首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Optical fiber biosensors have attracted extensive research attention in fields such as public health research, environmental science, bioengineering, disease diagnosis and drug research. Accurate detection of biomolecules is essential to limit the extent of disease outbreaks and provide valuable guidance for regulatory agencies to take timely measures. Among many optical fiber sensors, optical fiber biosensors based on specialty fibers have the advantages of biocompatibility, small size, high measurement resolution, high stability and immunity to electromagnetic interference. In this paper, four types interferometer biosensors based on specialty fiber, namely Mach-Zehnder interferometer, Michelson interferometer, Fabry - Perot interferometer and Sagnac interferometer, are reviewed in terms of operating principles, sensing structure and application fields. The fiber types are further divided into micro-nano optical fiber, thin core fiber, polarization maintaining fiber, polymer fiber, microstructure optical fiber. Furthermore, this paper evaluates the advantages and disadvantages of these interferometer biosensors. Finally, main challenging problems and expectational development direction of specialty fiber interferometer biosensors are summarized. This text clearly shows the huge development potential of optical fiber biosensors in biomedical.  相似文献   

2.

Light control capability of photonic crystal fiber (PCF) is a unique feature which can be applied to improve biosensing and plasmonic performance. Here, we reported alphabetic-core microstructure fiber-based plasmonic biosensor. Three different alphabetic R-, M-, and S-shaped cores of PCF-based plasmonic microstructures show controllable light propagation to enhance biosensor sensitivity and resolution. The light-guiding properties and sensing performance are investigated numerically using the finite element method (FEM). The proposed R-shaped core (RSC), M-shaped core (MSC), and S-shaped core (SSC) PCF-based plasmonic sensors show the maximum wavelength and amplitude sensitivities of 12,000, 11,000, 10,000 nm/RIU and 478, 533, and 933 RIU−1, respectively, in the refractive index (RI) range of 1.33 to 1.40. The sensors also exhibit promising wavelength resolution of 8.33 × 10−6, 9.09 × 10−6, and 1.0 × 10−6 RIU, with figure of merit (FOM) of 108, 143, and 217 RIU−1 for RSC, MSC, and SSC PCFs, respectively. The tunable sensing performance is also observed in design structures due to controllable light traveling path and their interaction with analytes. The proposed alphabetic-core PCF SPR sensors would be a promising candidate for the application of light controlling, trapping in microscale environment, and biosensing.

  相似文献   

3.
In this paper, we report a novel wavelength interrogation-based surface plasmon resonance (SPR) system, in which a film of three Ag layers and three Au layers are alternately deposited on a Kretschmann configuration as sensing element. This multilayer film shows higher sensitivity for refractive index (RI) measurement by comparing with single Au layer structure, which is consistent with its theoretical calculation. A sensitivity range of 2056–5893 nm/RIU can be achieved, which is comparable to RI sensitivities of other wavelength-modulated SPR sensors. Compared with Ag film, this Ag/Au multilayer arrangement offers anti-oxidant protection. This SPR biosensor based on a cost-effective Ag/Au multilayer structure is applicable to the real-time detection of specific interactions and dissociation of low protein concentrations. To extend the application of this highly-sensitive metal film device, we integrated this concept on an optical fiber. The range of RI sensitivities with Ag/Au multilayer was 1847–3309 nm/RIU. This miniaturized Ag/Au multilayer-based fiber optic sensor has a broad application in chemical and biological sensing.  相似文献   

4.
Optical fiber sensors can offer robust and miniaturized detection of wideband ultrasound, yielding high sensitivity and immunity to electromagnetic interference. However, the lack of cost-effective manufacturing methods prevents the disseminated use of these sensors in biomedical applications. In this study, we developed and optimized a simple method to create optical cavities with high-quality mirrors for acoustic sensing based on micro-manipulation of UV-curable optical adhesives and electroless chemical silver deposition. This approach enables the manufacturing of ultrasound sensors based on Fabry-Pérot interferometers on optical fiber tips with minimal production costs. Characterization and high-resolution optoacoustic imaging experiments show that the manufacturing process yielded a fiber sensor with a small NEP () over a broad detection bandwidth (25 MHz), generally outperforming conventional piezoelectric based transducers. We discuss how the new manufacturing process leads to a high-performance acoustic detector that, due to low cost, can be used as a disposable sensor.  相似文献   

5.
An  Guowen  Li  Shuguang  Cheng  Tonglei  Yan  Xin  Zhang  Xuenan  Zhou  Xue  Yuan  Zhenyu 《Plasmonics (Norwell, Mass.)》2019,14(1):155-163

In this paper, we demonstrate a high sensitivity refractive index (RI) sensor with D-shaped structure covered with gold and graphene film. Specifically, the effect of structural parameters on the stability of fiber sensor is analyzed. In our research, it have been found that the sensor we proposed is not very sensitive to the change of structure parameters on the premise of ensuring the sensing precision. This advantage means that the requirements for machining errors are reduced. Further probing shows that the proposed sensor shows a maximum wavelength interrogation sensitivity of 4391nm/RIU with the dynamic refractive index range from 1.33 to 1.39 and a maximum amplitude sensitivity of 1139RIU− 1 with the analyte RI = 1.38 in the visible region. The corresponding resolution are 2.28 × 10− 5 and 8.78 × 10− 6 based on the methods of wavelength interrogation and amplitude-(or phase-) based method. These characteristics of compact sensing architectures, simple to fabricate, and high sensitivity open the possibility of using this type of sensor in biological applications.

  相似文献   

6.
Gu  Sanfeng  Sun  Wei  Li  Meng  Zhang  Tianheng  Deng  Ming 《Plasmonics (Norwell, Mass.)》2022,17(3):1129-1137

A dual-core and dual D-shaped photonic crystal fiber (PCF)-based surface plasmon resonance (SPR) sensor with silver and aluminum nitride (AlN) films is designed. The distribution characteristics of the electromagnetic fields of core and plasmon modes, as well as the sensing properties, are numerically studied by finite element method (FEM). The structure parameters of the designed sensor are optimized by the optical loss spectrum. The results show the resonance wavelength variation of 489 nm for the refractive index (RI) range of 1.36?~?1.42. In addition, a maximum wavelength sensitivity of 13,400 nm/RIU with the corresponding RI resolution of 7.46?×?10?6 RIU is obtained in the RI range of 1.41?~?1.42. The proposed sensor with the merits of high sensitivity, low cost, and simple structure has a wide application in the fields of RI sensing, such as hazardous gas detection, environmental monitoring, and biochemical analysis.

  相似文献   

7.
Wang  Famei  Sun  Zhijie  Liu  Chao  Sun  Tao  Chu  Paul K. 《Plasmonics (Norwell, Mass.)》2017,12(6):1847-1853

A highly sensitive dual-core photonic crystal fiber based on a surface plasmon resonance (PCF-SPR) biosensor with a silver-graphene layer is described. The silver layer with a graphene coating not only prevents oxidation of the silver layer but also can improve the silver sensing performance due to the large surface-to-volume ratio of graphene. The dual-core PCF-SPR biosensor is numerically analyzed by the finite-element method (FEM). An average spectral sensitivity of 4350 nm/refractive index unit (RIU) in the sensing range between 1.39 and 1.42 and maximum spectral sensitivity of 10,000 nm/RIU in the sensing range between 1.43 and 1.46 are obtained, corresponding to a high resolution of 1 × 10−6 RIU as a biosensor. Our analysis shows that the optical spectra of the PCF-SPR biosensor can be optimized by varying the structural parameters of the structure, suggesting promising applications in biological and biochemical detection.

  相似文献   

8.
Abstract

The results of viscoelastometry (VE) for mammalian DNA have been puzzling because they have two orders of magnitude smaller measured viscoelastic relaxation times for mammalian chromosomes than that expected for DNA linear coils of chromosomal size. In an attempt to resolve this discrepancy, we have applied a recent model of Gl chromosome structure (J.Y. Ostashevsky, Mol Biol. Cell 9, 3031–3040, 1998) in which the 30 nm chromatin fiber of each chromosome forms a string of loop clusters (micelles). This model has two parameters: the number of loops per micelle (f) and the average loop size (Mf), which can be estimated independently from VE data. Using our VE data for plateau phase V79 Chinese hamster cells (unirradiated and X-irradiated with doses up to 40 Gy) we show that f-13, which is close to other estimates made using the model (f ranges from 10–20), and Mf~ 2 Mbp, which is similar to estimates made from our nucleoid data (1.3 Mbp) and to estimates made in the literature using a variety of techniques (1–3 Mbp).  相似文献   

9.
Highly efficient enantioselective separation and quantitative recoveries of D- and L-tryptophan in aqueous and real samples can be achieved, with a monolithic molecularly imprinted polymeric fiber that serves both for micro-solid phase extraction and ultratrace sensing, without any false-positive (non-specific) contribution and cross-reactivity, in the range of 0.15-30.00 ng mL(-1) with detection limit as low as 0.0261 ng mL(-1) (relative standard deviation=0.64%, signal/noise=3). The proposed method combining molecularly imprinted micro-solid phase extraction fiber and a complementary molecularly imprinted polymer-carbon composite fiber sensor is proven to be useful for clinical diagnosis of stress-related diseases caused by acute tryptophan depletion.  相似文献   

10.
Angelica Sinensis polysaccharide cerium (ASP−Ce) was prepared by Angelica Sinensis polysaccharide (ASP) and cerium ammonium nitrate (NH4)2Ce(NO3)6. and its morphology, and solid structure was investigated. The antioxidant activity of the ASP−Ce complex in vitro was evaluated. The antioxidant activity of ASP−Ce complex in vitro was evaluated by the scavenging activity of 2,2-diphenyl-1-picrylhyrazyl radical (DPPH), hydroxyl radical (⋅OH) and superoxide anion radical ( ⋅). The results showed that the ASP−Ce had the more ordered structure for inserting the Ce4+ into the polymer chain of ASP and there was little change in the conformation of the polysaccharide from Ce4+. Three free radical scavenging experiments proved that ASP−Ce had better antioxidant capacity than of ASP, especially on DPPH, and then on ⋅. The scavenging rate of ASP−Ce at 1.0 mg/mL on DPPH reached 71.6 %. Therefore, these results provide references for the further development and utilization of rare earth-polysaccharide.  相似文献   

11.
A fiber optic surface plasmon resonance (SPR) biosensor for detection of Staphylococcal enterotoxin B (SEB) is reported. The sensor is based on spectral interrogation of surface plasmons in a miniature sensing element based on a side-polished single-mode optical fiber with a thin metal overlayer. For specific detection of SEB, the SPR sensor is functionalized with a covalently crosslinked double-layer of antibodies against SEB. The SPR biosensor is demonstrated to be able to detect ng/ml concentrations of SEB in less than 10 min.  相似文献   

12.
Avian influenza is an acute infectious disease caused by the avian influenza virus (AIV), which has caused enormous economic losses and posed considerable threats to public health. This study aimed to demonstrate an immunosensor based on dispersion turning point long-period fiber grating (DTP-LPFG) integrated with graphene oxide (GO) for the specific detection of a type of AIV H5N1 virus. LPFG was designed to work at DTP, whose dual-peak spacing was very high sensitive to a refractive index. Anti-H5N1 monoclonal antibodies were covalently bonded with the GO film on the fiber surface, thus constructing an immunosensor for the label-free and specific detection of the H5N1 virus. The proposed method was capable of the reliable detection of H5N1 virus with the limit of detection as low as ~1.05 ng/ml within the large range of 1 ng/mL to 25 µg/mL. More importantly, immunoassays of the whole H5N1 virus in clinical samples further confirmed that the GO-integrated DTP-LPFG immunosensor showed very high specificity to the H5N1 virus and demonstrated great potential for clinical use.  相似文献   

13.
A capillary-based optical biosensor has been developed to detect calpastatin, an indicator of meat tenderness. Longissimus muscle samples (n = 11) were extracted from beef carcasses at 0 and 48 h post-mortem. These samples were assayed for calpastatin by traditional laboratory methods and with a newly developed capillary tube biosensor as well as for Warner–Bratzler shear force (WBSF) and crude protein and the responses were compared. Additionally, the response from the capillary-based biosensor was compared to a previously developed optical fiber biosensor. When the 0 and 48 h sampling periods were combined, the capillary tube biosensor was moderately accurate in predicting calpastatin activity (R2 = 0.6058). There was less variation in the 0 h capillary tube biosensor compared to the 0 h pre-column (P = 0.006) and post-column optical fiber biosensors (P = 0.047), therefore the capillary tube biosensor is a more precise system of measurement. This research further advances the development of a calpastatin biosensor and makes online assessment one step closer to reality.  相似文献   

14.
A reagentless enzymatic optical biosensor has been constructed to measure the concentration of ethylene dibromide (EDB, 1,2‐dibromoethane), a US EPA Priority Pollutant. This biosensor is based on the haloalkane dehalogenase DhaA, which generates protons as a product of the dehalogenation of EDB. The resulting pH change is detected as a shift in the fluorescence intensity of fluoresceinamine. When layers of fluoresceinamine and Rhodococcus sp. GJ70 expressing DhaA were immobilized on the tip of an optical fiber, the resulting changes in fluorescence were proportional to the EDB concentration in the range 1–10 μg/L and nonlinear (saturation‐type trend) for concentrations up to 10 mg/L. EDB concentrations as low as 1 μg/L could be detected in aqueous solutions. Both the pH and buffer capacity of the sample had significant effects on the sensor's performance. EDB biosensors were active for at least 37 d, although their sensitivity decreased after 7 d. The biosensor's potential to measure continuously and in situ could make it useful for environmental or water treatment process monitoring systems.  相似文献   

15.
An ultrasensitive amperometric acetylcholinesterase (AChE) biosensor was fabricated by controlled immobilization of AChE on gold nanoparticles/poly(dimethyldiallylammonium chloride) protected Prussian blue (Au-PDDA-PB) nanocomposite modified electrode surface for the detection of organophorous pesticide. The Au-PDDA-PB membrane served as an excellent matrix for the immobilization of enzyme, which not only enhanced electron transfer but also possessed a relatively large surface area. In addition, the surface hydrophilicity of the Au-PDDA-PB nanocomposite was finely controlled in the static water contact angle range of 25.6-78.1° by adjusting the ratio of gold nanoparticles to PDDA-PB. On an optimized hydrophobic surface, the AChE adopts an orientation with both good activity and stability, which has been proven by electrochemical methods. Benefit from the advantages of the Au-PDDA-PB nanocomposite and the good activity and stability of AChE, the biosensor shows significantly improved sensitivity to monocrotophos, a typical highly toxic organophorous pesticide, with wide linear range (1.0-1000 pg/mL and 1.0-10 ng/mL) and an ultra-low detection limit of 0.8 pg/mL. The biosensor exhibits accuracy, good reproducibility and stability. This strategy may therefore provide useful information for the controlled immobilization of protein and the design of highly sensitive biosensors.  相似文献   

16.
Cylindrical or taper-and-cylinder combination optical fiber probe based on evanescent wave has been widely used for immunofluorescence biosensor to detect various analytes. In this study, in contrast to the contradiction between penetration depth and analyte diameter of optical fiber probe-based evanescent wave, we demonstrate that double-taper optical fiber used in a radiation wave-based all-fiber immunofluorescence biosensor (RWAIB) can detect micron-scale analytes using Escherichia coli O157:H7 as representative target. Finite-difference time-domain method was used to compare the properties of evanescent wave and radiation wave (RW). Ray-tracing model was formulated to optimize the taper geometry of the probe. Based on a commercial multi-mode fiber, a double-taper probe was fabricated and connected with biosensor through a “ferrule connector” optical fiber connector. The RWAIB configuration was accomplished using commercial multi-mode fibers and fiber-based devices according to the “all-fiber” method. The standard sample tests revealed that the sensitivity of the proposed technique for E. coli O157:H7 detection was 103 cfu·mL−1. Quantitation could be achieved within the concentration range of 103 cfu·mL−1 to 107 cfu·mL−1. No non-specific recognition to ten kinds of food-borne pathogens was observed. The results demonstrated that based on the double-taper optical fiber RWAIB can be used for the quantitative detection of micron-scale targets, and RW sensing is an alternative for traditional evanescent wave sensing during the fabrication of fiber-optic biosensors.  相似文献   

17.
Du  Bobo  Yang  Yuan  Zhang  Yang  Yang  Dexing 《Plasmonics (Norwell, Mass.)》2019,14(2):457-463

In this article, a surface plasmon resonance (SPR) biosensor based on D-typed optical fiber coated by Al2O3/Ag/Al2O3 film is investigated numerically. Resonance in near infrared with an optimized architecture is achieved. Refractive index sensitivity of 6558 nm/RIU (refractive index unit) and detection limit of 1.5 × 10−6 RIU, corresponding to 0.4357 nm/μM and detection limit of 23 nM in BSA (bovine serum albumin) concentration sensing, are obtained. The analysis of the performance of the sensor in gaseous sensing indicates that this proposed SPR sensor is much suitable for label-free biosensing in aqueous media.

  相似文献   

18.
Temperature monitoring is extremely important during thermotherapy. Fiber‐optic temperature sensors are preferred because of their flexibility and immunity to electromagnetic interference. Although many types of fiber‐optic sensors have been developed, clinically adopting them remains challenging. Here, we report a silica fiber‐based radiometric thermometer using a low‐cost extended InGaAs detector to detect black body radiation between 1.7 and 2.4 μm. For the first time, this silica fiber‐based thermometer is capable of measuring temperatures down to 35°C, making it suitable for monitoring hyperthermia during surgery. In particular, the thermometer has potential for seamless integration with current silica fiber catheters, which are widely used in laser interstitial thermotherapy. The feasibility, capability and sensitivity of tracking tissue temperature variation were proved through ex vivo tissue studies. After further improvement, the technology has the potential to be translated into clinics for monitoring tissue temperature.  相似文献   

19.
20.
The results of viscoelastometry (VE) for mammalian DNA have been puzzling because they have two orders of magnitude smaller measured viscoelastic relaxation times for mammalian chromosomes than that expected for DNA linear coils of chromosomal size. In an attempt to resolve this discrepancy, we have applied a recent model of G1 chromosome structure (J.Y. Ostashevsky, Mol Biol. Cell 9, 3031-3040, 1998) in which the 30 nm chromatin fiber of each chromosome forms a string of loop clusters (micelles). This model has two parameters: the number of loops per micelle (f) and the average loop size (Mf), which can be estimated independently from VE data. Using our VE data for plateau phase V79 Chinese hamster cells (unirradiated and X-irradiated with doses up to 40 Gy) we show that f approximately 13 , which is close to other estimates made using the model (f ranges from 10-20), and Mf approximately 2 Mbp, which is similar to estimates made from our nucleoid data (1.3 Mbp) and to estimates made in the literature using a variety of techniques (1-3 Mbp).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号