mechanisms during the degradation of polycyclic aromatic hydrocarbons (PAHs) give new insight into the role that pyrene-degrading bacterial strains may play in the environmental fate of PAH mixtures.  相似文献   

5.
Pyrene and fluoranthene, when supplied as the sole carbon source, were not degraded by Burkholderia sp. VUN10013. However, when added in a mixture with phenanthrene, both pyrene and fluoranthene were degraded in liquid broth and soil. The amounts of pyrene and fluoranthene in liquid media (initial concentrations of 50 mg l−1 each) decreased to 42.1% and 41.1%, respectively, after 21 days. The amounts of pyrene and fluoranthene in soil (initial concentrations of 75 mg kg−1 dry soil each) decreased to 25.8% and 12.1%, respectively, after 60 days. None of the high molecular weight (HMW) polycylic aromatic hydrocarbons (PAHs) tested adversely affected phenanthrene degradation by this bacterial strain and the amount of phenanthrene decreased rapidly within 3 and 15 days of incubation in liquid broth and soil, respectively. Anthracene also stimulated the degradation of pyrene or fluoranthene by Burkholderia sp. VUN10013, but to a lesser extent than phenanthrene. The extent of anthracene degradation decreased in the presence of these HMW PAHs.  相似文献   

6.
Mycobacterium sp. strain BB1 was isolated from a former coal gasification site. It was able to utilize phenanthrene, pyrene, and fluoranthene as sole sources of carbon and energy and to degrade fluorene cometabolically. Exponential growth with solid phenanthrene, pyrene, and fluoranthene was obtained in fermentor cultures. The growth rates were 0.069, 0.056, and 0.040 h-1, respectively. Several metabolites of phenanthrene and fluorene metabolism were identified.  相似文献   

7.
A strain of Mycobacterium, that is able to degrade fluorene, phenanthrene, fluoranthene and pyrene was grown on various mixtures of these substrates. The polycyclic aromatic hydrocarbons (PAH) were provided either as crystals or solubilized by a surfactant. Mixed PAH were degraded simultaneously, but not in parallel, indicating that the degradation pathways were not incompatible. Certain interactions of the substrates were observed. For example, the degradation of solubilized pyrene was delayed in the presence of fluorene and enhanced in the presence of phenanthrene. Fluorene was degraded cometabolically with the other PAH serving as growth substrates, but not as the only source of carbon. The utilization of phenanthrene occurred at the fastest rate and was not affected by the presence of fluorene, pyrene or fluoranthene.  相似文献   

8.
【目的】研究恶臭假单胞菌B6-2和克雷伯氏菌CW-D3T构建的混合功能菌对多环芳烃的协同修复效能,并探究非离子表面活性剂吐温-80对混菌降解多环芳烃的影响,以期为芳烃化合物的生物修复提供技术参考和理论依据。【方法】通过生长曲线及平板菌落计数法反映混菌生长情况及比例,从而评估混菌降解体系的可行性;通过高效液相色谱法探究各体系以及不同吐温-80浓度下混培体系对多环芳烃的降解效能;最后通过烷烃吸附法测定细胞表面疏水性,以探究吐温-80对混合功能菌降解多环芳烃的影响机制。【结果】等比例混合的2株菌共培养生长状态优于纯培体系,对混合多环芳烃(菲、荧蒽、芘)的降解率分别为33.4%、30.1%、28.6%(7 d),相较于菌CW-D3T,分别提高了1.31倍、1.46倍、1.42倍。混培体系中加入500 mg/L的吐温-80对菲、荧蒽、芘的降解率分别为47.7%、43.2%、38.8%(7 d),相较于对照组各提高了1.55倍、1.38倍、1.31倍,而更高浓度的吐温-80无明显促进作用或轻微抑制。添加吐温-80使菌CW-D3T和混菌的表面疏水性提高,而菌B6-2表面疏水性降低。结合细菌生长量分析...  相似文献   

9.
Summary Bacterial mixed cultures able to degrade the polycyclic aromatic hydrocarbons (PAH) phenanthrene, fluorene and fluoranthene, were obtained from soil using conventional enrichment techniques. From these mixed cultures three pure strains were isolated:Pseudomonas paucimobilis degrading phenanthrene;P. vesicularis degrading fluorene andAlcaligenes denitrificans degrading fluoranthene. The maximum rates of PAH degradation ranged from 1.0 mg phenanthrene/ml per day to 0.3 mg fluoranthene/ml per day at doubling times of 12 h to 35 h for growth on PAH as sole carbon source. The protein yield during PAH degradation was about 0.25 mg/mg C for all strains. Maximum PAH oxidation rates and optimum specific bacterial growth were obtained near pH 7.0 and 30°C. After growth entered the stationary phase, no dead end-products of PAH degradation could be detected in the culture fluid.  相似文献   

10.
A versatile bacterial strain able to convert polycyclic aromatic hydrocarbons (PAHs) was isolated, and a conversion by the isolate of both individual substances and PAH mixtures was investigated. The strain belonged to the Sphingomonas genus as determined on the basis of 16S rRNA analysis and was designated as VKM B-2434. The strain used naphthalene, acenaphthene, phenanthrene, anthracene and fluoranthene as a sole source of carbon and energy, and cometabolically oxidized fluorene, pyrene, benz[a]anthracene, chrysene and benzo[a]pyrene. Acenaphthene and fluoranthene were degraded by the strain via naphthalene-1,8-dicarboxylic acid and 3-hydroxyphthalic acid. Conversion of most other PAHs was confined to the cleavage of only one aromatic ring. The major oxidation products of naphthalene, phenanthrene, anthracene, chrysene, and benzo[a]pyrene were identified as salicylic acid, 1-hydroxy-2-naphthoic acid, 3-hydroxy-2-naphthoic acid, o-hydroxyphenanthroic acid and o-hydroxypyrenoic acid, respectively. Fluorene and pyrene were oxidized mainly to hydroxyfluorenone and dihydroxydihydropyrene, respectively. Oxidation of phenanthrene and anthracene to the corresponding hydroxynaphthoic acids occurred quantitatively. The strain converted phenanthrene, anthracene, fluoranthene and carbazole of coal-tar-pitch extract.  相似文献   

11.
A polycyclic aromatic hydrocarbon (PAH)-degrading culture enriched from contaminated river sediments and a Mycobacterium sp. isolated from the enrichment were tested to investigate the possible synergistic and antagonistic interactions affecting the degradation of pyrene in the presence of low molecular weight PAHs. The Mycobacterium sp. was able to mineralize 63% of the added pyrene when it was present as a sole source of carbon and energy. When the enrichment culture and the isolated bacterium were exposed to phenanthrene, de novo protein synthesis was not required for the rapid mineralization of pyrene, which reached 52% in chloramphenicol-treated cultures and 44% in the absence of the protein inhibitor. In the presence of chloramphenicol, < 1% of the added pyrene was mineralized by the mixed culture after exposure to anthracene and naphthalene. These compounds did not inhibit pyrene utilization when present at the same time as pyrene. Concurrent mineralization of pyrene and phenanthrene after exposure to either compound was observed. Cross-acclimation between ring classes of PAHs may be a potentially important interaction influencing the biodegradation of aromatic compounds in contaminated environments.  相似文献   

12.
The strain Sphingomonas sp. VKM V-2434 converts the mixture of seven polyaromatic compounds (PACs): fluorene, dibenzothiophene, carbazole, phenanthrene, anthracene, fluoranthene, and pyrene. The effect of each of the above PACs on the rate of mixture conversion was determined. The following two strains, which utilize the substances inhibiting the studied process, were added to the culture: strain FON-11 utilizing 9-fluorenone (fluorene metabolite) and strain CBZ-21 utilizing carbazole. In the case of the mixed culture of three strains, conversion rates were 1.5 and 1.2–3.8 times higher for the PAC mixture and its individual components, respectively, than the rates for Sphingomonas sp. VKM V-2434 monoculture. The degree of degradation of PAC conversion products increased from 32 to 44%. The rate of PAC conversion by the mixed culture exceeded the sum of conversion rates for the individual component strains; this cooperative effect was particularly marked for anthracene and pyrene.  相似文献   

13.
A soil sample collected underneath a sewage pipe of the west side of Yangpu refining factory in Haikou city, Hainan Province, China was inoculated in minimum medium supplemented with fluoranthene. After 8 enrichment cycles, a bacterial consortium (Y12) was obtained through water-silicone oil dual system in the laboratory. The consortium Y12 could degrade a mixture of polycyclic aromatic hydrocarbons (PAHs) including phenanthrene, anthracene, fluoranthene, pyrene and benzo[a]pyrene. The consortium Y12 was repeatedly cultured for more than 40 circles, from which a bacterial strain FB3 was isolated. This strain was identified as a Sphingobium sp. through the 16S rDNA sequence alignment. Strain FB3 could degrade 99 ± 0.4%, 67 ± 2%, 97 ± 3%, 72 ± 8%, and 6 ± 2% (uncorrected degradation percentages) of phenanthrene, anthracene, fluoranthene and pyrene each at level of 100 mg L−1 and benzo[a]pyrene at 10 mg L−1, respectively, in 10 days, which the five PAHs were the sole carbon source as a mixture in minimum medium. The degradation percentages of phenanthrene, anthracene, fluoranthene, pyrene (each at level of 100 mg L−1) and benzo[a]pyrene (10 mg L−1) by consortium Y12 were 99 ± 0.1%, 65 ± 3%, 99 ± 0.3%, 79 ± 1% and 7 ± 6%, respectively, in 10 days. Strain FB3 could degrade those PAHs under a range of pH 5–9, being optimum at pH 7.  相似文献   

14.
Biodegradation studies of polyaromatic hydrocarbons in aqueous media   总被引:2,自引:1,他引:1  
Sixteen bacterial strains isolated from an activated sludge and Mycobacterium ssp. PYR-1 were tested for their ability to degrade polyaromatic hydrocarbons (PAHs). The bacterial strains Pasteurella ssp. (B-2) and Mycobacterium ssp. PYR-1 (AM) showed a high biodegradation potential of three- and four-ring PAHs. Bacterial strain AM was able to degrade up to 80% of three and four-ring PAHs (phenanthrene, fluoranthene and pyrene) within the first month of incubation, while the bacterial strain B-2 achieved the same biodegradation in 2 months. The metabolic pathway of PAH degradation was studied using fluoranthene and the bacterial strain AM. Ninety per cent of fluoranthene was biodegraded within the first 9 d of incubation when applied as a single substrate. Retention factor values from thin-layer chromatography studies, gas chromatography with mass selective detection and tandem mass spectrometry identified 9-fluorenone-1-carboxylic acid as one of the stable metabolic products and from this a fluoranthene biodegradation pathway is proposed.  相似文献   

15.
Six bacterial strains capable of using, as sole carbon and energy source, at least one of the following polycyclic aromatic hydrocarbons (PAH), naphthalene, fluorene, phenanthrene, anthracene, fluoranthene and pyrene, were isolated. The interactions between these PAH during their biodegradation were studied in experiments involving PAH pairs, one PAH at least being used as a carbon source. All individual strains were found capable of cometabolic degradation of PAH in a range varying among strains. Inhibition phenomena, sometimes drastic, were often observed but synergistic interactions were also detected. Naphthalene was toxic to all strains not isolated on this compound. Strain associations were found efficient in relieving inhibition phenomena, including the toxic effect of naphthalene. Accumulation of water-soluble metabolites was consistently observed during PAH degradation.  相似文献   

16.
The biodegradation of polycyclic aromatic hydrocarbons (PAH) often is limited by low water solubility and dissolution rate. Nonionic surfactants and sodium dodecyl sulfate increased the concentration of PAH in the water phase because of solubilization. The degradation of PAH was inhibited by sodium dodecyl sulfate because this surfactant was preferred as a growth substrate. Growth of mixed cultures with phenanthrene and fluoranthene solubilized by a nonionic surfactant prior to inoculation was exponential, indicating a high bioavailability of the solubilized hydrocarbons. Nonionic surfactants of the alkylethoxylate type and the alkylphenolethoxylate type with an average ethoxylate chain length of 9 to 12 monomers were toxic to a PAH-degrading Mycobacterium sp. and to several PAH-degrading mixed cultures. Toxicity of the surfactants decreased with increasing hydrophilicity, i.e., with increasing ethoxylate chain length. Nontoxic surfactants enhanced the degradation of fluorene, phenanthrene, anthracene, fluoranthene, and pyrene.  相似文献   

17.
The influence of the precultivation with different carbon sources on the ability of three different bacterial strains (Sphingomonas sp. strain BA2, Gordona sp. strain BP9, Mycobacterium sp. strain VF1) to grow on phenanthrene. anthracene, pyrene or fluoranthene as the sole source of carbon and energy were studied. The strains were found to maintain their ability to grow on two of the four PAH after 30 serial transfers in liquid nutrient broth medium without selective pressure. The ability to grow on these PAH as the sole carbon and energy source was also maintained after curing experiments with acridine orange. The high stability of the PAH-degradation phenotype suggests that the tested strains carry at least parts of the PAH-degradation pathway genes on the chromosome. The PAH-degradation versatility of the strains was also influenced by the carbon source being used for precultivation. Possible reasons for the particularly good impact of the precultivation on hexadecane on the PAH degradation are discussed in this paper.  相似文献   

18.
In this study, the enzymes involved in polycyclic aromatic hydrocarbon (PAH) degradation were investigated in the pyrene-degrading Mycobacterium sp. strain 6PY1. [(14)C]pyrene mineralization experiments showed that bacteria grown with either pyrene or phenanthrene produced high levels of pyrene-catabolic activity but that acetate-grown cells had no activity. As a means of identifying specific catabolic enzymes, protein extracts from bacteria grown on pyrene or on other carbon sources were analyzed by two-dimensional gel electrophoresis. Pyrene-induced proteins were tentatively identified by peptide sequence analysis. Half of them resembled enzymes known to be involved in phenanthrene degradation, with closest similarity to the corresponding enzymes from Nocardioides sp. strain KP7. The genes encoding the terminal components of two distinct ring-hydroxylating dioxygenases were cloned. Sequence analysis revealed that the two enzymes, designated Pdo1 and Pdo2, belong to a subfamily of dioxygenases found exclusively in gram-positive bacteria. When overproduced in Escherichia coli, Pdo1 and Pdo2 showed distinctive selectivities towards PAH substrates, with the former enzyme catalyzing the dihydroxylation of both pyrene and phenanthrene and the latter preferentially oxidizing phenanthrene. The catalytic activity of the Pdo2 enzyme was dramatically enhanced when electron carrier proteins of the phenanthrene dioxygenase from strain KP7 were coexpressed in recombinant cells. The Pdo2 enzyme was purified as a brown protein consisting of two types of subunits with M(r)s of about 52,000 and 20,000. Immunoblot analysis of cell extracts from strain 6PY1 revealed that Pdo1 was present in cells grown on benzoate, phenanthrene, or pyrene and absent in acetate-grown cells. In contrast, Pdo2 could be detected only in PAH-grown cells. These results indicated that the two enzymes were differentially regulated depending on the carbon source used for growth.  相似文献   

19.
The microbiological characteristics of the bacterialdegradation of mixtures of five polycyclic aromatichydrocarbons (PAH), phenanthrene, fluorene,anthracene, fluoranthene and pyrene, wereinvestigated. Three pure bacterial strains using oneor several of these PAH as carbon sources wereselected. The interactions between PAH during thedegradation of PAH pairs by each of these strains werestudied and their effects on the kinetics and thebalance of degradation were characterised. Competitionbetween PAH and degradation by cometabolism werefrequently observed. Mixed cultures of two or threestrains, although possessing the global capacity tomineralise the set of five PAH, achieved limiteddegradation of the mixture. In contrast, a consortiumfrom a PAH-contaminated soil readily mineralised thefive-PAH mixture. The results suggested that soilconsortia possessed a wider variety of strains capableto compensate for the competitive inhibition betweenPAH as well as specialised strains that mineralisedpotentially inhibitory PAH metabolites produced bycometabolism.  相似文献   

20.
A pyrene-degrading bacterial consortium was obtained from deep-sea sediments of the Pacific Ocean. The consortium degraded many kinds of polycyclic aromatic hydrocarbons (PAHs), including naphthalene, phenanthrene, pyrene, acenaphthene, fluorene, anthracene, fluoranthene, 2-methylnaphthalene and 2,6-dimethylnaphthalene, but it did not grow with chrysene and benzo[alpha]pyrene. With methods of plate cultivation and polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE), 72 bacteria belonging to 22 genera were detected from this consortium. Among the detected bacteria, the following genera frequently occurred: Flavobacterium, Cycloclasticus, Novosphingobium, Halomonas, Achromobacter, Roseovarius and Alcanivorax. The first two genera showed the strongest bands in denaturing gradient gel electrophoresis (DGGE) profiles and appeared in all PAH treatments. By now, only one isolate designated P1 was confirmed to be a pyrene degrader. It was identified to be Cycloclasticus spirillensus (100%). Although P1 can degrade pyrene independently, other bacteria, such as Novosphingobium sp. (Band 14), Halomonas sp. (Band 16) and an unidentified bacterium (Band 35), were involved in pyrene degradation in some way; they persist in the consortium in the test of dilution to extinction if only the consortium was motivated with pyrene. However, the secondary most important member Flavobacterium sp. evaded from the community at high dilutions. As a key member of the consortium, P1 distinguished itself by both cell morphology and carbon source range among the isolates of this genus. Based on intermediate analyses of pyrene degradation, P1 was supposed to take an upper pathway different from that previously reported. Together with the results of obtained genes from P1 homology with those responsible for naphthalene degradation, its degradation to pyrene is supposed to adopt another set of genes unique to presently detected. Summarily, an efficient pyrene-degrading consortium was obtained from the Pacific Ocean sediment, in which Cycloclasticus bacterium played a key role. This is the first report to exploit the diversity of pyrene-degrading bacteria in oceanic environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号