首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 899 毫秒
1.
社会性昆虫级型和行为分化机制研究进展   总被引:1,自引:0,他引:1  
张慧  刘倩  黄晓磊 《生物多样性》2021,29(4):507-4231
社会性的出现是生物演化过程中的重要革新, 理解社会性的演化和调控机制具有重要的理论和实际意义。社会性昆虫的个体间有着明显的级型分化和劳动分工, 这有利于它们适应复杂的环境变化。理解社会性昆虫如何产生不同的形态、行为和生活史特性, 一直是进化和发育生物学的重要目标。随着测序技术的不断更新及生物信息学的快速发展, 已经有众多关于社会性昆虫级型和行为分化机制的研究报道。本文通过整理社会性昆虫研究的已有成果, 从环境因素、生理调控和分子机制等方面对社会性昆虫级型和行为分化机制相关研究进展进行了综述, 并对未来的研究方向做出了展望。根据现有证据, 社会性昆虫所生活的生物环境(食物营养、信息素、表皮碳氢化合物)和非生物环境(温度、气候等)均能直接或间接影响社会性昆虫级型和行为的分化; 保幼激素、蜕皮激素、类胰岛素及生物胺等内分泌激素和神经激素对社会性昆虫的级型和行为分化也有重要的调控作用; 此外, 遗传因素、新基因等DNA序列或基因组结构上的变化以及表观遗传修饰、基因的差异表达等基因调控机制均能不同程度地影响社会性昆虫的行为分化。本文建议加强昆虫纲其他社会性类群如半翅目蚜虫和缨翅目蓟马等的社会性行为及其演化机制的研究, 以加深对社会性昆虫起源及其行为演化的理解和认识。  相似文献   

2.
Understanding how a single genome can produce a variety of different phenotypes is of fundamental importance in evolutionary and developmental biology. One of the most striking examples of phenotypic plasticity is the female caste system found in eusocial insects, where variation in reproductive (queens) and non-reproductive (workers) phenotypes results in a broad spectrum of caste types, ranging from behavioural through to morphological castes. Recent advances in genomic techniques allow novel comparisons on the nature of caste phenotypes to be made at the level of the genes in organisms for which there is little genome information, facilitating new approaches in studying social evolution and behaviour. Using the paper wasp Polistes canadensis as a model system, we investigated for the first time how behavioural castes in primitively eusocial insect societies are associated with differential expression of shared genes. We found that queens and newly emerged females express gene expression patterns that are distinct from each other whilst workers generally expressed intermediate patterns, as predicted by Polistes biology. We compared caste-associated genes in P. canadensis with those expressed in adult queens and workers of more advanced eusocial societies, which represent four independent origins of eusociality. Nine genes were conserved across the four taxa, although their patterns of expression and putative functions varied. Thus, we identify several genes that are putatively of evolutionary importance in the molecular biology that underlies a number of caste systems of independent evolutionary origin.  相似文献   

3.
Although numerous imprinted genes have been described in several lineages, the phenomenon of genomic imprinting presents a peculiar evolutionary problem. Several hypotheses have been proposed to explain gene imprinting, the most supported being Haig's kinship theory. This theory explains the observed pattern of imprinting and the resulting phenotypes as a competition for resources between related individuals, but despite its relevance it has not been independently tested. Haig's theory predicts that gene imprinting should be present in eusocial insects in many social scenarios. These lineages are therefore ideal for testing both the theory's predictions and the mechanism of gene imprinting. Here we review the behavioral evidence of genomic imprinting in eusocial insects, the evidence of a mechanism for genomic imprinting and finally we evaluate recent results showing parent of origin allele specific expression in honeybees in the light of Haig's theory.  相似文献   

4.
The sophisticated colony organization of eusocial insects is primarily maintained through the utilization of pheromones. The regulation of these complex social interactions requires intricate chemoreception systems. The recent publication of the genome of Zootermopsis nevadensis opened a new avenue to study molecular basis of termite caste systems. Although there has been a growing interest in the termite chemoreception system that regulates their sophisticated caste system, the relationship between division of labor and expression of chemoreceptor genes remains to be explored. Using high-throughput mRNA sequencing (RNA-seq), we found several chemoreceptors that are differentially expressed among castes and between sexes in a subterranean termite Reticulitermes speratus. In total, 53 chemoreception-related genes were annotated, including 22 odorant receptors, 7 gustatory receptors, 12 ionotropic receptors, 9 odorant-binding proteins, and 3 chemosensory proteins. Most of the chemoreception-related genes had caste-related and sex-related expression patterns; in particular, some chemoreception genes showed king-biased or queen-biased expression patterns. Moreover, more than half of the genes showed significant age-dependent differences in their expression in female and/or male reproductives. These results reveal a strong relationship between the evolution of the division of labor and the regulation of chemoreceptor gene expression, thereby demonstrating the chemical communication and underlining chemoreception mechanism in social insects.  相似文献   

5.
Eusocial insects display a caste system in which different castes are morpho-logically and physiologically specialized for different tasks.Recent studies have revealed that epigenetic modifications,including DNA methylation and histone modification,me-diate caste determination and differentiation,longevity,and polyethism in eusocial insects.Although there has been a growing interest in the relationship between epigenetic mech-anisms and phenotypic plasticity in termites,there is ltte information about differential expression levels among castes and expression sites for these genes in termites.Here we show royaltissuc-specific expression of epigenetic modification genes in the termite Reticulitermes speratus.Using RNA-seq,we identified 74 genes,including three DNA methyltransferases,seven sirtuins,48 Trithorax group proteins,and 16 Polycomb group proteins.Among these genes,15 showed king-specific expression,and 52 showed age-dependent differential expression in kings and queens.Quantitative real-time PCR revealed that DNA methyltransferase 3 is expressed specifically in the king's testis and fat body,whereas some histone modification genes are remarkably expressed in the king's testis and queen's ovary.These findings imply that epigenetic modification plays important roles in the gamete production process in termite kings and queens.  相似文献   

6.
Abstract.— Interspecific hybridization can often impose a substantial fitness cost due to reduced hybrid viability or fecundity. In social insects, however, such costs disproportionately impact reproductive offspring, whereas hybrids who become sterile workers can be functional, and even beneficial, colony members. Genomic imprinting of the paternal genome in reproductive, but not worker female offspring has been proposed as a mechanism to avoid genomic incompatibilities in hybrid queens in a hybrid zone between two fire ant species, Solenopsis geminata and S. xyloni. A study of allozyme variation demonstrated differences between the worker caste displaying a hybrid phenotype, and the winged queen caste displaying only the mother's phenotype. In this study, we investigate whether these differences are caused by genomic imprinting or genetic differences between castes by comparing variability of proteins to that of microsatellite markers. Workers and winged queens differed genetically at both classes of marker, indicating that allozyme differences were caused by underlying genetic differences between castes rather than differences in gene expression due to imprinting. Workers were F1 S. geminata X S. xyloni hybrids, whereas nearly all winged queens were of pure S. xyloni ancestry. Thus, S. xyloni within the hybrid zone appears to have evolved social hybridogenesis, in which the loss of worker potential in pure-species offspring necessitates hybridization for worker production, but prevents hybrids from being represented in the reproductive caste.  相似文献   

7.
蜜蜂级型分化机理   总被引:1,自引:0,他引:1  
蜜蜂Apis spp.能有效地为多种植物及农作物授粉, 具有重要的经济和生态价值; 蜜蜂作为高度真社会性昆虫, 已成为社会生物学研究的模式生物。社会性昆虫的生殖劳动分工具有重要的进化意义, 而级型分化是形成生殖劳动分工的基础。近年来, 关于蜜蜂级型分化的研究已取得诸多重要成果, 其机理也得到了较为深入的阐释。营养差异引发蜜蜂幼虫的级型分化。蜂王浆中的主要蛋白组分之一--Royalactin是诱导蜂王发育的关键营养因子, 而脂肪体细胞的表皮生长因子受体介导了Royalactin的这种蜂王诱导作用。DNA甲基化是重要的表观遗传机制之一, 且与个体发育和疾病发生紧密相关, 近来的研究表明DNA甲基化在蜜蜂级型分化过程中发挥重要的调控作用。此外, 越来越多的研究进一步深化了人们对内分泌系统调节级型分化作用的认识。本文从关键营养因子调控、 表观遗传调控和内分泌调节3方面综述蜜蜂级型分化的机理, 并对未来的研究提出可能的方向。  相似文献   

8.
Caste systems and the division of labor they make possible are common underlying features of all social insects. Multiple extrinsic factors have been shown to impact caste composition in social insect colonies. Primer pheromones are one type of extrinsic caste-regulatory factor; they are chemical signaling molecules produced by certain colony members to impact developmental physiology of recipient nestmates. However, only limited evidence exists regarding primer pheromones and their actions in eusocial termites. In previous research we identified two soldier-produced terpenes, γ-cadinene (CAD) and γ-cadinenal (ALD), as candidate primer pheromones of the lower termite Reticulitermes flavipes. In the present study we tested hypotheses related to CAD and ALD action in recipient individuals. We examined the influences of terminally developed soldier termites on (1) CAD and ALD levels and (2) caste differentiation in developmentally totipotent workers. Our findings show CAD and ALD (respectively) are caste stimulatory and inhibitory components of chemical blends present in soldier heads, ALD levels increase significantly (10.9×) in workers only in the presence of soldiers, and soldiers can reduce developmental-hormone response thresholds of workers, presumably via ALD action. These findings provide novel evidence supporting that CAD and ALD are authentic caste-regulatory primer pheromones in Reticulitermes.  相似文献   

9.
Juvenile hormone (JH) has an important role in the behavior of eusocial Hymenoptera. Previous work has shown that JH influences aggression and dominance behavior in primitive eusocial insects that lack discrete queen and worker castes (e.g. Bombus bees and Polistes wasps). In contrast, JH is one of the factors that mediates temporal polyethism among workers in advanced eusocial insects that have reproductive castes (e.g. Apis bees and Polybiawasps). Therefore, initial observations suggest that JH may have different roles in primitive and advanced eusocial taxa. Here, we use detailed behavioral observations of marked individuals to test whether JH influences temporal polyethism in the primitive eusocial wasp Polistes dominulus. First, we show that workers in P. dominulus have an age-related division of labor, as workers switch from nest work to foraging as they mature. Then, we show that application of JH accelerates the onset of foraging behavior.Workers treated with JH start foraging at a younger age than control workers. Therefore, JH mediates temporal polyethism in the primitively eusocial insect Polistes dominulus. Received 23 April 2008; revised 6 August 2008; accepted 11 August 2008  相似文献   

10.
The breeding and non‐breeding ‘castes’ of eusocial insects provide a striking example of role‐specific selection, where each caste maximises fitness through different morphological, behavioural and physiological trait values. Typically, queens are long‐lived egg‐layers, while workers are short‐lived, largely sterile foragers. Remarkably, the two castes are nevertheless produced by the same genome. The existence of inter‐caste genetic correlations is a neglected consequence of this shared genome, potentially hindering the evolution of caste dimorphism: alleles that increase the productivity of queens may decrease the productivity of workers and vice versa, such that each caste is prevented from reaching optimal trait values. A likely consequence of this ‘intralocus caste antagonism’ should be the maintenance of genetic variation for fitness and maladaptation within castes (termed ‘caste load’), analogous to the result of intralocus sexual antagonism. The aim of this review is to create a research framework for understanding caste antagonism, drawing in part upon conceptual similarities with sexual antagonism. By reviewing both the social insect and sexual antagonism literature, we highlight the current empirical evidence for caste antagonism, discuss social systems of interest, how antagonism might be resolved, and challenges for future research. We also introduce the idea that sexual and caste antagonism could interact, creating a three‐way antagonism over gene expression. This includes unpacking the implications of haplodiploidy for the outcome of this complex interaction.  相似文献   

11.
Variation in gene expression leads to phenotypic diversity and plays a central role in caste differentiation of eusocial insect species. In social Hymenoptera, females with the same genetic background can develop into queens or workers, which are characterized by divergent morphologies, behaviours and lifespan. Moreover, many social insects exhibit behaviourally distinct worker castes, such as brood‐tenders and foragers. Researchers have just started to explore which genes are differentially expressed to achieve this remarkable phenotypic plasticity. Although the queen is normally the only reproductive individual in the nest, following her removal, young brood‐tending workers often develop ovaries and start to reproduce. Here, we make use of this ability in the ant Temnothorax longispinosus and compare gene expression patterns in the queens and three worker castes along a reproductive gradient. We found the largest expression differences between the queen and the worker castes (~2500 genes) and the smallest differences between infertile brood‐tenders and foragers (~300 genes). The expression profile of fertile workers is more worker‐like, but to a certain extent intermediate between the queen and the infertile worker castes. In contrast to the queen, a high number of differentially expressed genes in the worker castes are of unknown function, pointing to the derived status of hymenopteran workers within insects.  相似文献   

12.
Increases in DNA content caused by endoreduplication are widely observed in the metabolically active tissues of plants and animals. During egg production, insect females synthesize very large amounts of vitellogenin in their fat bodies, and female fat bodies of some insects become polyploid to accelerate vitellogenin production. Social insects have developed reproductive division of labor, wherein queens lay most of the eggs while other individuals have reduced fertility and undertake tasks required for maintaining the colony. Therefore, only queens are engaged in vitellogenin synthesis for egg production in social insects. Here, we show that termite queens have disproportionately more DNA in their fat body cells. Our DNA content analysis using flow cytometry demonstrated that more cells contained 4C‐DNA than 2C‐DNA in the fat bodies of Reticulitermes speratus queens. This high level of endoreduplication was not found in the fat body cells of other castes. This caste‐dependent doubling of DNA content in fat body cells suggests that termites exploit endoreduplication to boost egg production, in conjunction with the development of reproductive division of labor. This study highlights nuclear polyploidization as an adaptive strategy in social insects.  相似文献   

13.
Morpurgo G  Babudri N  Fioretti B  Catacuzzeno L 《Genetica》2010,138(11-12):1111-1117
The role of haplodiploidy in the evolution of eusocial insects and why in Hymenoptera males do not perform any work is presently unknown. We show here that within-colony conflict caused by the coexistence of individuals of the same caste expressing the same character in different ways can be fundamental in the evolution of social characters in species that have already reached the eusocial condition. Mosaic colonies, composed by individuals expressing either the wild-type or a mutant phenotype, inevitably occurs during the evolution of advantageous social traits in insects. We simulated the evolution of an advantageous social trait increasing colony fitness in haplodiploid and diplodiploid species considering all possible conditions, i.e. dominance/recessivity of the allele determining the new social character, sex of the castes, and influence of mosaicism on the colony fitness. When mosaicism lowered colony fitness below that of the colony homogeneous for the wild type allele, the fixation of an advantageous social character was possible only in haplodiploids with female castes. When mosaicism caused smaller reductions in colony fitness, reaching frequencies of 90% was much faster in haplodiploids with female castes and dominant mutations. Our results suggest that the evolution of social characters is easier in haplodiploid than in diplodiploid species, provided that workers are females.  相似文献   

14.
Eusocial species exhibit pronounced division of labor, most notably between reproductive and non-reproductive castes, but also within non-reproductive castes via morphological specialization and temporal polyethism. For species with distinct worker and queen castes, age-related differences in behavior among workers (e.g. within-nest tasks versus foraging) appear to result from physiological changes such as decreased lipid content. However, we know little about how labor is divided among individuals in species that lack a distinct queen caste. In this study, we investigated how fat storage varied among individuals in a species of ant (Dinoponera australis) that lacks a distinct queen caste and in which all individuals are morphologically similar and capable of reproduction (totipotent at birth). We distinguish between two hypotheses, 1) all individuals are physiologically similar, consistent with the possibility that any non-reproductive may eventually become reproductive, and 2) non-reproductive individuals vary in stored fat, similar to highly eusocial species, where depletion is associated with foraging and non-reproductives have lower lipid stores than reproducing individuals. Our data support the latter hypothesis. Location in the nest, the probability of foraging, and foraging effort, were all associated with decreased fat storage.  相似文献   

15.
Social castes of eusocial insects may have arisen through an evolutionary modification of an ancestral reproductive ground plan, such that some adults emerge from development physiologically primed to specialize on reproduction (queens) and others on maternal care expressed as allo-maternal behaviour (workers). This hypothesis predicts that variation in reproductive physiology should emerge from ontogeny and underlie division of labour. To test these predictions, we identified physiological links to division of labour in a facultatively eusocial sweat bee, Megalopta genalis. Queens are larger, have larger ovaries and have higher vitellogenin titres than workers. We then compared queens and workers with their solitary counterparts-solitary reproductive females and dispersing nest foundresses-to investigate physiological variation as a factor in caste evolution. Within dyads, body size and ovary development were the best predictors of behavioural class. Queens and dispersers are larger, with larger ovaries than their solitary counterparts. Finally, we raised bees in social isolation to investigate the influence of ontogeny on physiological variation. Body size and ovary development among isolated females were highly variable, and linked to differences in vitellogenin titres. As these are key physiological predictors of social caste, our results provide evidence for developmental caste-biasing in a facultatively eusocial bee.  相似文献   

16.
Some parasitoid wasps possess soldier castes during their parasitic larval stage, but are often neglected from our evolutionary theories explaining caste systems in animal societies. This is primarily due to the polyembryonic origin of their societies. However, recent discoveries of polyembryonic trematodes (i.e. flatworms) possessing soldier castes require us to reconsider this reasoning. I argue we can benefit from including these polyembryonic parasites in eusocial discussions, for polyembryony and parasitism are taxonomically vast and influence the evolution of social behaviours and caste systems in various circumstances. Despite their polyembryony, their social evolution can be explained by theories of eusociality designed for parent–offspring groups, which are the subjects of most social evolution research. Including polyembryonic parasites in these theories follows the trend of major evolutionary transitions theory expanding social evolution research into all levels of biological organization. In addition, these continued discoveries of caste systems in parasites suggest social evolution may be more relevant to parasitology than currently acknowledged.  相似文献   

17.
The process of reproductive caste determination in eusocial insect colonies is generally understood to be mediated by environmental, rather than genetic factors. We present data demonstrating unexpected genetic differences between reproductive castes in a variant of the rough harvester ant, Pogonomyrmex rugosus var. fuscatus. Across multiple loci, queens were consistently more homozygous than expected, while workers were more heterozygous. Adult colony queens were divided into two highly divergent genetic groups, indicating the presence of two cryptic species, rather than a single population. The observed genetic differences between castes reflect differential representation of heterospecific and conspecific patrilines in these offspring groups. All workers were hybrids; by contrast, winged queens were nearly all pure-species. The complete lack of pure-species workers indicates a loss of worker potential in pure-species female offspring. Hybrids appear to be bipotential, but do not normally develop into reproductives because they are displaced by pure-species females in the reproductive pool. Genetic differences between reproductive castes are expected to be rare in non-hybridizing populations, but within hybrid zones they may be evolutionarily stable and thus much more likely to occur.  相似文献   

18.
The making of a social insect: developmental architectures of social design   总被引:11,自引:0,他引:11  
We marvel at the social complexity of insects, marked by anatomically and behaviorally distinguishable castes, division of labor and specialization—but how do such systems evolve? Insect societies are composed of individuals, each undergoing its own developmental process and each containing its own genetic information and experiencing its own developmental and experiential environment. Yet societies appear to function as if the colonies themselves are individuals with novel “social genes” and novel social developmental processes. We propose an alternative hypothesis. The origins of complex social behavior, from which insect societies emerge, are derived from ancestral developmental programs. These programs originated in ancient solitary insects and required little evolutionary remodeling. We present evidence from behavioral assays, selective breeding, genetic mapping, functional genomics and endocrinology, and comparative anatomy and physiology. These insights explain how complex social behavior can evolve from heterochronic changes in reproductive signaling systems that govern ubiquitous and ancient relationships between behavior and ovarian development. BioEssays 29:334–343, 2007. © 2007 Wiley Periodicals, Inc.  相似文献   

19.
20.
Caste differentiation and reproductive division of labor are the hallmarks of insect societies. In ants and other social Hymenoptera, development of female larvae into queens or workers generally results from environmentally induced differences in gene expression. However, several cases in which certain gene combinations may determine reproductive status have been described in bees and ants. We investigated experimentally whether genotype directly influences caste determination in two populations of Pogonomyrmex harvester ants in which genotype-caste associations have been observed. Each population contains two genetic lineages. Queens are polyandrous and mate with males of both lineages , but in mature colonies, over 95% of daughter queens have a pure-lineage genome, whereas all workers are of F1 interlineage ancestry. We found that this pattern is maintained throughout the colony life cycle, even when only a single caste is being produced. Through controlled crosses, we demonstrate that pure-lineage eggs fail to develop into workers even when interlineage brood are not present. Thus, environmental caste determination in these individuals appears to have been lost in favor of a hardwired genetic mechanism. Our results reveal that genetic control of reproductive fate can persist without loss of the eusocial caste structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号