首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have identified a Plasmodium vivax merozoite surface protein (MSP) that migrates on SDS-polyacrylamide gels at a Mr of about 185 kDa. This protein was recognized by a P. vivax monoclonal antibody (mAb) that localizes the protein by immunofluorescence to the surface of merozoites and also immunoprecipitates this protein from NP-40 detergent extracts of [35S]methionine metabolically radiolabeled P. vivax schizonts. The P. vivax MSP does not become biosynthetically radiolabeled with [3H]glucoamine, [3H]myristate, [3H]palmitate, or [3H]mannose, indicating that this P. vivax MSP is not posttranslationally modified and bound to the merozoite membrane by a glycosylphosphatidylinositol (GPI) lipid anchor. Thus, in this respect, this protein is different from members of the MSP-1 protein family and from MSP-2 and MSP-4 of P. falciparum. The mAb cross-reacts with and outlines the surface of P. cynomolgi merozoites and immunoprecipitates a 150-kDa P. cynomolgi homologue. The mAb was used as an affinity reagent to purify the native homologous MSP from NP-40 extracts of P. cynomolgi mature schizonts in order to develop a specific polyclonal antiserum. The resulting anti-PcyMSP rabbit antiserum cross-reacts strongly with the P. vivax 185-kDa MSP and also recognizes an analogous 110-kDa protein from P. knowlesi. We have determined via an immunodepletion experiment that the 110-kDa P. knowlesi MSP corresponds to the PK 110 protein partially characterized earlier (Perler et al. 1987). The potential of P. vivax MSP as a vaccine candidate was addressed by conducting in vitro inhibition of erythrocyte invasion assays, and the IgG fraction of both the P. vivax MSP mAb and the P. cynomolgi MSP rabbit antiserum significantly inhibited entry of P. vivax merozoites. We denote, on a preliminary basis, these antigenically related merozite surface proteins PvMSP-185, PcyMSP-150, and PkMSP-110.  相似文献   

2.
The protozoan parasite Plasmodium causes malaria, with hundreds of millions of cases recorded annually. Protection against malaria infection can be conferred by antibodies against merozoite surface protein (MSP)-1, making it an attractive vaccine candidate. Here we present the structure of the C-terminal domains of MSP-1 (known as MSP-1(19)) from Plasmodium knowlesi. The structure reveals two tightly packed epidermal growth factor-like domains oriented head to tail. In domain 1, the molecule displays a histidine binding site formed primarily by a highly conserved tryptophan. The protein carries a pronounced overall negative charge primarily due to the large number of acidic groups in domain 2. To map protein binding surfaces on MSP-1(19), we have analyzed the crystal contacts in five different crystal environments, revealing that domain 1 is highly preferred in protein-protein interactions. A comparison of MSP-1(19) structures from P. knowlesi, P. cynomolgi, and P. falciparum shows that, although the overall protein folds are similar, the molecules show significant differences in charge distribution. We propose the histidine binding site in domain 1 as a target for inhibitors of protein binding to MSP-1, which might prevent invasion of the merozoite into red blood cells.  相似文献   

3.
Five out of 18 monoclonal antibodies (moAB's) produced against blood stages of a Brazilian (Belem) strain of Plasmodium vivax were shown to cross-react with all of the 11 strains of the P. cynomolgi complex that were assayed. The 5 moAB's produced 3 different patterns of immunofluorescence, identical for both P. vivax and P. cynomolgi. Three of these moAB's appeared to react with antigens associated with the cytoplasm or membranes of infected erythrocytes. By Western blot analysis, 2 of these 3 moAB's identified an antigen with an apparent molecular weight of 31 kDa in extracts of parasitized erythrocytes of both species; the third of these moAB's reacted with an antigen with an apparent molecular weight of 95 kDa. By immunofluorescence, the 2 other moAB's reacted only with parasites at all developmental stages. The target antigen of these 2 moAB's was not identified. Immunoradiometric assays indicated that the moAB's are directed against 3 or possibly 4 distinct nonrepetitive epitopes. None of the moAB's inhibited merozoite invasion or growth of the parasites in an in vitro culture system of the Berok strain of P. cynomolgi.  相似文献   

4.
Effective blood-stage malaria vaccine candidates have been mainly developed from the proteins in exposed locations on the parasite such as the surface of free merozoites or infected red blood cells. In the present study, we identified and localized novel protective antigens derived from the blood-stage of Plasmodium berghei XAT after establishment of hybridomas producing protective monoclonal antibodies (mAbs) against the parasites. The protective antigens were expressed in schizonts but not in trophozoites, and located in the parasitophorous vacuoles in the infected erythrocyte cytoplasm. The antigens, with molecular weight of 155/160 kDa, were not identical to any merozoite/schizont antigens that have been reported as target molecules recognized by mAbs developed to rodent malaria parasites. The characterization of new malarial antigenic targets of potentially protective antibody responses following infection would give us new insights for the selection of candidate antigens for malaria vaccine.  相似文献   

5.
One strategy to develop a multi-antigen malaria vaccine is to employ live vectors to carry putative protective Plasmodium falciparum antigens to the immune system. The 19 kDa carboxyl terminus of P. falciparum merozoite surface protein 1 (MSP-1), which is essential for erythrocyte invasion and is a leading antigen for inclusion in a multivalent malaria vaccine, was genetically fused to fragment C of tetanus toxin and expressed within attenuated Salmonella typhi CVD 908. Under conditions in the bacterial cytoplasm, the fragment C-MSP-1 fusion did not form the epidermal growth factor (EGF)-like domains of MSP-1; monoclonal antibodies failed to recognize these conformational domains in immunoblots of non-denatured protein extracted from live vector sonicates. The MSP-1 was nevertheless immunogenic. One month following intranasal immunization of BALB/c mice with the live vector construct, four out of five mice exhibited > or =four-fold rises in anti-MSP-1 by ELISA (GMT=211); a single intranasal booster raised titers further (GMT=1280). Post-immunization sera recognized native MSP-1 on merozoites as determined by indirect immunofluorescence. These data encourage efforts to optimize MSP-1 expression in S. typhi (e.g. as a secreted protein), so that the EGF-like epitopes, presumably necessary for stimulating protective antibodies, can form.  相似文献   

6.

Background

One of the criteria to objectively prioritize merozoite antigens for malaria vaccine development is the demonstration that naturally acquired antibodies are associated with protection from malaria. However, published evidence of the protective effect of these antibodies is conflicting.

Methods and Findings

We performed a systematic review with meta-analysis of prospective cohort studies examining the association between anti-merozoite immunoglobin (Ig) G responses and incidence of Plasmodium falciparum malaria. Two independent researchers searched six databases and identified 33 studies that met predefined inclusion and quality criteria, including a rigorous definition of symptomatic malaria. We found that only five studies were performed outside sub-Saharan Africa and that there was a deficiency in studies investigating antibodies to leading vaccine candidates merozoite surface protein (MSP)-142 and erythrocyte binding antigen (EBA)-175. Meta-analyses of most-studied antigens were conducted to obtain summary estimates of the association between antibodies and incidence of P. falciparum malaria. The largest effect was observed with IgG to MSP-3 C terminus and MSP-119 (responders versus nonresponders, 54%, 95% confidence interval [CI] [33%–68%] and 18% [4%–30%] relative reduction in risk, respectively) and there was evidence of a dose-response relationship. A tendency towards protective risk ratios (RR<1) was also observed for individual study estimates for apical membrane antigen (AMA)-1 and glutamate-rich protein (GLURP)-R0. Pooled estimates showed limited evidence of a protective effect for antibodies to MSP-1 N-terminal regions or MSP-1-EGF (epidermal growth factor-like modules). There was no significant evidence for the protective effect for MSP-2 (responders versus nonresponders pooled RR, MSP-2FC27 0.82, 95% CI 0.62–1.08, p = 0.16 and MSP-23D7 0.92, 95% CI 0.75–1.13, p = 0.43). Heterogeneity, in terms of clinical and methodological diversity between studies, was an important issue in the meta-analysis of IgG responses to merozoite antigens.

Conclusions

These findings are valuable for advancing vaccine development by providing evidence supporting merozoite antigens as targets of protective immunity in humans, and to help identify antigens that confer protection from malaria. Further prospective cohort studies that include a larger number of lead antigens and populations outside Africa are greatly needed to ensure generalizability of results. The reporting of results needs to be standardized to maximize comparability of studies. We therefore propose a set of guidelines to facilitate the uniform reporting of malaria immuno-epidemiology observational studies. Please see later in the article for the Editors'' Summary  相似文献   

7.
Development of effective malaria vaccines is hampered by the problem of producing correctly folded Plasmodium proteins for use as vaccine components. We have investigated the use of a novel ciliate expression system, Tetrahymena thermophila, as a P. falciparum vaccine antigen platform. A synthetic vaccine antigen composed of N-terminal and C-terminal regions of merozoite surface protein-1 (MSP-1) was expressed in Tetrahymena thermophila. The recombinant antigen was secreted into the culture medium and purified by monoclonal antibody (mAb) affinity chromatography. The vaccine was immunogenic in MF1 mice, eliciting high antibody titers against both N- and C-terminal components. Sera from immunized animals reacted strongly with P. falciparum parasites from three antigenically different strains by immunofluorescence assays, confirming that the antibodies produced are able to recognize parasite antigens in their native form. Epitope mapping of serum reactivity with a peptide library derived from all three MSP-1 Block 2 serotypes confirmed that the MSP-1 Block 2 hybrid component of the vaccine had effectively targeted all three serotypes of this polymorphic region of MSP-1. This study has successfully demonstrated the use of Tetrahymena thermophila as a recombinant protein expression platform for the production of malaria vaccine antigens.  相似文献   

8.
In previous immuno-epidemiological studies of the naturally acquired antibody responses to merozoite surface protein-1 (MSP-1) of Plasmodium vivax, we had evidence that the responses to distinct erythrocytic stage antigens could be differentially regulated. The present study was designed to compare the antibody response to three asexual erythrocytic stage antigens vaccine candidates of P. vivax. Recombinant proteins representing the 19 kDa C-terminal region of MSP-1(PvMSP19), apical membrane antigen n-1 ectodomain (PvAMA-1), and the region II of duffy binding protein (PvDBP-RII) were compared in their ability to bind to IgG antibodies of serum samples collected from 220 individuals from the state of Pará, in the North of Brazil. During patent infection with P. vivax, the frequency of individuals with IgG antibodies to PvMSP1(19), PvAMA-1, and PvDBP-RII were 95, 72.7, and 44.5% respectively. Although the frequency of responders to PvDBP-RII was lower, this frequency increased in individuals following multiple malarial infections. Individually, the specific antibody levels did not decline significantly nine months after treatment, except to PvMSP1(19). Our results further confirm a complex regulation of the immune response to distinct blood stage antigens. The reason for that is presently unknown but it may contribute to the high risk of re-infection in individuals living in the endemic areas.  相似文献   

9.
Polymorphic parasite antigens are known targets of protective immunity to malaria, but this antigenic variation poses challenges to vaccine development. A synthetic MSP-1 Block 2 construct, based on all polymorphic variants found in natural Plasmodium falciparum isolates has been designed, combined with the relatively conserved Block 1 sequence of MSP-1 and expressed in E.coli. The MSP-1 Hybrid antigen has been produced with high yield by fed-batch fermentation and purified without the aid of affinity tags resulting in a pure and extremely thermostable antigen preparation. MSP-1 hybrid is immunogenic in experimental animals using adjuvants suitable for human use, eliciting antibodies against epitopes from all three Block 2 serotypes. Human serum antibodies from Africans naturally exposed to malaria reacted to the MSP-1 hybrid as strongly as, or better than the same serum reactivities to individual MSP-1 Block 2 antigens, and these antibody responses showed clear associations with reduced incidence of malaria episodes. The MSP-1 hybrid is designed to induce a protective antibody response to the highly polymorphic Block 2 region of MSP-1, enhancing the repertoire of MSP-1 Block 2 antibody responses found among immune and semi-immune individuals in malaria endemic areas. The target population for such a vaccine is young children and vulnerable adults, to accelerate the acquisition of a full range of malaria protective antibodies against this polymorphic parasite antigen.  相似文献   

10.
Western blot analysis was performed to diagnose vivax malaria using stage-specific recombinant antigens. Genomic DNA from the whole blood of a malaria patient was used as templates to amplify the coding regions for the antigenic domains of circumsporozoite protein (CSP-1), merozoite surface protein (MSP-1), apical merozoite antigen (AMA-1), serine repeat antigen (SERA), and exported antigen (EXP-1) of Plasmodium vivax. Each amplified DNA fragment was inserted into a pGEX-4T plasmid to induce the expression of GST fusion protein in Escherichia coli by IPTG. The bacterial cell extracts were separated on 10% SDS-PAGE followed by western blot analysis with patient sera which was confirmed by blood smear examination. When applied with patient sera, 147 (91.9%) out of 160 vivax malaria, 12 (92.3%) out of 13 falciparum malaria, and all 9 vivax/falciparum mixed malaria reacted with at least one antigen, while no reactions occurred with 20 normal uninfected sera. In the case of vivax malaria, CSP-1 reacted with 128 (80.0%) sera, MSP-1 with 102 (63.8%), AMA-1 with 128 (80.0%), SERA with 115 (71.9%), and EXP-1 with 89 (55.6%), respectively. We obtained higher detection rates when using 5 antigens (91.9%) rather than using each antigen solely (55.6-80%), a combination of 2 (76.3-87.5%), 3 (85.6-90.6%), or 4 antigens (89.4-91.3%). This method can be applied to serological diagnosis, mass screening in endemic regions, or safety test in transfusion of prevalent vivax malaria.  相似文献   

11.
Serine repeat antigen-5 (SERA5) is a candidate antigen for inclusion into a malaria subunit vaccine. During merozoite release and reinvasion the 120 kDa SERA5 precursor protein (P120) is processed, and a complex consisting of an N-terminal 47 kDa (P47) and a C-terminal 18kDa (P18) processing product associates with the surface of merozoites. This complex is thought to be involved in merozoite invasion of and/or egress from host erythrocytes. Here we describe the synthesis and immunogenic properties of virosomally formulated synthetic phosphatidylethanolamine (PE)-peptide conjugates, incorporating amino acid sequence stretches from the N-terminus of Plasmodium falciparum SERA5. Choosing an appropriate sequence was crucial for the development of a peptide that elicited high titers of parasite cross-reactive antibodies in mice. Monoclonal antibodies (mAbs) raised against the optimized peptide FB-23 incorporating amino acids 57-94 of SERA5 bound to both P120 and to P47. Western blotting analysis proved for the first time the presence of SERA5 P47 in sporozoites. In immunofluorescence assays, the mAbs stained SERA5 in all its predicted localizations. The virosomal formulation of peptide FB-23 is suitable for use in humans and represents a candidate component for a multi-valent malaria subunit vaccine targeting both sporozoites and blood stage parasites.  相似文献   

12.
Antibodies to polymorphic block 2 of the Plasmodium falciparum merozoite surface protein 1 (MSP-1) present a paradoxical association with acquired protection against clinical malaria, while showing restricted and fixed specificity, reminiscent of antigenic sin. We report here that these antibodies present a highly imbalanced, peptide-specific light chain distribution. This was not observed with several other parasite-derived peptides or antigens. These data point to a skewed immune response to MSP-1 block 2 that is constrained both in specificity and chain usage. This is the first report of a biased response to polymorphic epitopes of a surface antigen in malaria parasites.  相似文献   

13.
The merozoite surface protein-1 (MSP-1) from Plasmodium vivax was evaluated as an oral vaccine candidate by cloning and expressing the interspecies conserved block 10 (ICB10) of the MSP-1 from a Korean isolate in Escherichia coli. The expressed fusion protein contained ICB10 and a maltose-binding protein (MBP), rPv54, has a molecular weight of approximately 54 kDa as determined by SDS-PAGE analysis. IgG against rPv54 was successfully produced in BALB/c mice by oral immunization and sustained for more than 4 months. IgG2b was dominantly produced in both oral and parenteral immunizations. The rPv54 increased the frequency of NK, NKT, CD4+ T, CD8+ T, and B cells in both immunizations. IL-5 and TNF-α were increased in both significantly. In conclusion, rPv54 might be a valuable potential vaccine candidate for the oral and parenteral immunization against vivax malaria.  相似文献   

14.
BACKGROUND: The 19 kDa C-terminal region of the merozoite surface protein 1 (MSP1(19)) has been suggested as candidate for part of a subunit vaccine against malaria. A major concern in vaccine development is the polymorphism observed in different plasmodial strains. The present study examined the extension and immunological relevance of the allelic polymorphism of the MSP1(19) from Plasmodium vivax, a major human malaria parasite. MATERIALS AND METHODS: We cloned and sequenced 88 gene fragments representing the MSP1(19) from 28 Brazilian isolates of P. vivax. Subsequently, we evaluated the reactivity of rabbit polyclonal antibodies, a monoclonal antibody, and a panel of 80 human sera to bacterial and yeast recombinant proteins representing the two allelic forms of P. vivax MSP1(19) described thus far. RESULTS: We observed that DNA sequences encoding MSP1(19) were not as variable as the equivalent region of other species of Plasmodium, being conserved among Brazilian isolates of P. vivax. Also, we found that antibodies are directed mainly to conserved epitopes present in both allelic forms of the protein. CONCLUSIONS: Our findings suggest that the use of MSP1(19) as part of a subunit vaccine against P. vivax might be greatly facilitated by the limited genetic polymorphism and predominant recognition of conserved epitopes by antibodies.  相似文献   

15.
The merozoite surface protein-1 (MSP-1) of Plasmodium falciparum comprises two major targets of antibody-mediated immunity: the polymorphic block 2 and the 19-kDa C-terminal domain MSP-1(19). Here, we measured antibodies to three block 2 variants and MSP-1(19) among Amazonian gold miners and examined the repertoire of block 2 variants in local parasites. Main findings were as follows: (1) Only seven different block 2 variants were found in 18 DNA sequences analyzed. (2) No major difference was observed in IgG subclass distribution of antibodies from symptomatic P. falciparum-infected patients, asymptomatic parasite carriers, and non-infected subjects. (3) Antibodies to all block 2 antigens, but not to MSP-1(19), were biased towards IgG3 across different strata of cumulative malaria exposure. (4) Similar proportions of symptomatic and asymptomatic subjects failed to recognize the block 2 variant expressed by infecting parasites. These negative results underscore the limits of conventional antibody assays to evaluate clinical immunity to malaria.  相似文献   

16.
There is an urgent need for a vaccine against malaria and proteins on the surface of the merozoite are good targets for development as vaccine candidates because they are exposed to antibody. However, it is possible that the parasite has evolved mechanisms to evade a protective immune response to these proteins. Merozoite surface protein 1 (MSP-1) is a candidate for vaccine development and its C-terminal sequence is the target of protective antibody. MSP-1 is cleaved by proteases in two processing steps, the second step releases the bulk of the protein from the surface and goes to completion during successful red blood cell invasion. Antibodies binding to the C-terminus of Plasmodium falciparum MSP-1 can inhibit both the processing and erythrocyte invasion. Other antibodies that bind to either the C-terminal sequence or elsewhere in the molecule are 'blocking' antibodies, which on binding prevent the binding of the inhibitory antibodies. Blocking antibodies are a mechanism of immune evasion, which may be based on antigenic conservation rather than diversity. This mechanism has a number of implications for the study of protective immunity and the development of malaria vaccines, emphasising the need for appropriate functional assays and careful design of the antigen.  相似文献   

17.
Malaria parasites exhibit sequence diversity for a number of stage specific antigens. Several studies have proved that merozoite surface protein-1 (MSP-1) is an effective target eliciting a protective immune response. The MSP-1(42) region comprising two EGF-like domains is involved in generating protective immune response in humans and other experimental animals. Searching for point mutations in this region is essential in view of vaccine development. We have investigated the sequence variations in Plasmodium falciparum MSP-1 carboxy terminal region in field isolates from different regions in India. Our study reveals the presence of eight variant types of MSP-1(19) in the Indian sub-continent, which comprise of E-TSR-L, Q-TSR-L, E-TSG-L, Q-KNG-L, Q-KNG-F, E-KNG-L, E-KNG-F, and E-KYG-F. The last named allele is a novel variant being reported for the first time.  相似文献   

18.
The Block 2 region of the merozoite surface protein-1 (MSP-1) of Plasmodium falciparum has been identified as a target of protective immunity by a combination of seroepidemiology and parasite population genetics. Immunogenicity studies in small animals and Aotus monkeys were used to determine the efficacy of recombinant antigens derived from this region of MSP-1 as a potential vaccine antigen. Aotus lemurinus griseimembra monkeys were immunized three times with a recombinant antigen derived from the Block 2 region of MSP-1 of the monkey-adapted challenge strain, FVO of Plasmodium falciparum, using an adjuvant suitable for use in humans. Immunofluorescent antibody assays (IFA) against erythrocytes infected with P. falciparum using sera from the immunized monkeys showed that the MSP-1 Block 2 antigen induced significant antibody responses to whole malaria parasites. MSP-1 Block 2 antigen-specific enzyme-linked immunosorbent assays (ELISA) showed no significant differences in antibody titers between immunized animals. Immunized animals were challenged with the virulent P. falciparum FVO isolate and monitored for 21 days. Two out of four immunized animals were able to control their parasitaemia during the follow-up period, whereas two out of two controls developed fulminating parasitemia. Parasite-specific serum antibody titers measured by IFA were four-fold higher in protected animals than in unprotected animals. In addition, peptide-based epitope mapping of serum antibodies from immunized Aotus showed distinct differences in epitope specificities between protected and unprotected animals.  相似文献   

19.
African infants are often born of mothers infected with malaria during pregnancy. This can result in fetal exposure to malaria-infected erythrocytes or their soluble products with subsequent fetal immune priming or tolerance in utero. We performed a cohort study of 30 newborns from a malaria holoendemic area of Kenya to determine whether T cell sensitization to Plasmodium falciparum merozoite surface protein-1 (MSP-1) at birth correlates with infant development of anti-MSP-1 Abs acquired as a consequence of natural malaria infection. Abs to the 42- and 19-kDa C-terminal processed fragments of MSP-1 were determined by serology and by a functional assay that quantifies invasion inhibition Abs against the MSP-1(19) merozoite ligand (MSP-1(19) IIA). Infants had detectable IgG and IgM Abs to MSP-1(42) and MSP-1(19) at 6 mo of age with no significant change by age 24-30 mo. In contrast, MSP-1(19) IIA levels increased from 6 to 24-30 mo of age (16-29%, p < 0.01). Infants with evidence of prenatal exposure to malaria (defined by P. falciparum detection in maternal, placental, and/or cord blood compartments) and T cell sensitization at birth (defined by cord blood lymphocyte cytokine responses to MSP-1) showed the greatest age-related increase in MSP-1(19) IIA compared with infants with prenatal exposure to malaria but who lacked detectable T cell MSP-1 sensitization. These data suggest that fetal sensitization or tolerance to MSP-1, associated with maternal malaria infection during pregnancy, affects the development of functional Ab responses to MSP-1 during infancy.  相似文献   

20.
Although Plasmodium vivax is a leading cause of malaria around the world, only a handful of vivax antigens are being studied for vaccine development. Here, we investigated genetic signatures of selection and geospatial genetic diversity of two leading vivax vaccine antigens – Plasmodium vivax merozoite surface protein 1 (pvmsp-1) and Plasmodium vivax circumsporozoite protein (pvcsp). Using scalable next-generation sequencing, we deep-sequenced amplicons of the 42 kDa region of pvmsp-1 (n = 44) and the complete gene of pvcsp (n = 47) from Cambodian isolates. These sequences were then compared with global parasite populations obtained from GenBank. Using a combination of statistical and phylogenetic methods to assess for selection and population structure, we found strong evidence of balancing selection in the 42 kDa region of pvmsp-1, which varied significantly over the length of the gene, consistent with immune-mediated selection. In pvcsp, the highly variable central repeat region also showed patterns consistent with immune selection, which were lacking outside the repeat. The patterns of selection seen in both genes differed from their P. falciparum orthologs. In addition, we found that, similar to merozoite antigens from P. falciparum malaria, genetic diversity of pvmsp-1 sequences showed no geographic clustering, while the non-merozoite antigen, pvcsp, showed strong geographic clustering. These findings suggest that while immune selection may act on both vivax vaccine candidate antigens, the geographic distribution of genetic variability differs greatly between these two genes. The selective forces driving this diversification could lead to antigen escape and vaccine failure. Better understanding the geographic distribution of genetic variability in vaccine candidate antigens will be key to designing and implementing efficacious vaccines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号