首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The microbial communities of fish are considered an integral part of maintaining the overall health and fitness of their host. Research has shown that resident microbes reside on various mucosal surfaces, such as the gills, skin, and gastrointestinal tract, and play a key role in various host functions, including digestion, immunity, and disease resistance. A second, more transient group of microbes reside in the digesta, or feces, and are primarily influenced by environmental factors such as the host diet. The vast majority of fish microbiome research currently uses lethal sampling to analyse any one of these mucosal and/or digesta microbial communities. The present paper discusses the various opportunities that non-lethal microbiome sampling offers, as well as some inherent challenges, with the ultimate goal of creating a sound argument for future researchers to transition to non-lethal sampling of wild fish in microbiome research. Doing so will reduce animal welfare and population impacts on fish while creating novel opportunities to link host microbial communities to an individual's behavior and survival across space and time (e.g., life-stages, seasons). Current lethal sampling efforts constrain our ability to understand the mechanistic ecological consequences of variation in microbiome communities in the wild. Transitioning to non-lethal sampling will open new frontiers in ecological and microbial research.  相似文献   

2.
The development of high-throughput sequencing technologies has transformed our capacity to investigate the composition and dynamics of the microbial communities that populate diverse habitats. Over the past decade, these advances have yielded an avalanche of metagenomic data. The current stage of “van Leeuwenhoek”–like cataloguing, as well as functional analyses, will likely accelerate as DNA and RNA sequencing, plus protein and metabolic profiling capacities and computational tools, continue to improve. However, it is time to consider: what’s next for microbiome research? The short pieces included here briefly consider the challenges and opportunities awaiting microbiome research.
This Perspective is part of the “Where next?” Series.
Soon, we will enter an era when “the number of population genomes deposited in public databases will dwarf those from isolates and single cells” (Gene Tyson). Clearly, as all authors noted in the following, our focus will move from describing the composition of microbial communities to elucidating the principles that govern their assembly, dynamics, and functions. How will such principles be discovered? Elhanan Borenstein proposes that a systems biology–based approach, particularly the development of mathematical and computational models of the interactions between the specific community components, will be critical for understanding the function and dynamics of microbiomes. Evolutionary biologists Howard Ochman and Andrew Moeller want to decipher how microbial assemblies evolve but challenge us to also consider the role of microbial communities in organismal evolution, and they make the exciting prediction that microbes will be implicated in the evolution of eusociality and cooperation. Brett Finlay underscores the need for deciphering the mechanistic bases—particularly the chemical/metabolite signals—for interactions between members of microbial communities and their hosts. He emphasizes how this knowledge will enable creation of new tools to manipulate the microbiota, a key challenge for future investigation. Heidi Kong also encourages deciphering the mechanisms that underlie associations between particular skin surfaces and disorders and their respective microbiota. Jeffrey Gordon considers several intriguing opportunities as well as challenges that manipulation of the gut microbiota presents for improved human nutrition and health. Finally, Karen Nelson, Karim Dabbagh and Hamilton Smith suggest that using synthetic genomes to create novel microbes or even synthetic microbiomes offers a new way to engineer the microbiota. Overall, future microbiome research regarding the molecules and mechanisms mediating interactions between members of microbial communities and their hosts should lead to discovery of exciting new biology and transformative therapeutics.  相似文献   

3.
经过人工富集和驯化的兼性和严格厌氧微生物是厌氧消化工艺的核心。不同厌氧消化体系中存在的问题大多可以通过改变微生物群落的代谢活性来得到有效改善。得益于微生物组学检测技术的快速发展,对厌氧消化系统中微生物多样性的认识获得了极大的拓展,同时在微生物类群间、微生物与环境的互作关系研究方面也取得了一系列新的进展。然而,有机固废厌氧消化系统中,各种微生物以及微生物和物质的相互作用构成了更为复杂的代谢网络,所以目前对这些互作关系的解析尚不完善。本文重点关注了厌氧消化过程中的典型菌群互作关系,阐述了典型有机固废厌氧消化系统中存在的问题及微生物在其中发挥的作用,最后,立足于现有组学技术推动的微生物组研究进展,对未来有机固废厌氧消化系统微生物组的研究提出展望。  相似文献   

4.
What microbiology beholds after a decade and a half in the future requires a vision based on the facts and ongoing trends in research and technological advancements. While the latter, assisted by microbial dark matter, presents a greater potential of creating an upsurge in in-situ and ex-situ rapid microbial detection techniques, this anticipated change will also set forth a revolution in microbial cultivation and diversity analyses. The availability of a microbial genetic toolbox at the expanse will help complement the current understanding of the microbiome and assist in real-time monitoring of the dynamics for detecting the health status of the host with utmost precision. Alongside, in light of the emerging infectious diseases, antimicrobial resistance (AMR) and social demands for safer and better health care alternatives, microbiology laboratories are prospected to drift in terms of the volume and nature of research and outcomes. With today’s microbiological lens, one can predict with certainty that in the years to come, microbes will play a significant role in therapeutic treatment and the designing of novel diagnostic techniques. Another area where the scope of microbial application seems to be promising is the use of novel probiotics as a method to offer health benefits whilst promoting metabolic outputs specific for microbiome replenishment. Nonetheless, the evolution of extraterrestrial microbes or the adaptation of earth microbes as extraterrestrial residents are also yet another prominent microbial event one may witness in the upcoming years. But like the two sides of the coin, there is also an urgent need to dampen the bloom of urbanization, overpopulation and global trade and adopting sustainable approaches to control the recurrence of epidemics and pandemics.  相似文献   

5.
Multiple internal and external sites of the healthy human body are colonized by a diversity of symbiotic microbes. The microbial assemblages found in the intestine represent some of the most dense and diverse of these human-associated ecosystems. Unsurprisingly, the enteric microbiome, that is the totality of microbes, their combined genomes, and their interactions with the human body, has a profound impact on physiological aspects of mammalian function, not least, host immune response. Lack of early-life exposure to certain microbes, or shifts in the composition of the gastrointestinal microbiome have been linked to the development and progression of several intestinal and extra-intestinal diseases, including childhood asthma development and inflammatory bowel disease. Modulating microbial exposure through probiotic supplementation represents a long-held strategy towards ameliorating disease via intestinal microbial community restructuring. This field has experienced somewhat of a resurgence over the past few years, primarily due to the exponential increase in human microbiome studies and a growing appreciation of our dependence on resident microbiota to modulate human health. This review aims to review recent regulatory aspects related to probiotics in food. It also summarizes what is known to date with respect to human gastrointestinal microbiota - the niche which has been most extensively studied in the human system - and the evidence for probiotic supplementation as a viable therapeutic strategy for modulating this consortium.  相似文献   

6.
Submarine hydrothermal vents perturb the deep-ocean microbiome by injecting reduced chemical species into the water column that act as an energy source for chemosynthetic organisms. These systems thus provide excellent natural laboratories for studying the response of microbial communities to shifts in marine geochemistry. The present study explores the processes that regulate coupled microbial-geochemical dynamics in hydrothermal plumes by means of a novel mathematical model, which combines thermodynamics, growth and reaction kinetics, and transport processes derived from a fluid dynamics model. Simulations of a plume located in the ABE vent field of the Lau basin were able to reproduce metagenomic observations well and demonstrated that the magnitude of primary production and rate of autotrophic growth are largely regulated by the energetics of metabolisms and the availability of electron donors, as opposed to kinetic parameters. Ambient seawater was the dominant source of microbes to the plume and sulphur oxidisers constituted almost 90% of the modelled community in the neutrally-buoyant plume. Data from drifters deployed in the region allowed the different time scales of metabolisms to be cast in a spatial context, which demonstrated spatial succession in the microbial community. While growth was shown to occur over distances of tens of kilometers, microbes persisted over hundreds of kilometers. Given that high-temperature hydrothermal systems are found less than 100 km apart on average, plumes may act as important vectors between different vent fields and other environments that are hospitable to similar organisms, such as oil spills and oxygen minimum zones.  相似文献   

7.
Kelp are important primary producers that are colonized by diverse microbes that can have both positive and negative effects on their hosts. The kelp microbiome could support the burgeoning kelp cultivation sector by improving host growth, stress tolerance, and resistance to disease. Fundamental questions about the cultivated kelp microbiome still need to be addressed before microbiome-based approaches can be developed. A critical knowledge gap is how cultivated kelp microbiomes change as hosts grow, particularly following outplanting to sites that vary in abiotic conditions and microbial source pools. In this study we assessed if microbes that colonize kelp in the nursery stage persist after outplanting. We characterized microbiome succession over time on two species of kelp, Alaria marginata and Saccharina latissima, outplanted to open ocean cultivation sites in multiple geographic locations. We tested for host-species specificity of the microbiome and the effect of different abiotic conditions and microbial source pools on kelp microbiome stability during the cultivation process. We found the microbiome of kelp in the nursery is distinct from that of outplanted kelp. Few bacteria persisted on kelp following outplanting. Instead, we identified significant microbiome differences correlated with host species and microbial source pools at each cultivation site. Microbiome variation related to sampling month also indicates that seasonality in host and/or abiotic factors may influence temporal succession and microbiome turnover in cultivated kelps. This study provides a baseline understanding of microbiome dynamics during kelp cultivation and highlights research needs for applying microbiome manipulation to kelp cultivation.  相似文献   

8.
Human associated microbial communities exert tremendous influence over human health and disease. With modern metagenomic sequencing methods it is now possible to follow the relative abundance of microbes in a community over time. These microbial communities exhibit rich ecological dynamics and an important goal of microbial ecology is to infer the ecological interactions between species directly from sequence data. Any algorithm for inferring ecological interactions must overcome three major obstacles: 1) a correlation between the abundances of two species does not imply that those species are interacting, 2) the sum constraint on the relative abundances obtained from metagenomic studies makes it difficult to infer the parameters in timeseries models, and 3) errors due to experimental uncertainty, or mis-assignment of sequencing reads into operational taxonomic units, bias inferences of species interactions due to a statistical problem called “errors-in-variables”. Here we introduce an approach, Learning Interactions from MIcrobial Time Series (LIMITS), that overcomes these obstacles. LIMITS uses sparse linear regression with boostrap aggregation to infer a discrete-time Lotka-Volterra model for microbial dynamics. We tested LIMITS on synthetic data and showed that it could reliably infer the topology of the inter-species ecological interactions. We then used LIMITS to characterize the species interactions in the gut microbiomes of two individuals and found that the interaction networks varied significantly between individuals. Furthermore, we found that the interaction networks of the two individuals are dominated by distinct “keystone species”, Bacteroides fragilis and Bacteroided stercosis, that have a disproportionate influence on the structure of the gut microbiome even though they are only found in moderate abundance. Based on our results, we hypothesize that the abundances of certain keystone species may be responsible for individuality in the human gut microbiome.  相似文献   

9.
The interest in the working and functionality of the human gut microbiome has increased drastically over the years. Though the existence of gut microbes has long been speculated for long over the last few decades, a lot of research has sprung up in studying and understanding the role of gut microbes in the human digestive tract. The microbes present in the gut are highly instrumental in maintaining the metabolism in the body. Further research is going on in this field to understand how gut microbes can be employed as potential sources of novel therapeutics; moreover, probiotics have also elucidated their significant place in this direction. As regards the clinical perspective, microbes can be engineered to afford defence mechanisms while interacting with foreign pathogenic bodies. More investigations in this field may assist us to evaluate and understand how these cells communicate with human cells and promote immune interactions. Here we elaborate on the possible implication of human gut microbiota into the immune system as well as explore the probiotics in the various human ailments. Comprehensive information on the human gut microbiome at the same platform may contribute effectively to our understanding of the human microbiome and possible mechanisms of associated human diseases.  相似文献   

10.
The root microbiome refers to the community of microbes living in association with a plant's roots, and includes mutualists, pathogens, and commensals. Here we focus on recent advances in the study of root commensal community which is the major research object of microbiome-related researches. With the rapid development of new technologies, plant–commensal interactions can be explored with unprecedented breadth and depth. Both the soil environment and the host plant drive commensal community assembly. The bulk soil is the seed bank of potential commensals, and plants use root exudates and immune responses to build healthy microbial communities from the available microbes. The plant microbiome extends the functional system of plants by participating in a variety of processes, including nutrient absorption, growth promotion, and resistance to biotic and abiotic stresses. Plants and their microbiomes have evolved adaptation strategies over time. However, there is still a huge gap in our understanding of the regulatory mechanisms of plant–commensal interactions. In this review, we summarize recent research on the assembly of root microbial communities and the effects of these communities on plant growth and development, and look at the prospects for promoting sustainable agricultural development through the study of the root microbiome.  相似文献   

11.
The vertical transmission of microbes from mother to offspring is critical to the survival, development, and health of animals. Invertebrate systems offer unique opportunities to conduct studies on microbiome‐development‐reproduction dynamics since reproductive modes ranging from oviparity to multiple types of viviparity are found in these animals. One such invertebrate is the live‐bearing cockroach, Diploptera punctata. Females carry embryos in their brood sac, which acts as the functional equivalent of the uterus and placenta. In our study, 16S rRNA sequencing was used to characterize maternal and embryonic microbiomes as well as the development of the whole‐body microbiome across nymphal development. We identified 50 phyla and 121 classes overall and found that mothers and their developing embryos had significantly different microbial communities. Of particular interest is the notable lack of diversity in the embryonic microbiome, which is comprised exclusively of Blattabacteria, indicating microbial transmission of only this symbiont during gestation. Our analysis of postnatal development reveals that significant amounts of non‐Blattabacteria species are not able to colonize newborn D. punctata until melanization, after which the microbial community rapidly and dynamically diversifies. While the role of these microbes during development has not been characterized, Blattabacteria must serve a critical role providing specific micronutrients lacking in milk secretions to the embryos during gestation. This research provides insight into the microbiome development, specifically with relation to viviparity, provisioning of milk‐like secretions, and mother–offspring interactions during pregnancy.  相似文献   

12.
In this review, we discuss the connections between mitochondria and the gut microbiome provided by reactive oxygen species (ROS). We examine the mitochondrion as an endosymbiotic organelle that is a hub for energy production, signaling, and cell homeostasis. Maintaining a diverse gut microbiome is generally associated with organismal fitness, intestinal health and resistance to environmental stress. In contrast, gut microbiome imbalance, termed dysbiosis, is linked to a reduction in organismal well-being. ROS are essential signaling molecules but can be damaging when present in excess. Increasing ROS levels have been shown to influence human health, homeostasis of gut cells, and the gastrointestinal microbial community's biodiversity. Reciprocally, gut microbes can affect ROS levels, mitochondrial homeostasis, and host health. We propose that mechanistic understanding of the suite of bi-directional interactions between mitochondria and the gut microbiome will facilitate innovative interdisciplinary studies examining evolutionary divergence and provide novel treatments and therapeutics for disease.GlossIn this review, we focus on the nexus between mitochondria and the gut microbiome provided by reactive oxygen species (ROS). Mitochondria are a cell organelle that is derived from an ancestral alpha-proteobacteria. They generate around 80% of the adenosine triphosphate that an organism needs to function and release a range of signaling molecules essential for cellular homeostasis. The gut microbiome is a suite of microorganisms that are commensal, symbiotic and pathogenic to their host. ROS are one predominant group of essential signaling molecules that can be harmful in excess. We suggest that the mitochondria- microbiome nexus is a frontier of research that has cross-disciplinary benefits in understanding genetic divergence and human well-being.  相似文献   

13.
土壤微生物拥有高度多样化的群落结构,其通过与植物发生复杂的相互作用影响植物健康,也被称为植物的第二基因组。最近研究表明植物能通过改变根际分泌物的组成影响根际微生物群落的组装,反之,根际微生物群落组成的改变能够通过影响植物营养吸收和抵御生物及非生物胁迫的能力影响植物健康。除此之外,农艺管理也是影响土壤微生物群落组装方式的重要因素。但到目前为止,根际微生物与宿主植物及土壤微生物之间互作机制的研究尚不清楚。本文将从农艺管理和宿主植物对微生物群落组装的影响及根际微生物组对植物健康的影响进行总结,为增加作物产量提供机会。  相似文献   

14.
反刍动物胃肠道微生物多样性研究进展   总被引:2,自引:0,他引:2  
反刍动物胃肠道中庞大而复杂的微生物群落对饲料利用和宿主自身代谢有深远的影响。胃肠道微生物群落在亚种或菌株水平上表现出极大的多样性。研究反刍动物胃肠道微生物多样性有助于了解其结构、功能、影响因素以及可能的调控措施。但是,80%~90%的胃肠道微生物仍然无法培养,构成了反刍动物胃肠道微生物研究的瓶颈,分子生物学和生物信息学的快速发展为这个问题的解决提供了新的机遇。  相似文献   

15.
养殖动物消化道中含有大量的微生物,不仅参与动物对营养物质的消化和吸收,还对宿主生长发育及免疫起重要调节作用。动物消化道微生物组研究是目前国内外的热点领域,取得了一系列重要研究进展。深入了解养殖动物消化道微生物组的结构与功能,将为今后调控和应用消化道微生物、提高动物生产性能、改善动物胃肠道健康和实现绿色健康养殖奠定理论基础。本文以4种代表性养殖动物(牛、羊、猪和鸡)为主体,对组学视角下其消化道微生物群落结构、功能等研究进展进行总结和分析;并对未来研究方向进行展望。  相似文献   

16.
Microbial organisms are ubiquitous in nature and often form communities closely associated with their host, referred to as the microbiome. The microbiome has strong influence on species interactions, but microbiome studies rarely take interactions between hosts into account, and network interaction studies rarely consider microbiomes. Here, we propose to use metacommunity theory as a framework to unify research on microbiomes and host communities by considering host insects and their microbes as discretely defined “communities of communities” linked by dispersal (transmission) through biotic interactions. We provide an overview of the effects of heritable symbiotic bacteria on their insect hosts and how those effects subsequently influence host interactions, thereby altering the host community. We suggest multiple scenarios for integrating the microbiome into metacommunity ecology and demonstrate ways in which to employ and parameterize models of symbiont transmission to quantitatively assess metacommunity processes in host‐associated microbial systems. Successfully incorporating microbiota into community‐level studies is a crucial step for understanding the importance of the microbiome to host species and their interactions.  相似文献   

17.
Interactions between microbial species are sometimes mediated by the exchange of small molecules, secreted by one species and metabolized by another. Both one-way (commensal) and two-way (mutualistic) interactions may contribute to complex networks of interdependencies. Understanding these interactions constitutes an open challenge in microbial ecology, with applications ranging from the human microbiome to environmental sustainability. In parallel to natural communities, it is possible to explore interactions in artificial microbial ecosystems, e.g. pairs of genetically engineered mutualistic strains. Here we computationally generate artificial microbial ecosystems without re-engineering the microbes themselves, but rather by predicting their growth on appropriately designed media. We use genome-scale stoichiometric models of metabolism to identify media that can sustain growth for a pair of species, but fail to do so for one or both individual species, thereby inducing putative symbiotic interactions. We first tested our approach on two previously studied mutualistic pairs, and on a pair of highly curated model organisms, showing that our algorithms successfully recapitulate known interactions, robustly predict new ones, and provide novel insight on exchanged molecules. We then applied our method to all possible pairs of seven microbial species, and found that it is always possible to identify putative media that induce commensalism or mutualism. Our analysis also suggests that symbiotic interactions may arise more readily through environmental fluctuations than genetic modifications. We envision that our approach will help generate microbe-microbe interaction maps useful for understanding microbial consortia dynamics and evolution, and for exploring the full potential of natural metabolic pathways for metabolic engineering applications.  相似文献   

18.
Increasing agricultural productivity is critical to feed the ever-growing human population. Being linked intimately to plant health, growth and productivity, harnessing the plant microbiome is considered a potentially viable approach for the next green revolution, in an environmentally sustainable way. In recent years, our understanding of drivers, roles, mechanisms, along with knowledge to manipulate the plant microbiome, have significantly advanced. Yet, translating this knowledge to expand farm productivity and sustainability requires the development of solutions for a number of technological and logistic challenges. In this article, we propose new and emerging strategies to improve the survival and activity of microbial inoculants, including using selected indigenous microbes and optimising microbial delivery methods, as well as modern gene editing tools to engineer microbial inoculants. In addition, we identify multiple biochemical and molecular mechanisms and/approaches which can be exploited for microbiome engineering in situ to optimise plant-microbiome interactions for improved farm yields. These novel biotechnological approaches can provide effective tools to attract and maintain activities of crop beneficial microbiota that increase crop performance in terms of nutrient acquisition, and resistance to biotic and abiotic stresses, resulting in an increased agricultural productivity and sustainability.  相似文献   

19.
20.
污泥厌氧消化是在消化污泥微生物组的协调下将剩余污泥中有机物转化为甲烷的微生物过程。与传统厌氧消化过程不同,污泥厌氧消化系统的进料底物为含有大量微生物细胞及胞外多聚物等复杂大分子有机物的剩余污泥。因此,厌氧消化污泥微生物组的种群组成、功能及种群间互作关系等异常复杂,使厌氧消化污泥微生物组分析成为难点问题。但近年来高通量测序技术及生物信息学分析方法的快速发展为消化污泥微生物组研究提供了契机,并迅速推动了该研究领域的发展。本文从4个方面梳理、总结厌氧消化污泥微生物组的研究及应用现状:剩余活性污泥结构、组成及其厌氧消化;基于16SrRNA基因序列测序的微生物组研究;基于宏基因组及宏转录组分析的微生物组研究;厌氧消化污泥微生物组研究案例分析。最后我们提出了厌氧消化污泥微生物组研究亟待解决的关键科学问题。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号