首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Axonal growth and guidance rely on correct growth cone responses to guidance cues, both in the central nervous system (CNS) and in the periphery. Unlike the signaling cascades that link axonal growth to cytoskeletal dynamics, little is known about the cross‐talk mechanisms between guidance and membrane dynamics and turnover in the axon. Our studies have shown that Netrin‐1/deleted in colorectal cancer signaling triggers exocytosis through the SNARE Syntaxin‐1 (STX‐1) during the formation of commissural pathways. However, limited in vivo evidence is available about the role of SNARE proteins in motor axonal guidance. Here we show that loss‐of‐function of SNARE complex members results in motor axon guidance defects in fly and chick embryos. Knock‐down of Syntaxin‐1, VAMP‐2, and SNAP‐25 leads to abnormalities in the motor axon routes out of the CNS. Our data point to an evolutionarily conserved role of the SNARE complex proteins in motor axon guidance, thereby pinpointing an important function of SNARE proteins in axonal navigation in vivo . © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 963–974, 2017  相似文献   

2.
Rin is a large cell-surface glycoprotein that we have recently purified from chick brain, with a molecular weight of approximately 200 kD. Protein microsequence obtained from immunopurified rin does not match any sequences in the Genbank data base. Based on the sequences information and on its localization in the early chick embryo, rin is a novel cell-surface protein. Rin is expressed on the surface of many, but not all, axons in the developing chick nervous system. In the chick hind-brain, rin is expressed on reticular neurons, the first neurons to extend axons within the brain. Cranial motorneurons, which extend axons just a few stages later, do not express rin. Rin-positive axons pioneer the caudal section of the medial longitudinal fasciculus. The very first rin-positive axons that reach the floorplate do not enter the floorplate, but remain ipsilateral. Some of the next immunopositive axons to reach the floorplate do cross the midline, often with an alteration in trajectory, and often extending within the floorplate for some distance before reaching the other side. The failure of the very first rin-positive axons to cross the floorplate, and the changes in trajectory observed when the next axons extend onto the floorplate, suggests that early differentiating neurons cross the midline with some difficulty. 1994 John Wiley & Sons, Inc.  相似文献   

3.
Developing neurons express a motor protein called kinesin-5 (also called kif11 or Eg5) which acts as a 'brake' on the advance of the microtubule array during axonal growth. Pharmacological inhibition of kinesin-5 causes the developing axon to grow at a faster rate, retract less and grow past cues that would otherwise cause it to turn. Here we demonstrate that kinesin-5 is also expressed in adult neurons, albeit at lower levels than during development. We hypothesized that inhibiting kinesin-5 might enable adult axons to regenerate better and to overcome repulsive molecules associated with injury. Using adult mouse dorsal root ganglion neurons, we found that anti-kinesin-5 drugs cause axons to grow faster and to cross with higher frequency onto inhibitory chondroitin sulfate proteoglycans. These effects may be due in part to changes in the efficiency of microtubule transport along the axonal shaft as well as enhanced microtubule entry into the distal tip of the axon. Effects observed with the drugs are further enhanced in some cases when they are used in combination with other treatments known to enhance axonal regeneration. Collectively, these results indicate that anti-kinesin-5 drugs may be a useful addition to the arsenal of tools used to treat nerve injury.  相似文献   

4.
Laminins are heterotrimeric extracellular matrix proteins that regulate cell viability and function. Laminin-2, composed of alpha2, beta1, and gamma1 chains, is a major matrix component of the peripheral nervous system (PNS). To investigate the role of laminin in the PNS, we used the Cre-loxP system to disrupt the laminin gamma1 gene in Schwann cells. These mice have dramatically reduced expression of laminin gamma1 in Schwann cells, which results in a similar reduction in laminin alpha2 and beta1 chains. These mice exhibit motor defects which lead to hind leg paralysis and tremor. During development, Schwann cells that lack laminin gamma1 were present in peripheral nerves, and proliferated and underwent apoptosis similar to control mice. However, they were unable to differentiate and synthesize myelin proteins, and therefore unable to sort and myelinate axons. In mutant mice, after sciatic nerve crush, the axons showed impaired regeneration. These experiments demonstrate that laminin is an essential component for axon myelination and regeneration in the PNS.  相似文献   

5.
For our nervous system to function properly, each neuron must generate a single axon and elongate the axon to reach its target. It is known that actin filaments and their dynamic interaction with microtubules within growth cones play important roles in inducing axon extension. However, it remains unclear how cytoskeletal dynamics is controlled in growth cones. In this study, we report that Rufy3, a RUN domain‐containing protein, is a neuron‐specific and actin filament‐relevant protein. We find that the appropriate expression of Rufy3 in mouse hippocampal neurons is required for the development of a single axon and axon growth. Our results show that Rufy3 specifically interacts with actin filament‐binding proteins, such as Fascin, and colocalizes with Fascin in growth cones. Knockdown of Rufy3 impairs the distribution of Fascin and actin filaments, accompanied by an increased proportion of neurons with multiple axons and a decrease in the axon length. Therefore, Rufy3 may be particularly important for neuronal axon elongation by interacting with Fascin to control actin filament organization in axonal growth cones.

  相似文献   


6.
Summary Permeability ratios for pairs of monovalent cations permeating the two potassium systems proposed for the giant axon of the crabCarcinus maenas (M. E. Quinta-Ferreira, E. Rojas & N. Arispe,J. Membrane Biol. 66:171–181, 1982b) were estimated from measurements of the reversal potential of the currents under voltage-clamp conditions. With K+ inside the axon, permeability ratios from the reversal potential of the currents through the late channel are:P Rb/P K=0.9, /P K<0.2 andP Cs/P K=0.18. With Cs+ inside the ratios are:P K/P Cs=8.7,P Rb/P Cs=7.1 and /P Cs=2.4. The analysis of the inward currents carried by Rb+ or NH 4 + showed similar reversal potentials for the early transient component and the late sustained component. Whence, the sequence of permeabilities for the two types of potassium channels is:P K>P Rb> >P Na=P Cs. The time constants for the activation of the two components recorded either in K-, Rb-, or NH4-artificial seawater are twice as large as the corresponding time constants measured in Na-artificial seawater.  相似文献   

7.
8.
During a certain critical period in the development of the central and peripheral nervous systems, axonal branches and synapses are massively reorganized to form mature connections. In this process, neurons search their appropriate targets, expanding and/or retracting their axons. Recent work suggested that the caspase superfamily regulates the axon morphology. Here, we tested the hypothesis that caspase 3, which is one of the major executioners in apoptotic cell death, is involved in regulating the axon arborization. The embryonic chicken ciliary ganglion was used as a model system of synapse reorganization. A dominant negative mutant of caspase‐3 precursor (C3DN) was made and overexpressed in presynaptic neurons in the midbrain to interfere with the intrinsic caspase‐3 activity using an in ovo electroporation method. The axon arborization pattern was 3‐dimensionally and quantitatively analyzed in the ciliary ganglion. The overexpression of C3DN significantly reduced the number of branching points, the branch order and the complexity index, whereas it significantly elongated the terminal branches at E6. It also increased the internodal distance significantly at E8. But, these effects were negligible at E10 or later. During E6–8, there appeared to be a dynamic balance in the axon arborization pattern between the “targeting” mode, which is accompanied by elongation of terminal branches and the pruning of collateral branches, and the “pathfinding” mode, which is accompanied by the retraction of terminal branches and the sprouting of new collateral branches. The local and transient activation of caspase 3 could direct the balance towards the pathfinding mode.  相似文献   

9.
The vertebrate main and accessory olfactory bulbs (MOB and AOB) are the first synaptic sites in the olfactory pathways. The MOB is a cortical structure phylogenetically well conserved in its laminar structure and overall synaptic organization, while the AOB has significant species variation in size. In order to better understand signal processing in the two olfactory systems and the species differences, immunocytochemical staining and analysis were done of the neuronal expression patterns of the calcium-binding proteins calbindin D28k (CB), parvalbumin (PV), and calretinin (CR) in the MOB and AOB in a marsupial species, the gray short-tailed opossum, Monodelphis domestica. In the MOB, antibody to CB labeled periglomerular cells, superficial short axon cells / Van Gehuchten cells; antibody to PV labeled Van Gehuchten cells; and antibody to CR immunostained periglomerular cells, superficial short axon cells / Van Gehuchten cells, and granule cells. In the AOB, CB immunoreactivity was detected in periglomerular cells and a subpopulation of granule cells; antibody to PV labeled the superficial short axon cells / Van Gehuchten cells and granule cells; and antibody to CR labeled a small number of periglomerular cells, superficial short axon cells / Van Gehuchten cells, and granule cells. These results showed that the patterns of CB, PV, and CR expression differ in the opossum main and accessory olfactory bulbs and differ from that in other animal species. These varying patterns of neuronal immunostaining may be related to the different functions of the main and accessory olfactory bulbs and to the differing signal processing features.  相似文献   

10.
11.
Axonal growth cone collapse is accompanied by a reduction in filopodial F-actin. We demonstrate here that semaphorin 3A (Sema3A) induces a coordinated rearrangement of Sema3A receptors and F-actin during growth cone collapse. Differential interference contrast microscopy reveals that some sites of Sema3A-induced F-actin reorganization correlate with discrete vacuoles, structures involved in endocytosis. Endocytosis of FITC-dextran by the growth cone is enhanced during Sema3A treatment, and sites of dextran accumulation colocalize with actin-rich vacuoles and ridges of membrane. Furthermore, the Sema3A receptor proteins, neuropilin-1 and plexin, and the Sema3A signaling molecule, rac1, also reorganize to vacuoles and membrane ridges after Sema3A treatment. These data support a model whereby Sema3A stimulates endocytosis by focal and coordinated rearrangement of receptor and cytoskeletal elements. Dextran accumulation is also increased in retinal ganglion cell (RGC) growth cones, in response to ephrin A5, and in RGC and DRG growth cones, in response to myelin and phorbol-ester. Therefore, enhanced endocytosis may be a general principle of physiologic growth cone collapse. We suggest that growth cone collapse is mediated by both actin filament rearrangements and alterations in membrane dynamics.  相似文献   

12.
Dual leucine zipper kinase (DLK), a mitogen‐activated protein kinase kinase kinase, controls axon growth, apoptosis and neuron degeneration during neural development, as well as neurodegeneration after various insults to the adult nervous system. Interestingly, recent studies have also highlighted a role of DLK in promoting axon regeneration in diverse model systems. Invertebrates and vertebrates, cold‐ and warm‐blooded animals, as well as central and peripheral mammalian nervous systems all differ in their ability to regenerate injured axons. Here, we discuss how DLK‐dependent signalling regulates apparently contradictory functions during neural development and regeneration in different species. In addition, we outline strategies to fine‐tune DLK function, either alone or together with other approaches, to promote axon regeneration in the adult mammalian central nervous system.  相似文献   

13.
Summary Ultrastructural observations of the giant axon of Myxicola infundibulum reveal that the axoplasm contains neurofilaments, a few neurotubules and mitochondria. Finger-like projections issuing from the glial cells of the sheath encircle the giant axon at various angles. The space between the axolemma and sheath is 125 Å. Branches of the giant axon are also surrounded by a glial sheath as they course through the neuropil. Some branches of the giant axon seem to fuse with certain neurons, creating a syncytial arrangement between the giant axon and these neurons.Many small nerve fibers course longitudinally in the neuropil of the nerve cord. Most of these axons are separated from each other by a space of 200 Å without intervening glial processes. Synapses in the neuropil have both clear 600 Å vesicles and larger dense core vesicles suggesting chemical transmission. Some, but not all, of the synaptic areas show thickened membranes and dense material in the synaptic cleft.This study was supported in part by PHS NS-07740 to R.L.P., J.A.B. is a NDEA Predoctoral Fellow in the Department of Physiology.  相似文献   

14.
In the developing embryo, axon growth and guidance depend on cues that include diffusible molecules. We have shown previously that the branchial arches and hepatocyte growth factor (HGF) are growth‐promoting and chemoattractant for young embryonic cranial motor axons. HGF is produced in the branchial arches of the embryo, but a number of lines of evidence suggest that HGF is unlikely to be the only factor involved in the growth and guidance of these axons. Here we investigate whether other neurotrophic factors could be involved in the growth of young cranial motor neurons in explant cultures. We find that brain‐derived neurotrophic factor (BDNF), ciliary neurotrophic factor (CNTF) and cardiotrophin‐1 (CT‐1) all promote the outgrowth of embryonic cranial motor neurons, while glial cell line‐derived neurotrophic factor (GDNF) and neurotrophin‐3 (NT‐3) fail to affect outgrowth. We next examined whether HGF and the branchial arches had similar effects on motor neuron subpopulations at different axial levels. Our results show that HGF acts as a generalized rather than a specific neurotrophic factor and guidance cue for cranial motor neurons. Although the branchial arches also had general growth‐promoting effects on all motor neuron subpopulations, they chemoattracted different axial levels differentially, with motor neurons from the caudal hindbrain showing the most striking response. © 2002 Wiley Periodicals, Inc. J Neurobiol 51: 101–114, 2002  相似文献   

15.
The fast potentiometric indicator di-4-ANEPPS is examined in four different preparations: lipid vesicles, red blood cells, squid giant axon, and guinea pig heart. The dye gives consistent potentiometric responses in each of these systems, although some of the detailed behavior varies. In lipid vesicles, the dye displays an increase in fluorescence combined with a red shift of the excitation spectrum upon hyperpolarization. Similar behavior is found in red cells where a dual wavelength radiometric measurement is also demonstrated. The signal-to-noise ratio of the potentiometric fluorescence response is among the best ever recorded on the voltage-clamped squid axon. The dye is shown to be a faithful and persistent monitor of cardiac action potentials with no appreciable loss of signal or deterioration of cardiac activity for periods as long as 2 hr with intermittent illumination every 10 min. These results, together with previously published applications of the dye to a spherical lipid bilayer model and to cells in culture, demonstrate the versatility of di-4-ANEPPS as a fast indicator of membrane potential.  相似文献   

16.
Neuroserpin is a brain-specific serine protease inhibitor that is expressed in the developing and adult nervous system. Its expression profile led to suggestions that it played roles in neuronal growth and connectivity. In this study, we provide direct evidence to support a role for neuroserpin in axon and dendritic growth. We report that axon growth is enhanced while axon and dendrite diameter are reduced following neuroserpin treatment of hippocampal neurons. More complex effects are seen on dendritic growth and branching with neuroserpin-stimulating dendritic growth and branching in young neurons but switching to an inhibitory response in older neurons. The protease inhibitory activity of neuroserpin is not required to activate changes in neuronal morphology and a proportion of responses are modulated by an antagonist to the LRP1 receptor. Collectively, these findings support a key role for neuroserpin as a regulator of neuronal development through a non-inhibitory mechanism and suggest a basis for neuroserpin's effects on complex emotional behaviours and recent link to schizophrenia.  相似文献   

17.
The molecular mechanisms regulating intrinsic axon growth potential during development or following injury remain largely unknown despite their vast importance. Here, we have established a neurite sprouting assay of primary cultured mushroom body (MB) neurons. We used the MARCM technique to both mark and manipulate MB neurons, enabling us to quantify the sprouting abilities of single WT and mutant neurons originating from flies at different developmental stages. Sprouting of dissociated MB neurons was dependent on wnd, the DLK ortholog, a conserved gene that is required for axon regeneration. Next, and as expected, we found that the sprouting ability of adult MB neurons was significantly decreased. In contrast, and to our surprise, we found that pupal‐derived neurons exhibit increased sprouting compared with neurons derived from larvae, suggesting the existence of an elevated growth potential state. We then contrasted the molecular requirements of neurite sprouting to developmental axon regrowth of MB ? neurons, a process that we have previously shown requires the nuclear receptor UNF acting via the target of rapamycin (TOR) pathway. Strikingly, we found that while TOR was required for neurite sprouting, UNF was not. In contrast, we found that PTEN inhibits sprouting in adult neurons, suggesting that TOR is regulated by the PI3K/PTEN pathway during sprouting and by UNF during developmental regrowth. Interestingly, the PI3K pathway as well as Wnd were not required for developmental regrowth nor for initial axon outgrowth suggesting that axon growth during circuit formation, remodeling, and regeneration share some molecular components but differ in others. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 262–276, 2016  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号