首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
During the recording of whole cell currents from stably transfected HEK-293 cells, the decline of currents carried by the recombinant human Cav2.3+β3 channel subunits is related to adenosine triphosphate (ATP) depletion after rupture of the cells. It reduces the number of functional channels and leads to a progressive shift of voltage-dependent gating to more negative potentials (Neumaier F., et al., 2018). Both effects can be counteracted by hydrolysable ATP, whose protective action is almost completely prevented by inhibition of serine/threonine but not tyrosine or lipid kinases. These findings indicate that ATP promotes phosphorylation of either the channel or an associated protein, whereas dephosphorylation during cell dialysis results in run-down. Protein phosphorylation is required for Cav2.3 channel function and could directly influence the normal features of current carried by these channels. Therefore, results from in vitro and in vivo phosphorylation of Cav2.3 are summarized to come closer to a functional analysis of structural variations in Cav2.3 splice variants.  相似文献   

2.
3.
L-type Ca2+ currents conducted by Cav1.2 channels initiate excitation–contraction coupling in cardiac myocytes. Intracellular Mg2+ (Mgi) inhibits the ionic current of Cav1.2 channels. Because Mgi is altered in ischemia and heart failure, its regulation of Cav1.2 channels is important in understanding cardiac pathophysiology. Here, we studied the effects of Mgi on voltage-dependent inactivation (VDI) of Cav1.2 channels using Na+ as permeant ion to eliminate the effects of permeant divalent cations that engage the Ca2+-dependent inactivation process. We confirmed that increased Mgi reduces peak ionic currents and increases VDI of Cav1.2 channels in ventricular myocytes and in transfected cells when measured with Na+ as permeant ion. The increased rate and extent of VDI caused by increased Mgi were substantially reduced by mutations of a cation-binding residue in the proximal C-terminal EF-hand, consistent with the conclusion that both reduction of peak currents and enhancement of VDI result from the binding of Mgi to the EF-hand (KD ≈ 0.9 mM) near the resting level of Mgi in ventricular myocytes. VDI was more rapid for L-type Ca2+ currents in ventricular myocytes than for Cav1.2 channels in transfected cells. Coexpression of Cavβ2b subunits and formation of an autoinhibitory complex of truncated Cav1.2 channels with noncovalently bound distal C-terminal domain (DCT) both increased VDI in transfected cells, indicating that the subunit structure of the Cav1.2 channel greatly influences its VDI. The effects of noncovalently bound DCT on peak current amplitude and VDI required Mgi binding to the proximal C-terminal EF-hand and were prevented by mutations of a key divalent cation-binding amino acid residue. Our results demonstrate cooperative regulation of peak current amplitude and VDI of Cav1.2 channels by Mgi, the proximal C-terminal EF-hand, and the DCT, and suggest that conformational changes that regulate VDI are propagated from the DCT through the proximal C-terminal EF-hand to the channel-gating mechanism.  相似文献   

4.
Dihydropyridines (DHPs) are L-type calcium channel (Cav1) blockers prescribed to treat several diseases including hypertension. Cav1 channels normally exist in three states: a resting closed state, an open state that is triggered by membrane depolarization, followed by a non-conducting inactivated state that is triggered by the influx of calcium ions, and a rapid change in voltage. DHP binding is thought to alter the conformation of the channel, possibly by engaging a mechanism similar to voltage dependent inactivation, and locking a calcium ion in the pore, thereby blocking channel conductance. As a Cav1 channel crystal structure is lacking, the current model of DHP action has largely been achieved by investigating the role of candidate Cav1 residues in mediating DHP-sensitivity. To better understand DHP-block and identify additional Cav1 residues important for DHP-sensitivity, we screened 440,000 randomly mutated Caenorhabditis elegans genomes for worms resistant to DHP-induced growth defects. We identified 30 missense mutations in the worm Cav1 pore-forming (α1) subunit, including eleven in conserved residues known to be necessary for DHP-binding. The remaining polymorphisms are in eight conserved residues not previously associated with DHP-sensitivity. Intriguingly, all of the worm mutants that we analyzed phenotypically exhibited increased channel activity. We also created orthologous mutations in the rat α1C subunit and examined the DHP-block of current through the mutant channels in culture. Six of the seven mutant channels examined either decreased the DHP-sensitivity of the channel and/or exhibited significant residual current at DHP concentrations sufficient to block wild-type channels. Our results further support the idea that DHP-block is intimately associated with voltage dependent inactivation and underscores the utility of C. elegans as a screening tool to identify residues important for DHP interaction with mammalian Cav1 channels.  相似文献   

5.
Recently, we showed that the HOOK region of the β2 subunit electrostatically interacts with the plasma membrane and regulates the current inactivation and phosphatidylinositol 4,5-bisphosphate (PIP2) sensitivity of voltage-gated Ca2+ (CaV) 2.2 channels. Here, we report that voltage-dependent gating and current density of the CaV2.2 channels are also regulated by the HOOK region of the β2 subunit. The HOOK region can be divided into 3 domains: S (polyserine), A (polyacidic), and B (polybasic). We found that the A domain shifted the voltage-dependent inactivation and activation of CaV2.2 channels to more hyperpolarized and depolarized voltages, respectively, whereas the B domain evoked these responses in the opposite directions. In addition, the A domain decreased the current density of the CaV2.2 channels, while the B domain increased it. Together, our data demonstrate that the flexible HOOK region of the β2 subunit plays an important role in determining the overall CaV channel gating properties.  相似文献   

6.
Inorganic ions have been used widely to investigate biophysical properties of high voltage-activated calcium channels (HVA: Cav1 and Cav2 families). In contrast, such information regarding low voltage-activated calcium channels (LVA: Cav3 family) is less documented. We have studied the blocking effect of Cd2+, Co2+ and Ni2+ on T-currents expressed by human Cav3 channels: Cav3.1, Cav3.2, and Cav3.3. With the use of the whole-cell configuration of the patch-clamp technique, we have recorded Ca2+ (2 mM) currents from HEK−293 cells stably expressing recombinant T-type channels. Cd2+ and Co2+ block was 2- to 3-fold more potent for Cav3.2 channels (EC50 = 65 and 122 μM, respectively) than for the other two LVA channel family members. Current-voltage relationships indicate that Co2+ and Ni2+ shift the voltage dependence of Cav3.1 and Cav3.3 channels activation to more positive potentials. Interestingly, block of those two Cav3 channels by Co2+ and Ni2+ was drastically increased at extreme negative voltages; in contrast, block due to Cd2+ was significantly decreased. This unblocking effect was slightly voltage-dependent. Tail-current analysis reveals a differential effect of Cd2+ on Cav3.3 channels, which can not close while the pore is occupied with this metal cation. The results suggest that metal cations affect differentially T-type channel activity by a mechanism involving the ionic radii of inorganic ions and structural characteristics of the channels pore.  相似文献   

7.
L-type Cav1.2 Ca2+ channel undergoes extensive alternative splicing, generating functionally different channels. Alternatively spliced Cav1.2 Ca2+ channels have been found to be expressed in a tissue-specific manner or under pathological conditions. To provide a more comprehensive understanding of alternative splicing in Cav1.2 channel, we systematically investigated the splicing patterns in the neonatal and adult rat hearts. The neonatal heart expresses a novel 104-bp exon 33L at the IVS3-4 linker that is generated by the use of an alternative acceptor site. Inclusion of exon 33L causes frameshift and C-terminal truncation. Whole-cell electrophysiological recordings of Cav1.233L channels expressed in HEK 293 cells did not detect any current. However, when co-expressed with wild type Cav1.2 channels, Cav1.233L channels reduced the current density and altered the electrophysiological properties of the wild type Cav1.2 channels. Interestingly, the truncated 3.5-domain Cav1.233L channels also yielded a dominant negative effect on Cav1.3 channels, but not on Cav3.2 channels, suggesting that Cavβ subunits is required for Cav1.233L regulation. A biochemical study provided evidence that Cav1.233L channels enhanced protein degradation of wild type channels via the ubiquitin-proteasome system. Although the physiological significance of the Cav1.233L channels in neonatal heart is still unknown, our report demonstrates the ability of this novel truncated channel to modulate the activity of the functional Cav1.2 channels. Moreover, the human Cav1.2 channel also contains exon 33L that is developmentally regulated in heart. Unexpectedly, human exon 33L has a one-nucleotide insertion that allowed in-frame translation of a full Cav1.2 channel. An electrophysiological study showed that human Cav1.233L channel is a functional channel but conducts Ca2+ ions at a much lower level.  相似文献   

8.
The Kv7.2 subunits are the main molecular determinants of the M-current, a widespread K+ current regulating neuronal excitability. Mutations in the Kv7.2 gene cause benign familial neonatal seizures, an autosomally inherited human epilepsy. The benign familial neonatal seizure-causing mutations include those at arginine residues at positions 207 and 214 in the S4 segment of Kv7.2. In this study, each of the six S4 arginines was individually replaced with neutral glutamines, and the functional properties of mutant channels were studied by whole-cell and single-channel voltage-clamp measurements. The results obtained suggest that each S4 arginine residue plays a relevant role in the voltage-dependent gating of Kv7.2 channels. In particular, a decreased positive charge at the N-terminal end of S4 stabilized the activated state of the voltage-sensor, whereas positive-charge neutralization at the C-terminal end of S4 favored the resting conformation. Strikingly, neutralization of a single arginine at position 201 was sufficient to cause a significant loss of voltage dependence in channel activation. Moreover, by comparing the functional properties of glutamine versus tryptophan substitution, we found steric bulk to play a relevant role at position 207, but not at position 214, in which the main functional effect of this disease-causing mutation seems to be a consequence of the loss of the positive charge.  相似文献   

9.
10.
We investigated the biophysical mechanism of inhibition of recombinant T-type calcium channels CaV3.1 and CaV3.2 by nitrous oxide (N2O). To identify functionally important channel structures, chimeras with reciprocal exchange of the N-terminal domains I and II and C-terminal domains III and IV were examined. In whole-cell recordings N2O significantly inhibited CaV3.2, and – less pronounced – CaV3.1. A CaV3.2-prevalent inhibition of peak currents was also detected in cell-attached multi-channel patches. In cell-attached patches containing ≤3 channels N2O reduced average peak current of CaV3.2 by decreasing open probability and open time duration. Effects on CaV3.1 were smaller and mediated by a reduced fraction of sweeps containing channel activity. Without drug, single CaV3.1 channels were significantly less active than CaV3.2. Chimeras revealed that domains III and IV control basal gating properties. Domains I and II, in particular a histidine residue within CaV3.2 (H191), are responsible for the subtype-prevalent N2O inhibition. Our study demonstrates the biophysical (open times, open probability) and structural (domains I and II) basis of action of N2O on CaV3.2. Such a fingerprint of single channels can help identifying the molecular nature of native channels. This is exemplified by a characterization of single channels expressed in human hMTC cells as functional homologues of recombinant CaV3.1.  相似文献   

11.
There is growing evidence indicating that the pore structure of voltage-gated ion channels (VGICs) influences gating besides their conductance. Regarding low voltage-activated (LVA) Ca2+ channels, it has been demonstrated that substitutions of the pore aspartate (D) by a glutamate (D-to-E substitution) in domains III and IV alter channel gating properties such as a positive shift in the channel activation voltage dependence. In the present report, we evaluated the effects of E-to-D substitution in domains I and II on the CaV3.1 channel gating properties. Our results indicate that substitutions in these two domains differentially modify the gating properties of CaV3.1 channels. The channel with a single mutation in domain I (DEDD) presented slower activation and faster inactivation kinetics and a slower recovery from inactivation, as compared with the WT channel. In contrast, the single mutant in domain II (EDDD) presented a small but significant negative shift of activation voltage dependence with faster activation and slower inactivation kinetics. Finally, the double mutant channel (DDDD) presented somehow intermediate properties with respect to the two single mutants but with fastest deactivation kinetics. Overall, our results indicate that single amino acid modification of the selectivity filter of LVA Ca2+ channels in distinct domains differentially influence their gating properties, supporting a pore pseudo-symmetry.  相似文献   

12.
CaV1.3 L-type channels control inner hair cell (IHC) sensory and sinoatrial node (SAN) function, and excitability in central neurons by means of their low-voltage activation and inactivation properties. In SAN cells CaV1.3 inward calcium current (ICa) inactivates rapidly whereas in IHCs inactivation is slow. A candidate suggested in slowing CaV1.3 channel inactivation is the presynaptically located ribbon-synapse protein RIM that is expressed in immature IHCs in presynaptic compartments also expressing CaV1.3 channels. CaV1.3 channel gating is also modulated by an intramolecular C-terminal mechanism. This mechanism was elicited during analysis of human C-terminal splice variants that differ in the length of their C-terminus and that modulates the channel’s negative activation range and slows calcium-dependent inactivation.  相似文献   

13.
Voltage-activated Cav1.2 calcium channels require association of the pore-forming α1C subunit with accessory Cavβ and α2δ subunits. Binding of a single calmodulin (CaM) to α1C supports Ca2+-dependent inactivation (CDI). The human Cav1.2 channel is silent in the absence of Cavβ and/or α2δ. Recently, we found that coexpression of exogenous CaM (CaMex) supports plasma membrane targeting, gating facilitation and CDI of the channel in the absence of Cavβ. Here we discovered that CaMex and its Ca2+-insensitive mutant (CaM1234) rendered active α1C/Cavβ channel in the absence of α2δ. Coexpression of CaMex with α1C and β2d in calcium-channel-free COS-1 cells recovered gating of the channel and supported CDI. Voltage-dependence of activation was shifted by ≈ +40 mV to depolarization potentials. The calcium current reached maximum at +40 mV (20 mM Ca2+) and exhibited approximately 3 times slower activation and 5 times slower inactivation kinetics compared to the wild-type channel. Furthermore, both CaMex and CaM1234 accelerated recovery from inactivation and induced facilitation of the calcium current by strong depolarization prepulse, the properties absent from the human vascular/neuronal Cav1.2 channel. The data suggest a previously unknown action of CaM that in the presence of Cavβ translates into activation of the α2δ-deficient calcium channel and alteration of its properties.  相似文献   

14.

Background

Voltage-gated Na+ channels (Nav) are responsible for the initiation and conduction of neuronal and muscle action potentials. Nav gating can be altered by sialic acids attached to channel N-glycans, typically through isoform-specific electrostatic mechanisms.

Methods

Using two sets of Chinese Hamster Ovary cell lines with varying abilities to glycosylate glycoproteins, we show for the first time that sialic acids attached to O-glycans and N-glycans within the Nav1.4 D1S5–S6 linker modulate Nav gating.

Results

All measured steady-state and kinetic parameters were shifted to more depolarized potentials under conditions of essentially no sialylation. When sialylation of only N-glycans or of only O-glycans was prevented, the observed voltage-dependent parameter values were intermediate between those observed under full versus no sialylation. Immunoblot gel shift analyses support the biophysical data.

Conclusions

The data indicate that sialic acids attached to both N- and O-glycans residing within the Nav1.4 D1S5-S6 linker modulate channel gating through electrostatic mechanisms, with the relative contribution of sialic acids attached to N- versus O-glycans on channel gating being similar.

General significance

Protein N- and O-glycosylation can modulate ion channel gating simultaneously. These data also suggest that environmental, metabolic, and/or congenital changes in glycosylation that impact sugar substrate levels, could lead, potentially, to changes in Nav sialylation and gating that would modulate AP waveforms and conduction.  相似文献   

15.
Low voltage-activated (LVA) T-type Ca2+ channels activate in response to subthreshold membrane depolarizations and therefore represent an important source of Ca2+ influx near the resting membrane potential. In neurons, these proteins significantly contribute to control relevant physiological processes including neuronal excitability, pacemaking and post-inhibitory rebound burst firing. Three subtypes of T-type channels (Cav3.1 to Cav3.3) have been identified, and using functional expression of recombinant channels diverse studies have validated the notion that T-type Ca2+ channels can be modulated by various endogenous ligands as well as by second messenger pathways. In this context, the present study reveals a previously unrecognized role for cyclin-dependent kinase 5 (Cdk5) in the regulation of native T-type channels in N1E-115 neuroblastoma cells, as well as recombinant Cav3.1channels heterologously expressed in HEK-293 cells. Cdk5 and its co-activators play critical roles in the regulation of neuronal differentiation, cortical lamination, neuronal cell migration and axon outgrowth. Our results show that overexpression of Cdk5 causes a significant increase in whole cell patch clamp currents through T-type channels in N1E-115 cells, while siRNA knockdown of Cdk5 greatly reduced these currents. Consistent with this, overexpression of Cdk5 in HEK-293 cells stably expressing Cav3.1channels upregulates macroscopic currents. Furthermore, using site-directed mutagenesis we identified a major phosphorylation site at serine 2234 within the C-terminal region of the Cav3.1subunit. These results highlight a novel role for Cdk5 in the regulation of T-type Ca2+ channels.  相似文献   

16.
Ca2+ entry through L-type calcium channels (CaV1.2) is critical in shaping the cardiac action potential and initiating cardiac contraction. Modulation of CaV1.2 channel gating directly affects myocyte excitability and cardiac function. We have found that phospholemman (PLM), a member of the FXYD family and regulator of cardiac ion transport, coimmunoprecipitates with CaV1.2 channels from guinea pig myocytes, which suggests PLM is an endogenous modulator. Cotransfection of PLM in HEK293 cells slowed CaV1.2 current activation at voltages near the threshold for activation, slowed deactivation after long and strong depolarizing steps, enhanced the rate and magnitude of voltage-dependent inactivation (VDI), and slowed recovery from inactivation. However, Ca2+-dependent inactivation was not affected. Consistent with slower channel closing, PLM significantly increased Ca2+ influx via CaV1.2 channels during the repolarization phase of a human cardiac action potential waveform. Our results support PLM as an endogenous regulator of CaV1.2 channel gating. The enhanced VDI induced by PLM may help protect the heart under conditions such as ischemia or tachycardia where the channels are depolarized for prolonged periods of time and could induce Ca2+ overload. The time and voltage-dependent slowed deactivation could represent a gating shift that helps maintain Ca2+ influx during the cardiac action potential waveform plateau phase.  相似文献   

17.
Cav3.2 T-type channels contain a high affinity metal binding site for trace metals such as copper and zinc. This site is occupied at physiologically relevant concentrations of these metals, leading to decreased channel activity and pain transmission. A histidine at position 191 was recently identified as a critical determinant for both trace metal block of Cav3.2 and modulation by redox agents. His191 is found on the extracellular face of the Cav3.2 channel on the IS3-S4 linker and is not conserved in other Cav3 channels. Mutation of the corresponding residue in Cav3.1 to histidine, Gln172, significantly enhances trace metal inhibition, but not to the level observed in wild-type Cav3.2, implying that other residues also contribute to the metal binding site. The goal of the present study is to identify these other residues using a series of chimeric channels. The key findings of the study are that the metal binding site is composed of a Asp-Gly-His motif in IS3–S4 and a second aspartate residue in IS2. These results suggest that metal binding stabilizes the closed conformation of the voltage-sensor paddle in repeat I, and thereby inhibits channel opening. These studies provide insight into the structure of T-type channels, and identify an extracellular motif that could be targeted for drug development.  相似文献   

18.
Four glutamate residues residing at corresponding positions within the four conserved membrane-spanning repeats of L-type Ca2+ channels are important structural determinants for the passage of Ca2+ across the selectivity filter. Mutation of the critical glutamate in Repeat III in the a1S subunit of the skeletal L-type channel (Cav1.1) to lysine virtually eliminates passage of Ca2+ during step depolarizations. In this study, we examined the ability of this mutant Cav1.1 channel (SkEIIIK) to conduct inward Na+ current. When 150 mM Na+ was present as the sole monovalent cation in the bath solution, dysgenic (Cav1.1 null) myotubes expressing SkEIIIK displayed slowly-activating, non-inactivating, nifedipine-sensitive inward currents with a reversal potential (45.6 ± 2.5 mV) near that expected for Na+. Ca2+ block of SkEIIIK-mediated Na+ current was revealed by the substantial enhancement of Na+ current amplitude after reduction of Ca2+ in the external recording solution from 10 mM to near physiological 1 mM. Inward SkEIIIK-mediated currents were potentiated by either ±Bay K 8644 (10 mM) or 200-ms depolarizing prepulses to +90 mV. In contrast, outward monovalent currents were reduced by ±Bay K 8644 and were unaffected by strong depolarization, indicating a preferential potentiation of inward Na+ currents through the mutant Cav1.1 channel. Taken together, our results show that SkEIIIK functions as a non-inactivating, junctionally-targeted Na+ channel when Na+ is the sole monvalent cation present and urge caution when interpreting the impact of mutations designed to ablate Ca2+ permeability mediated by CaV channels on physiological processes that extend beyond channel gating and permeability.  相似文献   

19.
cGMP is a second messenger widely used in the nervous system and other tissues. One of the major effectors for cGMP is the serine/threonine protein kinase, cGMP-dependent protein kinase (PKG), which catalyzes the phosphorylation of a variety of proteins including ion channels. Previously, it has been shown that the cGMP-PKG signaling pathway inhibits Ca2+ currents in rat vestibular hair cells and chromaffin cells. This current allegedly flow through voltage-gated CaV1.3L-type Ca2+ channels, and is important for controlling vestibular hair cell sensory function and catecholamine secretion, respectively. Here, we show that native L-type channels in the insulin-secreting RIN-m5F cell line, and recombinant CaV1.3 channels heterologously expressed in HEK-293 cells, are regulatory targets of the cGMP-PKG signaling cascade. Our results indicate that the CaVα1 ion-conducting subunit of the CaV1.3 channels is highly expressed in RIN-m5F cells and that the application of 8-Br-cGMP, a membrane-permeable analogue of cGMP, significantly inhibits Ca2+ macroscopic currents and impair insulin release stimulated with high K+. In addition, KT-5823, a specific inhibitor of PKG, prevents the current inhibition generated by 8-Br-cGMP in the heterologous expression system. Interestingly, mutating the putative phosphorylation sites to residues resistant to phosphorylation showed that the relevant PKG sites for CaV1.3 L-type channel regulation centers on two amino acid residues, Ser793 and Ser860, located in the intracellular loop connecting the II and III repeats of the CaVα1 pore-forming subunit of the channel. These findings unveil a novel mechanism for how the cGMP-PKG signaling pathway may regulate CaV1.3 channels and contribute to regulate insulin secretion.  相似文献   

20.
The voltage-dependent gating mechanism of KAT1 inward rectifier potassium channels was studied using single channel current recordings from Xenopus oocytes injected with KAT1 mRNA. The inward rectification properties of KAT1 result from an intrinsic gating mechanism in the KAT1 channel protein, not from pore block by an extrinsic cation species. KAT1 channels activate with hyperpolarizing potentials from −110 through −190 mV with a slow voltage-dependent time course. Transitions before first opening are voltage dependent and account for much of the voltage dependence of activation, while transitions after first opening are only slightly voltage dependent. Using burst analysis, transitions near the open state were analyzed in detail. A kinetic model with multiple closed states before first opening, a single open state, a single closed state after first opening, and a closed-state inactivation pathway accurately describes the single channel and macroscopic data. Two mutations neutralizing charged residues in the S4 region (R177Q and R176L) were introduced, and their effects on single channel gating properties were examined. Both mutations resulted in depolarizing shifts in the steady state conductance–voltage relationship, shortened first latencies to opening, decreased probability of terminating bursts, and increased burst durations. These effects on gating were well described by changes in the rate constants in the kinetic model describing KAT1 channel gating. All transitions before the open state were affected by the mutations, while the transitions after the open state were unaffected, implying that the S4 region contributes to the early steps in gating for KAT1 channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号