首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
2.
To isolate the genes involved in the response of graminaceous plants to Fe-deficient stress, a protein induced by Fe-deficiency treatment was isolated from barley (Hordeum vulgare L.) roots. Based on the partial amino acid sequence of this protein, a cDNA (HvAPT1) encoding adenine phosphoribosyltransferase (APRT: EC 2.4.2.7) was cloned from a cDNA library prepared from Fe-deficient barley roots. Southern analysis suggested that there were at least two genes encoding APRT in barley. Fe deficiency increased HvAPT1 expression in barley roots and resupplying Fe to the Fe-deficient plants rapidly negated the increase in HvAPT1 mRNA. Analysis of localization of HvAPT1-sGFP fusion proteins in tobacco BY-2 cells indicated that the protein from HvAPT1 was localized in the cytoplasm of cells. Consistent with the results of Northern analysis, the enzymatic activity of APRT in barley roots was remarkably increased by Fe deficiency. This induction of APRT activity by Fe deficiency was also observed in roots of other graminaceous plants such as rye, maize, and rice. In contrast, the induction was not observed to occur in the roots of a non-graminaceous plant, tobacco. Graminaceous plants generally synthesize the mugineic acid family phytosiderophores (MAs) in roots under Fe-deficient conditions. In this paper, a possible role of HvAPT1 in the biosynthesis of MAs related to adenine salvage in the methionine cycle is discussed.  相似文献   

3.
Nicotianamine and nicotianamine synthase (NAS) play key roles in iron nutrition in all higher plants. However, the mechanism underlying the regulation of NAS expression differs among plant species. Sequences homologous to iron deficiency-responsive elements (IDEs), i.e., cis-acting elements, are found on the promoters of these genes. We aimed to verify the interspecies compatibility of the Fe-deficiency response of NAS1 genes and understand the universal mechanisms that regulate their expression patterns in higher plants. Therefore, we introduced the graminaceous (Hordeum vulgare L. and Oryza sativa L.) NAS1 promoter::GUS into dicots (Nicotiana tabacum L. and Arabidopsis thaliana L.). Fe deficiency induced HvNAS1 expression in the shoots and roots when introduced into rice. HvNAS1 promoter::GUS and OsNAS1 promoter::GUS induced strong expression of GUS under Fe-deficient conditions in transformed tobacco. In contrast, these promoters only definitely functioned in Arabidopsis transformants. These results suggest that some Fe nutrition-related trans-factors are not compatible between graminaceous plants and Arabidopsis. HvNAS1 promoter::GUS induced GUS activity only in the roots of transformed tobacco under Fe-deficient conditions. On the other hand, OsNAS1 promoter::GUS induced GUS activity in both the roots and shoots of transformed tobacco under conditions of Fe deficiency. In tobacco transformants, the induction of GUS activity was induced earlier in the shoots than roots. These results suggest that the HvNAS1 and OsNAS1 promoters are compatible with Fe-acquisition-related trans-factors in the roots of tobacco and that the OsNAS1 promoter is also compatible with some shoot-specific Fe deficiency-related trans-factors in tobacco.  相似文献   

4.
Rice plants are highly susceptible to Fe-deficiency. Under nutrient deprivation, plant cells undergo extensive metabolic changes for their continued survival. To provide further insight into the pathways induced during Fe-deficiency, rice seedlings were grown for 3, 6 and 9 days in the presence or absence of Fe. Using RDA (Representational Difference Analysis), sequences of 32 induced genes in rice shoots under Fe-deficiency were identified. About 30% of the sequences found have been previously reported as responsive to other abiotic and even biotic stresses. However, this is the first report that indicates their relation to Fe deprivation. Differential expression of selected genes was confirmed by semi-quantitative RT-PCR analysis. The identification of classical senescence-related sequences, such as lipase EC 3.1.1.-, ubiquitin-conjugating enzyme EC 6.3.2.19, beta-Glucosidase EC 3.2.1.21 and cysteine synthase EC 2.5.1.47, besides the higher accumulation of total soluble sugars prior to the decrease of total chlorophyll content in Fe-deficient leaves, indicate that sugar accumulation may be one of the factors leading to premature leaf senescence induced by Fe-deficiency.  相似文献   

5.
6.
7.
8.
In response to Fe-deficiency, various dicots increase their root branching which contributes to the enhancement of ferric-chelate reductase activity. Whether this Fe-deficiency-induced response eventually enhances the ability of the plant to tolerate Fe-deficiency or not is still unclear and evidence is also scarce about the signals triggering it. In this study, it was found that the SPAD-chlorophyll meter values of newly developed leaves of four tomato (Solanum lycocarpum) lines, namely line227/1 and Roza and their two reciprocal F(1) hybrid lines, were positively correlated with their root branching under Fe-deficient conditions. It indicates that Fe-deficiency-induced root branching is critical for plant tolerance to Fe-deficiency. In another tomato line, Micro-Tom, the increased root branching in Fe-deficient plants was accompanied by the elevation of endogenous auxin and nitric oxide (NO) levels, and was suppressed either by the auxin transport inhibitors NPA and TIBA or the NO scavenger cPTIO. On the other hand, root branching in Fe-sufficient plants was induced either by the auxin analogues NAA and 2,4-D or the NO donors NONOate or SNP. Further, in Fe-deficient plants, NONOate restored the NPA-terminated root branching, but NAA did not affect the cPTIO-terminated root branching. Fe-deficiency-induced root branching was inhibited by the NO-synthase (NOS) inhibitor L-NAME, but was not affected by the nitrate reductase (NR) inhibitor NH(4)(+), tungstate or glycine. Taking all of these findings together, a novel function and signalling pathway of Fe-deficiency-induced root branching is presented where NOS-generated rather than NR-generated NO acts downstream of auxin in regulating this Fe-deficiency-induced response, which enhances the plant tolerance to Fe-deficiency.  相似文献   

9.
Zhang  Xike  Zhang  Fusuo  Mao  Daru 《Plant and Soil》1998,202(1):33-39
This solution culture study examined the effect of the deposition of iron plaque on zinc uptake by Fe-deficient rice plants. Different amounts of iron plaque were induced by adding Fe(OH)3 at 0, 10, 20, 30, and 50 mg Fe/L in the nutrient solution. After 24 h of growth, the amount of iron plaque was correlated positively with the Fe(OH)3 addition to the nutrient solution. Increasing iron plaque up to 12.1 g/kg root dry weight increased zinc concentration in shoots by 42% compared to that at 0.16 g/kg root dry weight. Increasing the amount of iron plaque further decreased zinc concentration. When the amounts of iron plaque reached 24.9 g/kg root dry weight, zinc concentration in shoots was lower than that in shoots without iron plaque, implying that the plaque became a barrier for zinc uptake. While rice plants were pre-cultured in –Fe and +Fe nutrient solution in order to produce the Fe-deficient and Fe-sufficient plants and then Fe(OH)3 was added at 20, 30, and 50 mg Fe/L in nutrient solution, zinc concentrations in shoots of Fe-deficient plants were 54, 48, and 43 mg/kg, respectively, in contrast to 32, 35, and 40 mg/kg zinc in shoots of Fe-sufficient rice plants. Furthermore, Fe(OH)3 addition at 20 mg Fe/L and increasing zinc concentration from 0.065 to 0.65 mg Zn/L in nutrient solution increased zinc uptake more in Fe-deficient plants than in Fe-sufficient plant. The results suggested that root exudates of Fe-deficient plants, especially phytosiderophores, could enhance zinc uptake by rice plants with iron plaque up to a particular amount of Fe.  相似文献   

10.
In vitro nicotianamine synthase activity was measured in tobaccounder Fe-deficient or Fe-sufficient conditions. Its activitywas not induced by Fe-deficiency, in contrast to barley roots,implying that the molecular biological regulation of nicotianaminesynthase in response to Fe-deficiency may be different betweentobacco and barley. Key words: Barley, Fe-deficiency, ferric reduction, nicotianamine synthase, tobacco  相似文献   

11.
Fe is an essential mineral element that plants need for their growth. When there is low soil availability of Fe, plants show severe deficiency symptoms. Under Fe-deficiency conditions, plants alter a number of processes to acquire Fe from soil. Genes involved in these mechanisms have been identified from different model plants, including Arabidopsis and rice. Fe transport within plants is also tightly regulated. In this study, we used H9405, a cultivar of rice with high Fe accumulation in seeds, and Yangdao 6, a cultivar with low seed Fe accumulation, to study their responses under different Fe conditions. Our results showed that genes involved in acquisition of Fe from soil in these two cultivars were both up-regulated in roots under Fe-deficiency conditions, and the elevation of the expression was much higher in Yangdao 6 than in H9405. However, remobilization-related genes in shoot vasculature were expressed in an opposite way between the two cultivars. In H9405, the expression of these genes was up-regulated; but in Yangdao 6, their expression was reduced. Our results showed that the differential expression of root-uptake and shoot-remobilization genes in the two cultivars is correlated to the Fe content in roots, shoots, and seeds. Strategies to biofortify rice cultivars with different characteristics were also discussed based on our discovery.  相似文献   

12.
One of the mechanisms through which some strategy I plants respond to Fe-deficiency is an enhanced acidification of the rhizosphere due to proton extrusion. It was previously demonstrated that under Fe-deficiency, a strong increase in the H(+)-ATPase activity of plasma membrane (PM) vesicles isolated from cucumber roots occurred. This result was confirmed in the present work and supported by measurement of ATP-dependent proton pumping in inside-out plasma membrane vesicles. There was also an attempt to clarify the regulatory mechanism(s) which lead to the activation of the H(+)-ATPase under Fe-deficiency conditions. Plasma membrane proteins from Fe-deficient roots submitted to immunoblotting using polyclonal antibodies showed an increased level in the 100 kDa polypeptide. When the plasma membrane proteins were treated with trypsin a 90 kDa band appeared. This effect was accompanied by an increase in the enzyme activity, both in the Fe-deficient and in the Fe-sufficient extracts. These results suggest that the increase in the plasma membrane H(+)-ATPase activity seen under Fe-deficiency is due, at least in part, to an increased steady-state level of the 100 kDa polypeptide.  相似文献   

13.
In-vitro-cultured subclover root can develop Fe-deficiency stress response   总被引:1,自引:0,他引:1  
The Fe-deficiency stress response is induced in most plants under Fe-deficient conditions, but whether the shoot and/or the root control development of the stress response is not known. The objectives of the present study were to determine whether in-vitro-cultured subclover roots can develop Fe-deficiency stress response and to examine this approach as a possible screening technique for Fe-deficiency resistance. One-cm long root tips of subclover seedlings were cultured in modified White's medium without (-Fe) or with (+Fe) 100 μM Fe3+EDTA. Root Fe3+ reduction and H+ release were evaluated. On the first day after transfer to the -Fe medium, the Fe-deficiency-resistant cultivar Koala (Trifolium brachycalycinum Katzn. and Morley) started to release H+, resulting in a decrease in pH of the culture medium, while the susceptible cultivar Karridale (T. subterraneum L.) did not release H+ until the second day. The H+-release rate of the -Fe Koala was approximately twice as high as that of the -Fe Karridale for the first 4 days of -Fe treatment. Both Koala and Karridale reached their highest H+-release rates on the fourth day after -Fe treatment initiation. The +Fe Koala released H+ after several days of culture, but the H+ release of the -Fe Koala was severalfold greater than that of the +Fe Koala. The implicit correlation between H+ release and Fe-deficiency resistance was substantiated by using a series of subclover cultivars with a range of susceptibilities to Fe deficiency. The pH of the -Fe culture media of the series of cultivars was positively correlated to their Fe-chlorosis scores reported in previous research. The results of the present study indicate that root itself has the full ability to develop Fe-deficiency stress response and the response is dependent on the root Fe status. The results also suggest that root culture could be used as a simple and efficient alternative technique for screening germplasm for Fe-deficiency resistance.  相似文献   

14.
Zn and Fe are essential nutritional elements in plants and play important roles in various physiological processes of plants. Zn and Fe are chemically similar to cadmium (Cd); therefore, Zn and Fe may mediate Cd-induced physiological or metabolic changes in plants. In order to evaluate the interaction between Cd, Zn and Fe, we conducted a hydroponics experiment to determine the plant biomass, photosynthetic characteristics, and Cd accumulation of ten ramie cultivars under Zn/Fe-sufficient or Zn/Fe-deficient conditions in the presence of 32 µM CdCl2. Ramie varied among cultivars in morpho-physiological response to Cd stress as well as Cd accumulation, translocation and distribution. Zn and Fe deficiency increased the concentration and amount of Cd in plant organs, but decreased TFstem to leaf and TFroot to stem. Cultivars with more Cd in roots and shoots showed smaller increase in Cd accumulation under Zn and Fe-deficiency stress. Xiangzhu 7 and Duobeiti 1 showed a higher capacity of Cd accumulation in their shoots. Zn and Fe deficiency decreased Pn, but increased Ci, Gs, and E in most cultivars. The difference in Cd translocation among ramie cultivars was mainly ascribed to the difference in plant transpiration.  相似文献   

15.
缺铁是石灰性土壤常见的植物营养问题之一.禾本科植物种或基因型的植物铁载体分泌能力与耐缺铁有关,提高植物铁载体分泌能力是改良缺铁的土壤上植物铁aestivum L.) 3个杂交种及其4个亲本在缺铁营养液中植物铁载体的分泌及杂种的效应.植物铁载体的分泌率通过根分泌物对新形成的Fe(OH)3的活化能力进行测定, 在缺铁症出现时每隔2、3天测定1次.在缺铁条件下,所有基因型都分泌较多的植物铁载体,并且随缺铁症状的发展分泌量增加.杂交种具有对缺铁更敏感的反馈系统,在缺铁条件下,杂交种比亲本分泌铁载体的速度更快、量更高.通过分析杂交种和亲本的关系,认为可以通过对亲本分泌植物铁载体能力和配合力的选择,利用杂种优势来提高小麦铁的利用效率.  相似文献   

16.
The aim of this work was to clarify the role of S supply in the development of the response to Fe depletion in Strategy I plants. In S-sufficient plants, Fe-deficiency caused an increase in the Fe(III)-chelate reductase activity, 59Fe uptake rate and ethylene production at root level. This response was associated with increased expression of LeFRO1 [Fe(III)-chelate reductase] and LeIRT1 (Fe2+ transporter) genes. Instead, when S-deficient plants were transferred to a Fe-free solution, no induction of Fe(III)-chelate reductase activity and ethylene production was observed. The same held true for LeFRO1 gene expression, while the increase in 59Fe2+ uptake rate and LeIRT1 gene over-expression were limited. Sulphur deficiency caused a decrease in total sulphur and thiol content; a concomitant increase in 35SO4 2− uptake rate was observed, this behaviour being particularly evident in Fe-deficient plants. Sulphur deficiency also virtually abolished expression of the nicotianamine synthase gene (LeNAS), independently of the Fe growth conditions. Sulphur deficiency alone also caused a decrease in Fe content in tomato leaves and an increase in root ethylene production; however, these events were not associated with either increased Fe(III)-chelate reductase activity, higher rates of 59Fe uptake or over-expression of either LeFRO1 or LeIRT1 genes. Results show that S deficiency could limit the capacity of tomato plants to cope with Fe-shortage by preventing the induction of the Fe(III)-chelate reductase and limiting the activity and expression of the Fe2+ transporter. Furthermore, the results support the idea that ethylene alone cannot trigger specific Fe-deficiency physiological responses in a Strategy I plant, such as tomato.  相似文献   

17.
[11C]methionine was supplied to Fe-deficient and Fe-sufficient barley plants through a single leaf, and real time 11C movement was monitored using a Positron Emitting Tracer Imaging System (PETIS). In Fe-deficient plants, [11C]methionine was translocated from the tip of the absorbing leaf to the 'discrimination centre' located at the base of the shoot, and then retranslocated to all the chlorotic leaves within 60 min, while a negligible amount was retranslocated to the roots. In Fe-sufficient plants, methionine was translocated to the discrimination centre and then only to the newest leaf on the main shoot within 60 min. A negligible amount was also retranslocated to the roots. In conclusion, methionine from the above-ground parts of a plant is not a precursor of mugineic acid under Fe-deficiency. The discrimination centre is suggested to play a vital role in the distribution of mineral elements and metabolites in graminaceous monocots.Keywords: [11C]methionine, discrimination centre, Fe deficiency, mugineic acid, PETIS.   相似文献   

18.
Plants can exhibit Fe-deficiency stress response when they areexposed to Fe-deficiency conditions. The relative importanceof the individual Fe-deficiency stress-response reactions, forexample, increased release of H+ from roots, enhanced root plasmamembrane-bound Fe3+ -reductase activity, and release of reductant,in Fe-deficiency resistance is not understood. To address thisproblem, the Fe-deficiency stress response of two cultivarsof subterranean clover (subclover), Koala (Trifolium brachycalycinumKatzn. and Morley) (Fe-deficiency resistant) and Karridale (T.subterraneum L.) (Fe-deficiency susceptible), were evaluated.The plants were cultured hydroponically at 0 (–Fe) and30 (+Fe) µM Fe3+ EDTA conditions. After 6 d Fe treatment,the –Fe Koala and Karridale decreased the pH of the nutrientsolution by 1.83 and 0.79 units, respectively, while the +Feplants increased the pH of the nutrient solution. The H+ -releaserate of the –Fe Koala determined 7 d after Fe treatmentinitiation was more than three times higher than that of the–Fe Karridale. The –Fe plants had a significantlyenhanced Fe3+ -reduction rate compared with the +Fe plants foreach cultivar, but the resistant cultivar did not exhibit ahigher root Fe3+ -reduction rate than the susceptible cultivarat each Fe treatment. Reductant release from the roots of subcloverwas negligible. These results indicate that Fe-deficiency-inducedH+ release may be the predominant factor influencing Fe-deficiencyresistance in subclover. Key words: Fe-deficiency, Fe3+ reduction, H+ release, stress response, Trifolium  相似文献   

19.
《Genomics》2020,112(5):3537-3548
DNA methylation governs gene regulation in plants in response to environmental conditions. Here, we analyzed role of DNA methylation under desiccation and salinity stresses in three (IR64, stress-sensitive; Nagina 22, drought-tolerant and Pokkali, salinity-tolerant) rice cultivars via bisulphite sequencing. Methylation in CG context within gene body and methylation in CHH context in distal promoter regions were positively correlated with gene expression. Hypomethylation in Nagina 22 and hypermethylation in Pokkali in response to desiccation and salinity stresses, respectively, were correlated with higher expression of few abiotic stress response related genes. Most of the differentially methylated and differentially expressed genes (DMR-DEGs) were cultivar-specific, suggesting an important role of DNA methylation in abiotic stress responses in rice in cultivar-specific manner. DMR-DEGs harboring differentially methylated cytosines due to DNA polymorphisms between the sensitive and tolerant cultivars in their promoter regions and/or coding regions were identified, suggesting the role of epialleles in abiotic stress responses.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号