首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Compression optical coherence elastography (OCE) typically requires a mechanical actuator to impart a controlled uniform strain to the sample. However, for handheld scanning, this adds complexity to the design of the probe and the actuator stroke limits the amount of strain that can be applied. In this work, we present a new volumetric imaging approach that utilizes bidirectional manual compression via the natural motion of the user's hand to induce strain to the sample, realizing compact, actuator‐free, handheld compression OCE. In this way, we are able to demonstrate rapid acquisition of three‐dimensional quantitative microelastography (QME) datasets of a tissue volume (6 × 6 × 1 mm3) in 3.4 seconds. We characterize the elasticity sensitivity of this freehand manual compression approach using a homogeneous silicone phantom and demonstrate comparable performance to a benchtop mounted, actuator‐based approach. In addition, we demonstrate handheld volumetric manual compression‐based QME on a tissue‐mimicking phantom with an embedded stiff inclusion and on freshly excised human breast specimens from both mastectomy and wide local excision (WLE) surgeries. Tissue results are coregistered with postoperative histology, verifying the capability of our approach to measure the elasticity of tissue and to distinguish stiff tumor from surrounding soft benign tissue.  相似文献   

2.
Quantifying the mechanical properties of the iris can offer valuable insights into the pathophysiology of primary angle closure glaucoma. However, current techniques for iris elastography remain ex vivo with limited clinical applications. This article describes a proposition for a non-contact and non-invasive air-puff optical coherence elastography (OCE) system that can evaluate iris elasticity in vivo. Ten eyes recruited from seven subjects underwent OCE imaging acquisition under three different illumination conditions. The Young's modulus of each eye was detected and shown to be inversely proportional to the iris length, indicating a relationship between mechanical properties and morphology of the iris. With its noninvasive and high-resolution features, this air-puff system shows great potential for applications in clinical ophthalmology.  相似文献   

3.
Evaluating mechanical properties of biological soft tissues and viscous mucus is challenging because of complicated dynamic behaviors. Soft condensed matter models have been successfully used to explain a number of dynamical behaviors. Here, we reported that optical coherence elastography (OCE) is capable of quantifying mechanical properties of soft condensed matters, micellar fluids. A 7.5 MHz focused transducer was utilized to generate acoustic radiation force exerted on the surface of soft condensed matters in order to produce Rayleigh waves. The waves were recorded by optical coherence tomography (OCT). The Kelvin‐Voigt model was adopted to evaluate shear modulus and loss modulus of soft condensed matters. The results reported that various concentrations of micellar fluids can provide reasonable ranges of elasticity from 65.71 to 428.78 Pa and viscosity from 0.035 to 0.283 Pa·s, which are close to ranges for actual biological samples, like mucus. OCE might be a promising tool to differentiate pathologic mucus samples from healthy cases as advanced applications in the future.  相似文献   

4.
葡萄糖转运子蛋白4(glucose transporter 4,GLUT4)在维持体内葡萄糖动态平衡的过程中起着至关重要的作用。GLUT4贮存囊泡(GLUT4 storage vesicle,GSV)和神经内分泌细胞中的分泌囊泡含有许多相同的蛋白。研究证明这些蛋白调节了分泌囊泡的胞内转运过程,但是GLUT4囊泡和分泌囊泡是否具有相同的胞内动态过程还未阐明。文章以3T3-L1纤维原细胞中的GSV和神经内分泌细胞PC12细胞中的分泌囊泡:致密核心大囊泡(large dense core vesicle,LDCV)为研究对象,使用消散场显微成像技术和单微粒跟踪技术直观观察了活体细胞内单个GSV和LDCV的三维运动轨迹。通过以适当方程拟合单个囊泡的均方位移曲线,发现两种囊泡都具有三种运动模式。定量分析显示作自由扩散运动和方向性扩散运动的GSV数量明显多于LDCV。对比GSV和LDCV的三维扩散系数,发现GSV的扩散系数中值为7.2×10-4μm2/s,而LDCV的扩散系数中值仅为1.94×10-4μm2/s。这一结果说明GSV的活动性远大于LDCV,提示GSV的胞内转运过程涉及不同的分子机制。  相似文献   

5.
Numerous experimental and computational methods have been developed to estimate tissue elasticity. The existing testing techniques are generally classified into in vitro, invasive in vivo and non-invasive in vivo. For each experimental method, a computational scheme is accordingly proposed to calculate mechanical properties of soft biological tissues. Harmonic motion imaging (HMI) is a new technique that performs radio frequency (RF) signal tracking to estimate the localized oscillatory motion resulting from a radiation force produced by focused ultrasound. A mechanical model and computational scheme based on the superposition principle are developed in this paper to estimate the Young's modulus of a tissue mimicking phantom and bovine liver in vitro tissue from the harmonic displacement measured by HMI. The simulation results are verified by two groups of measurement data, and good agreement is shown in each comparison. Furthermore, an inverse function is observed to correlate the elastic modulus of uniform phantoms with amplitude of displacement measured in HMI. The computational scheme is also implemented to estimate 3D elastic modulus of bovine liver in vitro.  相似文献   

6.
Vibrational optical coherence elastography (OCE) is a promising tool for extracting the mechanical property of soft tissue. Purpose of this study is focusing on settling the optimal frequency range for vibrational OCE with evenly distributed stress filed. A finite element model of 2% agar phantom was built by ANSYS with a vibration stimulation frequency range from 200 to 3000 Hz. Practical experiments were carried out for cross‐validation with the same frequencies and sample. Lateral and horizontal stress filed distributions under different frequencies were mathematically evaluated by coefficient of variance and degree of linearity. Results from simulation and practical experiment cross‐validated each other and 1000 Hz was set as the maximum ideal frequency for vibrational OCE, while the minimum frequency is set by theoretical calculation with a result of 250 Hz. An ex vivo biological sample was utilised to testify performance of vibrational OCE with excitation frequencies in and out of concluded optimal range, which showed that stiffness was better mapped out in optimal frequency range.  相似文献   

7.
This study aimed at visualizing relative relaxation time constant (RTC) in soft tissue by using optical coherence elastography (OCE). We proposed a forced vibration model as a theoretical base to express RTC using axial gradient of periodic vibration phase captured by phase sensitive optical coherence tomography (PhS‐OCT). Validation of the model had been accomplished by experiments with isotropic and double‐layered phantoms. A fresh chicken breast sample treated with focused ultrasound was prepared to test performance of the RTC‐OCE in real tissue. All results were cross‐validated with indentation test and traditional strain‐based elastography. This study first utilized RTC mapping in 2D and 3D that covers the information of both elasticity and viscosity. The generated RTC mapping revealed the same mechanical difference internal sample which is correlated with conventional strain mapping. RTC mapping is potentially to be served as new biomarker for disease diagnosis in the future.  相似文献   

8.
We evaluated the elasticity of live tissues of zebrafish embryos using label-free optical elastography. We employed a pair of custom-built elastic microcantilevers to gently compress a zebrafish embryo and used optical-tracking analysis to obtain the induced internal strain. We then built a finite element method (FEM) model and matched the strain with the optical analysis. The elastic moduli were found by minimizing the root-mean-square errors between the optical and FEM analyses. We evaluated the average elastic moduli of a developing somite, the overlying ectoderm, and the underlying yolk of seven zebrafish embryos during the early somitogenesis stages. The estimation results showed that the average elastic modulus of the somite increased from 150 to 700 Pa between 4- and 8-somite stages, while those of the ectoderm and the yolk stayed between 100 and 200 Pa, and they did not show significant changes. The result matches well with the developmental process of somitogenesis reported in the literature. This is among the first attempts to quantify spatially-resolved elasticity of embryonic tissues from optical elastography.  相似文献   

9.
The three‐dimensional (3D) mechanical properties characterization of tissue is essential for physiological and pathological studies, as biological tissue is mostly heterogeneous and anisotropic. A digital volume correlation (DVC)‐based 3D optical coherence elastography (OCE) method is developed to measure the 3D displacement and strain tensors. The DVC algorithm includes a zero‐mean normalized cross‐correlation criterion‐based coarse search regime, an inverse compositional Gauss‐Newton fine search algorithm and a local ternary quadratic polynomial fitting strain calculation method. A 3D optical coherence tomography (OCT) scanning protocol is proposed through theoretical analysis and experimental verification. Measurement errors of the DVC‐based 3D OCE method are evaluated to be less than 2.0 μm for displacements and 0.30% for strains by rigid body motion experiments. The 3D displacements and strains of a phantom and a specimen of chicken breast tissue under compression are measured. Results of the phantom show a good agreement with theoretical analysis and tensile testing. The strains of the chicken breast tissue indicate anisotropic biomechanical properties. This study provides an effective method for 3D biomechanical property studies of soft tissue and improves the development of 3D OCE techniques.  相似文献   

10.
Quantitative mapping of deformation and elasticity in optical coherence tomography has attracted much attention of researchers during the last two decades. However, despite intense effort it took ~15 years to demonstrate optical coherence elastography (OCE) as a practically useful technique. Similarly to medical ultrasound, where elastography was first realized using the quasi-static compression principle and later shear-wave-based systems were developed, in OCE these two approaches also developed in parallel. However, although the compression OCE (C-OCE) was proposed historically earlier in the seminal paper by J. Schmitt in 1998, breakthroughs in quantitative mapping of genuine local strains and the Young's modulus in C-OCE have been reported only recently and have not yet obtained sufficient attention in reviews. In this overview, we focus on underlying principles of C-OCE; discuss various practical challenges in its realization and present examples of biomedical applications of C-OCE. The figure demonstrates OCE-visualization of complex transient strains in a corneal sample heated by an infrared laser beam.  相似文献   

11.
Li CH  Bai L  Li DD  Xia S  Xu T 《Cell research》2004,14(6):480-486
Glucose transporter 4 (GLUT4) is responsible for insulin-stimulated glucose transporting into the insulin-sensitive fat and muscle cells. The dynamics of GLUT4 storage vesicles (GSVs) remains to be explored and it is unclear how GSVs are arranged based on their mobility. We examined this issue in 3T3-L1 cells via investigating the three-dimensional mobility of single GSV labeled with EGFP-fused GLUT4. A thin layer of cytosol right adjacent to the plasma membrane was illuminated and successively imaged at 5 Hz under a total internal reflection fluorescence microscope with a penetration depth of 136 nm. Employing single particle tracking, the three-dimensional subpixel displacement of single GSV was tracked at a spatial precision of 22 nm. Both the mean square displacement and the diffusion coefficient were calculated for each vesicle. Tracking results revealed that vesicles moved as if restricted within a cage that has a mean radius of 160 nm, suggesting the presence of some intracellular tethering matrix. By constructing the histogram of the diffusion coefficients of GSVs, we observed a smooth distribution instead of the existence of distinct groups. The result indicates that GSVs are dynamically retained in a continuous and wide range of mobility rather than into separate classes.  相似文献   

12.
Mechanical properties of a single cell and its mechanical response under stimulation play an important role in regulating interactions between cell and extracellular matrix and affecting mechanotransduction. Osteocytes exhibit solid-like viscoelastic behavior in response to the interstitial fluid shear resulting from tissue matrix deformation. This study intends to quantitatively describe the mechanical behavior of osteocytes combining in vitro experiment and fluid–structure interaction (FSI) finite element (FE) model. The cell is configured in the FSI FE model using the observed data from quasi-3D images. Instead of simply assigning the cellular viscoelastic parameters by statistical data, the mechanical parameters are determined by an iterative algorithm comparing the experimental and the computational results from the FE model. The viscoelastic parameters of osteocytes are obtained as: the equilibrium elasticity modulus \(k_{1}=0.15\pm 0.038\,\hbox {kPa}\), instantaneous elasticity modulus \((k_{1}+k_{2})=0.77\pm 0.23\,\hbox {kPa}\), viscosity coefficient \(\eta =1.38\pm 0.33\,\hbox {kPa}\,\hbox {s}\). A novel index to quantify the cell adhesion is also put forward. In addition, an interesting competition phenomenon is revealed on the cell surface concerning stress and strain, i.e., the place with high stress has low strain and that with low stress has high strain. The proposed method provides a novel technique to study the mechanical behavior of individual adherent cell in vitro. It is believed that this quantitative technique not only determines cell mechanical behavior but also helps elucidate the mechanism of mechanotransduction in various types of cells.  相似文献   

13.
Silk fibroin-typeⅡcollagen scaffold was made by 3D printing technique and freeze-drying method, and its mechanical properties were studied by experiments and theoretical prediction. The results show that the three-dimensional silk fibroin-typeⅡ collagen scaffold has good porosity and water absorption, which is (89.3%+3.26%) and (824.09%+93.05%), respectively. With the given strain value, the stress of scaffold decreases rapidly firstly and then tends to be stable during the stress relaxation. Both initial and instantaneous stresses increase with increase of applied strain value. The creep strains of scaffold with different stress levels show the two stages: the rapidly increasing stage and the second stable stage. It is noted that the scaffold with compressive stress of less than 35 kPa can recover when the compressive stress is removed. However when the compressive stress is higher than 50 kPa, the scaffold is damaged and its structure is destroyed. Not only the compressive property but tensile property of scaffold are dependent on the applied displacement rate or strain rate. Its compressive elastic modulus and tensile modulus increase with increase of strain rate or displacement rate. The nonlinear relaxation model and creep model were constructed respectively and applied to predict the stress relaxation behavior and creep behavior of scaffold. It is found that there are good agreements between the experimental data and predictions, which mean that the built theoretical model can predict the mechanical behavior of scaffold.  相似文献   

14.
Detailed knowledge of mechanical parameters such as cell elasticity, stiffness of the growth substrate, or traction stresses generated during axonal extensions is essential for understanding the mechanisms that control neuronal growth. Here, we combine atomic force microscopy-based force spectroscopy with fluorescence microscopy to produce systematic, high-resolution elasticity maps for three different types of live neuronal cells: cortical (embryonic rat), embryonic chick dorsal root ganglion, and P-19 (mouse embryonic carcinoma stem cells) neurons. We measure how the stiffness of neurons changes both during neurite outgrowth and upon disruption of microtubules of the cell. We find reversible local stiffening of the cell during growth, and show that the increase in local elastic modulus is primarily due to the formation of microtubules. We also report that cortical and P-19 neurons have similar elasticity maps, with elastic moduli in the range 0.1–2 kPa, with typical average values of 0.4 kPa (P-19) and 0.2 kPa (cortical). In contrast, dorsal root ganglion neurons are stiffer than P-19 and cortical cells, yielding elastic moduli in the range 0.1–8 kPa, with typical average values of 0.9 kPa. Finally, we report no measurable influence of substrate protein coating on cell body elasticity for the three types of neurons.  相似文献   

15.
The elastic response of aortic valve cusps is a summation of its fibrous components. To investigate the micromechanical function of valve leaflet constituents, we separated the fibrosa and the ventricularis from fresh and glutaraldehyde-fixed leaflets and tested them individually. The ventricularis was stiffer circumferentially than radially (7.41 kPa vs 3.68 kPa, p less than 0.00001) and was more extensible radially (62.7% vs 21.8% strain to high modulus phase, p less than 0.00001). The fibrosa was also stiffer circumferentially than radially (13.02 kPa vs 4.65 kPa, p less than 0.0008), but had uniform extensibility. Glutaraldehyde fixation did not affect the circumferential elastic modulus of the fibrosa, but reduced its radial modulus from 4.65 kPa to 2.32 kPa (p less than 0.0078). The elastic modulus of the ventricularis remained unchanged. Fixation also reduced the extensibility of the ventricularis circumferentially (from 21.8% to 15.2% strain, p less than 0.018), but not radially, and increased the radial extensibility of the fibrosa from 27.7% to 46.1% (p less than 0.0048). These data show that while the ventricularis contains a large amount of elastin, the amount of radially oriented collagen is similar to that of the fibrosa. The fibrosa, by itself, has the same extensibility in both directions (about 23% strain), but can extend much more radially when connected to the rest of the leaflet because it is attached to the ventricularis in a highly folded configuration. The two layers therefore complement each other during aortic valve function, and become detrimentally altered by fixation in glutaraldehyde.  相似文献   

16.
Current elastography techniques are limited in application to accurately assess spatially resolved corneal elasticity in vivo for human eyes. The air‐puff optical coherence elastography (OCE) with an eye motion artifacts correction algorithm is developed to distinguish the in vivo cornea vibration from the eye motion and visualize the Lamb wave propagation clearly in healthy subjects. Based on the Lamb wave model, the phase velocity dispersion curve in the high‐frequency is calculated to obtain spatially resolved corneal elasticity accurately with high repeatability. It is found that the corneal elasticity has regional variations and is correlated with intraocular pressure, which suggests that the method has the potential to provide noninvasive measurement of spatially resolved corneal elasticity in clinical practice.  相似文献   

17.
Moderate heating of collagenous tissues such as cartilage and cornea by infrared laser irradiation can produce biologically nondestructive structural rearrangements and relaxation of internal stresses resulting in the tissue reshaping. The reshaping results and eventual changes in optical and biological properties of the tissue strongly depend on the laser‐irradiation regime. Here, a speckle‐contrast technique based on monochromatic illumination of the tissue in combination with strain mapping by means of optical coherence elastography (OCE) is applied to reveal the interplay between the temperature and thermal stress fields producing tissue modifications. The speckle‐based technique ensured en face visualization of cross correlation and contrast of speckle images, with evolving proportions between contributions of temperature increase and thermal‐stresses determined by temperature gradients. The speckle‐technique findings are corroborated by quantitative OCE‐based depth‐resolved imaging of irradiation‐induced strain‐evolution. The revealed relationships can be used for real‐time control of the reshaping procedures (e.g., for laser shaping of cartilaginous implants in otolaryngology and maxillofacial surgery) and optimization of the laser‐irradiation regimes to ensure the desired reshaping using lower and biologically safer temperatures. The figure of waterfall OCE‐image demonstrates how the strain‐rate maximum arising in the heating‐beam center gradually splits and drifts towards the zones of maximal thermal stresses located at the temperature‐profile slopes.  相似文献   

18.
19.
Zhu Y  Dong Z  Wejinya UC  Jin S  Ye K 《Journal of biomechanics》2011,44(13):2356-2361
While the determination of mechanical properties of a hard scaffold is relatively straightforward, the mechanical testing of a soft tissue scaffold poses significant challenges due in part to its fragility. Here, we report a new approach for characterizing the stiffness and elastic modulus of a soft scaffold through atomic force microscopy (AFM) nanoindentation. Using collagen-chitosan hydrogel scaffolds as model soft tissue scaffolds, we demonstrated the feasibility of using AFM nanoindentation to determine a force curve of a soft tissue scaffold. A mathematical model was developed to ascertain the stiffness and elastic modulus of a scaffold from its force curve obtained under different conditions. The elastic modulus of a collagen-chitosan (80%/20%, v/v) scaffold is found to be 3.69 kPa. The scaffold becomes stiffer if it contains more chitosan. The elastic modulus of a scaffold composed of 70% collagen and 30% chitosan is about 11.6 kPa. Furthermore, the stiffness of the scaffold is found to be altered significantly by extracellular matrix deposited from cells that are grown inside the scaffold. The elastic modulus of collagen-chitosan scaffolds increased from 10.5 kPa on day 3 to 63.4 kPa on day 10 when human foreskin fibroblast cells grew inside the scaffolds. Data acquired from these measurements will offer new insights into understanding cell fate regulation induced by physiochemical cues of tissue scaffolds.  相似文献   

20.
Mechanics of carpal tunnel soft tissue, such as fat, muscle and transverse carpal ligament (TCL), around the median nerve may render the median nerve vulnerable to compression neuropathy. The purpose of this study was to understand the roles of carpal tunnel soft tissue mechanical properties and intratunnel pressure on the TCL tensile strain and carpal arch area (CAA) using finite element analysis (FEA). Manual segmentation of the thenar muscles, skin, fat, TCL, hamate bone, and trapezium bone in the transverse plane at distal carpal tunnel were obtained from B-mode ultrasound images of one cadaveric hand. Sensitivity analyses were conducted to examine the dependence of TCL tensile strain and CAA on TCL elastic modulus (0.125–10 MPa volar-dorsally; 1.375–110 MPa transversely), skin-fat and thenar muscle initial shear modulus (1.6–160 kPa for skin-fat; 0.425–42.5 kPa for muscle), and intratunnel pressure (60–480 mmHg). Predictions of TCL tensile strain under different intratunnel pressures were validated with the experimental data obtained on the same cadaveric hand. Results showed that skin, fat and muscles had little effect on the TCL tensile strain and CAA changes. However, TCL tensile strain and CAA increased with decreased elastic modulus of TCL and increased intratunnel pressure. The TCL tensile strain and CAA increased linearly with increased pressure while increased exponentially with decreased elastic modulus of TCL. Softening the TCL by decreasing the elastic modulus may be an alternative clinical approach to carpal tunnel expansion to accommodate elevated intratunnel pressure and alleviate median nerve compression neuropathy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号