首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
UDP-N-acetylgalactosamine--GM3 acetylgalactosaminyltransferase (GM2-synthase) was studied in a Golgi-rich fraction from rat liver. Activity in a cell-free system required the presence of detergents; octyl glucoside was found to be the most effective in stimulating the enzyme. Optimal activity of GM2-synthase was obtained at pH 7.2, in the presence of 0.8% octyl glucoside, 10 mM Mn2+ and 5 mM CDP-choline. The latter was used to counteract the rapid sugar nucleotide hydrolysis caused by a nucleotide pyrophosphatase activity in the Golgi fraction. The apparent Km values for UDP-N-acetylgalactosamine and added GM3 were 0.035 mM and 0.1 mM, respectively. Different results were obtained if endogenous GM3 only was used as the glycolipid acceptor. In this case, the apparent Km value for UDP-N-acetylgalactosamine was 0.18 mM and Co2+ and Fe2+ exceeded Mn2+ in activating GM2-synthase. Under optimal assay conditions and in the presence of added GM3 and 5 mM CDP-choline, the specific activity of the enriched Golgi fraction was measured to be 25-30 nmol X mg protein-1 X h-1; with endogenous GM3 as the sole glycolipid acceptor, V was calculated to be 9 nmol X mg protein-1 X h-1.  相似文献   

2.
Both arylsulfatases (EC 3.1.6.1, ARS) A and B purified from human kidney displayed Michaelis-Menten kinetics towards catecholamines sulfates as substrates with Km values in the range of 4-25 mM. ARS A hydrolyzed adrenaline 3-sulfate and noradrenaline 3-sulfate with a maximal rate lower than that observed for cerebroside 3-sulfate. In contrast, ARS B hydrolyzed adrenaline 3-sulfate and noradrenaline 3-sulfate with a maximal rate similar to that observed for UDP-N-acetylgalactosamine 4-sulfate.  相似文献   

3.
Three sialyltransferase activities involved in ganglioside biosynthesis were studied in Golgi-enriched preparations of rat liver: the formation of GM3, GD3 and GD1a. The conditions for the quantitative assays of these enzymatic reactions were standardized and optimized, with Triton X-100 being used as detergent. The apparent Km values of each sialyltransferase for N-acetyl-2-(5'-cytidylyl)neuraminic acid (1.5 mM with GM3 synthase, 0.2 mM with GD3 synthase, and 0.5 mM with GD1a synthase) and the respective glycolipid substrates (0.08 mM for lactosylceramide, 0.1 mM for GM3, and 0.5 mM for GM1) were determined. Competition experiments showed that the three sialyltransferase activities are three individual catalytic entities. Moreover, evidence was found that product inhibition may play a role in the regulation of the activity of sialyltransferases.  相似文献   

4.
Heparan sulfate, keratan sulfate, chondroitin, chondroitin 4/6-sulfate (80% 4-sulfate and 20% 6-sulfate), and UDP-N-acetylgalactosamine 4-sulfate were used as acceptors for the measurement of 3'-phosphoadenylyl sulfate: glycosaminoglycan sulfotransferase activities in human serum. Chromatographic fractionation of the serum followed by determination of the sulfotransferase activities demonstrated the existence of at least four different sulfotransferases capable of introducing sulfate to 1) position 6 of the internal N-acetylgalactosamine units of chondroitin, 2) position 6 of the nonreducing terminal N-acetylgalactosamine 4-sulfate unit of chondroitin 4/6-sulfate, 3) position 2 (amino group) of the glucosamine units in heparan sulfate, and 4) the sugar units in keratan sulfate, respectively. The fourth activity was separated into two subfractions with different specificities for the structure of neighboring sugars of the sulfate-accepting sugar units. No major variations in the sulfotransferase activities on added receptors were found to occur in sera from individuals 22-41 years old. In contrast, the activities in sera of various mammalian and avian species showed a species-specific variation. With mouse skin fibroblasts cultured in serum-free medium, preferential secretion of several sulfotransferases could be demonstrated. The results, taken together, suggest that the appearance of the sulfotransferases in serum is not a fortuitous event due to nonspecific cell death, but the result of an elaborate mechanism for enzyme secretion by a cell or tissue system.  相似文献   

5.
The conditions for the quantitative determination of UDP-Gal:glucosylceramide galactosyltransferase and of UDP-Gal:GM2 galactosyltransferase in Golgi-enriched preparations of rat liver were optimized. Triton X-100 was the detergent routinely used as octyl glucoside acted as a galactose acceptor forming octyl lactoside. Manganese ions were required for full activity, but Co2+ and Mg2+ could substitute to some extent. The nucleotide pyrophosphatase activity of the Golgi preparations which interfered with the GL2-synthase assay was inhibited by addition of 20 mM IMP; the latter is without appreciable effect on the rate of GL2 synthesis. Apparent Km values for UDP-Gal were 130 microM and 140 microM with Gl2-synthase and Gm1-synthase, respectively. That for glucosylceramide was 80 microM with GL2-synthase; for GM2 it was 10 microM with GM1-synthase. Competition experiments with variable concentrations of the lipid acceptors showed that the two synthase activities are independent catalytic entities. The specific activity of GM1-synthase exceeds that of GL2-synthase by a factor of ca. 25 under the optimized conditions used here.  相似文献   

6.
S K Basu  R L Whisler  A J Yates 《Biochemistry》1986,25(9):2577-2581
The effects of phytohemagglutinin (PHA) stimulation on the activities of sialyltransferase 1 (SAT-1), and sialyltransferase 3 (SAT-3), in human lymphocytes were investigated in vitro. For SAT-1 and SAT-3, respectively, the apparent Km values with variable CMP-NeuAc concentrations were 0.19 and 0.015 mM and with variable LacCer were 0.075 and 0.17 mM. Progressive increases in the activities of SAT-1 and SAT-3 were detected in lymphocytes stimulated with PHA, whereas no increase was observed in control lymphocytes incubated in culture medium alone. These increased activities occurred within 18-36 h of incubation and preceded optimum lymphocyte proliferation. Intact lymphocytes were needed for the lectin-stimulated increase of sialyltransferase activities because neither concanavalin A nor phytohemagglutinin added to the broken cell preparation modulated SAT-1 activity. The glycolipid products formed as a result of these enzymatic reactions in the presence of endogenous and exogenous acceptors were tentatively identified by thin-layer chromatography and autofluorography. The addition of exogenous LacCer to the SAT-1 assay resulted in the radiolabeling of a small amount of ganglioside GM1b (3.4%), but GM3 was the major labeled product (96%). When GgOse4Cer was added to the SAT-3 assay, 32% GM3 and 24.6% GM1b were detected while 44% consisted of glycolipids not labeled in assays performed without exogenous acceptors. Of the radioactivity transferred to endogenous acceptors, 81.3% was in GM3 and 14.6% in GM1b. These results demonstrate that the modulation of sialyltransferase activity occurs earlier than cellular activation.  相似文献   

7.
The kinetics of beta-D-N-acetylhexosaminidase against GM2 ganglioside were examined. We used a crude preparation of rat liver as the enzyme source because purification of beta-D-N-acetylhexosaminidase results in a decrease in specific activity against GM2 ganglioside. Kinetic plots were not linear but showed a break. At substrate concentrations less than 50 microM the Vmax was 6 pmol GM2 hydrolyzed per hour per micromole 4-MU-GlcNAc hydrolyzed per hour (pmol GM2/mumol 4-MU-GlcNAc) and the Km was 5 microM.At substrate concentrations greater than 50 microM, the Vmax was 7 pmol GM2/mumol 4-MU-GlcNAc and the Km was 14 microM. The critical micelle concentration of GM2 ganglioside was 20-25 microM as determined by spectral shifts of the dye pinacyanol chloride in association with GM2, and 10-15 microM from electrical conductivity measurements which also showed the end of the monomer-micelle transition to occur at 40-50 microM GM2. The increasing excess of micellar substrate at greater than 50 microM GM2 explains the discontinuity in the kinetic plots. Sodium taurocholate had a critical micelle concentration of 9-11 mM using pinacyanol chloride and 2.5-3 mM using electrical conductivity. When included in the assay mixture at a concentration of 10 mM, sodium taurocholate produced a linear kinetic plot. This is probably due to the formation of mixed micelles of detergent and GM2 ganglioside. The Vmax was 200 pmol GM2/MUmol 4-MU-GlcNAc and the Km was 93 microM. The data suggest that ganglioside hydrolysis occurs more readily when the substrate is incorporated into a membrane-like environment.  相似文献   

8.
A UDP-N-acetylgalactosamine:ganglioside GM3 beta-N-acetylgalactosaminyltransferase which catalyzes the conversion of ganglioside GM3 to GM2 has been purified over 6300-fold from a Triton X-100 extract of rat liver particulate fractions by hydrophobic chromatography and affinity chromatography on GM3-acid-Sepharose. The purified enzyme has two identical subunits of 64,000 daltons. The enzyme has a pH optimum of pH 6.7-6.9 and requires divalent cations such as Mn2+ and Ni2+. In studies on substrate specificity GM3 containing N-acetylneuraminic acid (GM3(NeuAc] and GM3 containing N-glycolylneuraminic acid were both good acceptors for the purified enzyme. The plots of the activity of transferase as a function of GM3(NeuAc) showed sigmoidal relationships. The oligosaccharide of GM3, sialyllactose, was also a good acceptor, which indicates that the preferred acceptor substrate has the possible structure NeuAc alpha 2- or NeuGc alpha 2-3 Gal beta 1-4Glc-OR.  相似文献   

9.
A K Verma  J T Penniston 《Biochemistry》1984,23(21):5010-5015
The highly purified Ca2+-pumping ATPase from human erythrocyte membranes displays two p-nitrophenylphosphatase (NPPase) activities: one of these requires calmodulin and low concentrations of Ca2+, while the other requires ATP and higher Ca2+ concentrations. The free Ca2+ concentrations required for the expression of the two NPPase activities differed very substantially. Both activities required high free Mg2+ concentrations and displayed simple hyperbolic kinetics toward p-nitrophenyl phosphate (NPP) with a Km in the range of 5-20 mM. Study of the dependence of the calmodulin-stimulated NPPase on Mg2+ and NPP indicated that the Mg-NPP complex is not the substrate of the enzyme. Under conditions optimal for ATP-requiring NPPase (1 mM free Ca2+), the Ca2+-ATPase displayed simple hyperbolic kinetics with a low Km for ATP. NPP competitively inhibited this activity, and the apparent Ki for NPP was less than 1 mM, much lower than the Km for NPP as a substrate. If NPP were inhibiting the ATPase by binding at the same site at which NPP is hydrolyzed, the apparent Ki for NPP as inhibitor would be the same as the Km for NPP as substrate. (Under these circumstances, the apparent Ki and the Km can be directly compared, since NPP was being hydrolyzed under both circumstances.) Since Ki was much lower than Km, NPP must have been inhibiting at another site; thus, these data show the existence of two types of NPP sites on the enzyme, one at which NPP is hydrolyzed and the other at which it inhibits ATP hydrolysis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Gangliosides in the range of 0.1-0.4 mM inhibited the UDP-N-acetylgalactosamine:GM3, N-acetylgalactosaminyl transferase (EC 2.4.1.79) of chicken retina. Other lipids such as phosphatidylethanolamine, sphingomyelin, sulfatides, and phosphatidic acid in concentrations similar to those of gangliosides did not affect the enzyme activity significantly. GM3 has an inhibition capability slightly less than that of gangliosides with two or three sialyl groups in their molecules, while asialo-GM1 is clearly less inhibitory. The inhibitory effect of a constant amount of GT1 ganglioside was higher at low concentrations of membrane preparation, but the inhibition was similar at different concentrations of the substrates GM3 or UDP-N-acetylgalactosamine and at all incubation times studied. The added gangliosides were found attached to the membranes. In this attached state they may act either as substrate or inhibitor. The inhibitory effect of gangliosides was not apparent when a mixture of Triton CF 54-Tween 80 was added to the incubation medium at concentrations greater than 0.33%.  相似文献   

11.
The phosphoenolpyruvate carboxykinase (ATP:oxaloacetate carboxy-lyase (transphosphorylating), EC 4.1.1.49) of the epimastigote form of Trypanosoma (Schizotrypanum) cruzi has been purified to homogeneity. The enzyme is composed of two apparently identical 42,000 +/- 500 subunits, is highly specific for adenine nucleotides, and has a strict requirement of Mn2+ ions for activity; the activation of the enzyme by ionic Mn2+ reveals that one Mn2+ ion required for each 42,000 subunit. Hyperbolic kinetics are observed for all substrates in the carboxylation reaction with Km (phosphoenolpyruvate) of 0.36 +/- 0.08 mM, Km (HCO-3) of 3.7 +/- 0.2 mM, and Km (Mg-ADP) of 39 +/- 1 microM. In the decarboxylation reaction the kinetics with respect to oxalacetic acid are also hyperbolic with a Km of 27 +/- 3 microM, but towards Mg-ATP there is a biphasic response: hyperbolic at low (less than 250 microM) concentrations with a Km of 39 +/- 1 microM, but at higher concentrations the nucleotide produces a strong inhibition of the enzyme activity. This inhibition is also observed with Mg-GTP and Mg-ITP which are not substrates of the reaction. The results are consistent with an important regulatory function of the enzyme in the amino-acid catabolism of T. cruzi.  相似文献   

12.
Previous studies have shown a strong correlation between reduced levels of GM3 ganglioside and an increase in the oncogenic transformation of cultured cells. CMP-sialic acid:lactosylceramide sialyltransferase, which catalyzes GM3 synthesis, was characterized in cultured hamster fibroblasts (NIL-8) with respect to substrate binding, pH optimum, detergent requirements, metal ion requirements, activity during cell cycle phases and activity during cell growth phases. The apparent Km values for CMP-sialic acid and lactosylceramide were 0.16 and 0.11 mM, respectively. The enzyme required Mn2+ (15 mM) for maximal, but Mg2+ and Ca2+ were able to substitute to a lesser extent. Triton CF-54 (0.3%, w/v) compared to other nonionic detergents gave the greatest enzyme activation, while ionic detergents inhibited the enzyme. A broad pH optimum (4.5-8.0) was obtained, with maximum activity at pH 6.5 in cacodylate-HCl buffer. No buffer effects on enzyme activity were seen. Sialyltransferase activity was found to be highest in the M and G1 phases of the cell cycle and in the contact-inhibited phase of cell growth.  相似文献   

13.
The hydrolysis and transphosphatidylation of lysophosphatidylcholine (LPC), with a partially purified preparation of phospholipase D (PL D) from Savoy cabbage, was investigated. These reactions were about 20 times slower than the hydrolysis of phosphatidylcholine (PC) in a micellar system. For the transfer reaction, 2 M glycerol was included in the media, which suppressed the hydrolytic reaction. Both reactions presented similar V(max) values, suggesting that the formation of the phosphatidyl-enzyme intermediate is the rate-limiting step. The enzyme had an absolute requirement for Ca(2+), and the optimum concentration was approximately 40 mM CaCl(2). K(Ca)(app) was calculated to be 8.6+/-0.74 mM for the hydrolytic and 10+/-0.97 mM for the transphosphatidylation reaction. Both activities reached a maximum at pH 5.5, independent of Ca(2+) concentration. Kinetic studies showed that the Km(app) for the glycerol in the transphosphatidylation reaction is 388+/-37 mM. Km(app) for the lysophosphatidylcholine depended on Ca(2+) concentration and fell between 1 and 3 mM at CaCl(2) concentrations from 4 to 40 mM. SDS, TX-100, and CTAB did not activate the enzyme as reported for phosphatidylcholine hydrolysis; on the contrary, reaction rates decreased at detergent concentrations at or above that of lysophosphatidylcholine.  相似文献   

14.
Biosynthesis of phosphatidylinositol in Crithidia fasciculata   总被引:1,自引:0,他引:1  
Microsomal preparations from the protozoan (Crithidia fasciculata were shown to incorporate myo-[2-3H]inositol into phosphatidylinositol by both the CDPdiacylglycerol:myo-inositol phosphatidyltransferase reaction and by a myo-inositol exchange reaction. Non-ionic detergent and Mg2+ were necessary for the measurement of transferase activity. Untreated preparations could not be saturated with Mg2+, even at very high concentrations (50-75 mM). However, low concentrations of EGTA (75 micro M) both stimulated the activity 3-fold and reduced the Mg2+ required for saturation to 15-20 mM. EGTA also increased the apparent Km for CDPdiacylglycerol while increasing the sensitivity to substrate inhibition above 1 mM. The transferase activity was inhibited by relatively low concentrations of Ca2+ (50 micro M). This and the EGTA effect suggest a possible role for Ca2+ in the modulation of phosphatidylinositol synthesis. The myo-inositol exchange activity required Mn2+, was insensitive to Ca2+ inhibition and was only slightly stimulated by detergents and EGTA. This activity was preferentially inactivated by heating at 50 degrees C in the presence of Triton X-100. In a detergent solubilized preparation the exchange activity but not the transferase exhibited a non-specific requirement for phospholipid. The differences in properties of the two activities suggest the presence of a separate exchange enzyme.  相似文献   

15.
A human placental soluble "high Km" 5'-nucleotidase has been separated from "low Km" 5'-nucleotidase and nonspecific phosphatase by AMP-Sepharose affinity chromatography. The enzyme was purified 8000-fold to a specific activity of 25.6 mumol/min/mg. The subunit molecular mass is 53 kDa, and the native molecular mass is 210 kDa, suggesting a tetrameric structure. Soluble high Km 5'-nucleotidase is most active with IMP and GMP and their deoxy derivatives. IMP is hydrolyzed 15 times faster than AMP. The enzyme has a virtually absolute requirement for magnesium ions and is regulated by them. Purine nucleoside 5'-triphosphates strongly activate the enzyme with the potency order dATP greater than ATP greater than GTP. 2,3-Diphosphoglycerate activates the enzyme as potently as ATP. Three millimolar ATP decreased the Km for IMP from 0.33 to 0.09 mM and increased the Vmax 12-fold. ATP activation was modified by the IMP concentration. At 20 microM IMP the ATP-dependent activation curve was sigmoidal, while at 2 mM IMP it was hyperbolic. The A0.5 values for ATP were 2.26 and 0.70 mM, and the relative maximal velocities were 32.9 and 126.0 nmol/min, respectively. Inorganic phosphate shifts the hyperbolic substrate velocity relationship for IMP to a sigmoidal one. With physiological concentrations of cofactors (3 mM ATP, 1-4 mM Pi, 150 mM KCl) at pH 7.4, the enzyme is 25-35 times more active toward 100 microM IMP than 100 microM AMP. These data show that: (a) soluble human placental high Km 5'-nucleotidase coexists in human placenta with the low Km enzyme; (b) under physiological conditions the enzyme favors the hydrolysis of IMP and is critically regulated by IMP, ATP, and Pi levels; and (c) kinetic properties of ATP and IMP are each modified by the other compound suggesting complex interaction of the associated binding sites.  相似文献   

16.
Cytidine 5'-diphospho (CDP)-1,2-diacyl-sn-glycerol (CDPdiacylglycerol):sn-glycerol-3-phosphate phosphatidyltransferase (EC 2.7.8.5, phosphatidylglycero-P synthase) and CDPdiacylglycerol:L-serine O-phosphatidyltransferase (EC 2.7.8.8, phosphatidylserine synthase) activities were identified in the cell envelope fraction of the gram-positive anaerobe Clostridium perfringens. The association of phosphatidylglycero-P synthase and phosphatidylserine synthase with the cell envelope fraction of cell-free extracts was demonstrated by sucrose density gradient centrifugation, by both activities sedimenting with the 100,000 x g pellet and solubilization of both activities from the 100,000 x g pellet with Triton X-100. The pH optimum for both enzyme activities was 8.0 with tris(hydroxy-methyl)aminomethane-hydrochloride buffer. Phosphatidylglycero-P synthase activity was dependent on magnesium ions (100 mM). Phosphatidylserine synthase activity was dependent on manganese (0.1 mM) or magnesium ions (50 mM). Both enzyme activities were dependent on the addition of the nonionic detergent Triton X-100. Maximum phosphatidylglycero-P synthase and phosphatidylserine synthase activities were obtained when the molar ratio of Triton X-100 to CDP-diacylglycerol was 50:1 and 12:1, respectively. The Km for sn-glycero-3-P in the phosphatidylglycero-P synthase reaction was 0.1 mM. The Km for L-serine in the phosphatidylserine synthase reaction was 0.15 mM. Both enzyme activities were 100% stable for at least 20 min at 60 degrees C.  相似文献   

17.
1. The renal cell lines, JTC-12 and MDCK, not only synthesize galactosylceramide 3-sulfate and lactosylceramide 3'-sulfate in vivo, but also contain enzymes that catalyze the transfer of sulfate to galactosylceramide and lactosylceramide in vitro. 2. Concentration of cations necessary for maximum sulfotransferase activity occurred at 40 mM Ca2+ with galactosylceramide and 15 mM Ca2+ with lactosylceramide as the substrate. Na+ was also found to stimulate the sulfation of galactosylceramide, but was slightly inhibitory for the sulfation of lactosylceramide. 3. The products of the in vitro assay mixture were characterized as galactosylceramide 3-sulfate and lactosylceramide 3'-sulfate by a variety of TLC separations. 4. The apparent Km of JTC-12 cells for galactosylceramide was 17 microM, while that for lactosylceramide was 82 microM. The Km values of MDCK cells were comparable to those of JTC-12 cells. Competition studies suggested that galactosylceramide and lactosylceramide were sulfated by a single enzyme in both cell lines.  相似文献   

18.
Sialyltransferase activity in normal human breast tissue and tumors was investigated with lactose, desialylated fetuin, and bovine submaxillary mucin as the acceptors. While microsomal preparations from the normal tissue showed little or no sialyltransferase activity toward these acceptors, tumors showed elevated enzymic activities. Tween-20 at 0.5% concentrations stimulated sialic acid transfer to all three acceptors. Another nonionic detergent, Triton X-100, stimulated asialo fetuin sialyltransferase activity while inhibiting activity toward asialo BSM and lactose. Interestingly, lysolecithin, a normal cellular constituent which possesses detergent properties also had an effect similar to that of Triton X-100. Thermal denaturation curves of enzymic activity toward asialo BSM, however, resembled those seen with asialo fetuin as the acceptor. Kinetic studies showed that at acceptor concentrations of 500 micrograms each, sialyl transfers to asialo fetuin, asialo BSM, and lactose showed apparent Km values of 50, 60, and 300 microM, respectively. At CMP-sialic acid concentrations of 300 microM, the Km values for the above acceptors were 25, 15, and 5000 microM.  相似文献   

19.
We have measured the 'core' mammalian carbamoyl-phosphate synthetase II (CPSII) activity, using NH4Cl as the nitrogen-donating substrate and trapping carbamoyl phosphate as urea through its reaction with ammonium ions. When ATP and magnesium ion concentrations are close to those found in the cell, the substrate saturation curves for ammonia and bicarbonate are hyperbolic, giving Km (NH3) values of 166 microM at high ATP concentrations and 26 microM at low ATP concentrations, while the Km (bicarbonate) is 1.4 mM at both ATP concentrations used. These values for the Km (NH3) are lower than previously reported for CPS II, and closer to the values for the mitochondrial counterpart. The Km for ammonia and bicarbonate are not altered by phosphorylation of the multienzyme polypeptide CAD, which contains the first three enzyme activities of pyrimidine biosynthesis. The CPS II activity is lower with an excess of either ATP or magnesium ions, causing the apparently sigmoid dependence of activity upon ATP concentration to be enhanced at low concentrations of free magnesium ions. The feedback inhibitor, UTP, acts by stabilising a state with a low affinity for magnesium ions and for ATP. In the presence of the activator, 5-phosphoribosyl diphosphate (PRibPP), the enzyme has a higher affinity for magnesium ions and thus the ATP dependence of the activity is hyperbolic. Phosphorylation of CAD similarly activates the CPS II enzyme by increasing the affinity for magnesium ions and by pushing the equilibrium away from the low-affinity UTP-stabilised state. Using our improved assay procedure, we observe a very large activation by PRibPP of carbamoylphosphate synthesis at low concentrations of magnesium ions, and we find that unlike UTP, the activator PRibPP is able to act on the phosphorylated enzyme.  相似文献   

20.
An in vitro study of bile acid-CoA:amino acid N-acyltransferase activity of rat liver was undertaken in order to determine whether separate amino acid-specific enzymes catalyzed the formation of glycine and taurine conjugates of bile acids as postulated by others. Polyacrylamide gel electrophoresis of 200-fold purified enzyme localized the glycine- and taurine-dependent activities to a single band. Both activities were optimal at pH 7.8 and showed similar loss of activity at pH 6.0, pH 9.0, in the presence of 5,5'-dithiobis(2-nitrobenzoic acid), and at temperatures exceeding 50 degrees. With the purified fraction, Km for glycine was 31 mM and Km for taurine was 0.8 mM. Km for several bile acid-CoA substrates was approximately 20 micron and independent of the amino acid acceptor. Only amino acids with terminal alpha- or beta-amino groups were active as acyl acceptors. Acyl donors were limited to bile acid-CoA derivatives. The data support the conclusion that the rat has a single bile acid-CoA:amino acid N-acyltransferase. The substrate kinetics are consistent with previous observations that taurine conjugates predominate in rat bile at normal hepatocellular concentrations of glycine and taurine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号