首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
All of fourteen sulfate-reducing bacteria tested were able to carry out aerobic respiration with at least one of the following electron donors: H2, lactate, pyruvate, formate, acetate, butyrate, ethanol, sulfide, thiosulfate, sulfite. Generally, we did not obtain growth with O2 as electron acceptor. The bacteria were microaerophilic, since the respiration rates increased with decreasing O2 concentrations or ceased after repeated O2 additions. The amounts of O2 consumed indicated that the organic substrates were oxidized incompletely to acetate; only Desulfobacter postgatei oxidized acetate with O2 completely to CO2. Many of the strains oxidized sulfite (completely to sulfate) or sulfide (incompletely, except Desulfobulbus propionicus); thiosulfate was oxidized only by strains of Desulfovibrio desulfuricans; trithionate and tetrathionate were not oxidized by any of the strains. With Desulfovibrio desulfuricans CSN and Desulfobulbus propionicus the oxidation of inorganic sulfur compounds was characterized in detail. D. desulfuricans formed sulfate during oxidation of sulfite, thiosulfate or elemental sulfur prepared from polysulfide. D. propionicus oxidized sulfite and sulfide to sulfate, and elemental sulfur mainly to thiosulfate. A novel pathway that couples the sulfur and nitrogen cycles was detected: D. desulfuricans and (only with nitrite) D. propionicus were able to completely oxidize sulfide coupled to the reduction of nitrate or nitrite to ammonia. Cell-free extracts of both strains did not oxidize sulfide or thiosulfate, but formed ATP during oxidation of sulfite (37 nmol per 100 nmol sulfite). This, and the effects of AMP, pyrophosphate and molybdate on sulfite oxidation, suggested that sulfate is formed via the (reversed) sulfate activation pathway (involving APS reductase and ATP sulfurylase). Thiosulfate oxidation with O2 probably required a reductive first step, since it was obtained only with energized intact cells.Abbreviations CCCP carbonyl cyanide m-chlorophenylhydrazone - APS adenosine phosphosulfate or adenylyl sulfate  相似文献   

2.
An indirect enzyme-linked immunoadsorption assay (ELISA) was developed for cytochrome c3 using antisera to the cytochromes fromDesulfovibrio africanus Benghazi, Desulfovibrio vulgaris Hildenborough andDesulfovibrio salexigens British Guiana. The ELISA system was used to test for cross-reactions between these antisera and the heterologous antigens. In contrast to previous experiments using the Ouchterlony technique, all of the cytochromes c3 tested exhibited some degree of cross-reaction. Considerable variation was seen in cross-reactions for cytochromes c3 from differing strains ofD. desulfuricans. This observation raises questions about the taxonomic relatedness of these strains. No cross-reaction was seen with eukaryotic cytochrome c or withD. vulgaris cytochrome c553. The data demonstrate that cytochrome c3 is capable of undergoing nonprecipitating cross-reactions, and thus may not be as immunologically unique as was once thought.Abbreviations ELISA Enzyme-linked immunoadsorption assay  相似文献   

3.
Cytochrome c3 of Desulfovibrio desulfuricans strain G20 is an electron carrier for uranium (VI) reduction. When D. desulfuricans G20 was grown in medium containing a non-lethal concentration of uranyl acetate (1 mM), the rate at which the cells reduced U(VI) was decreased compared to cells grown in the absence of uranium. Western analysis did not detect cytochrome c3 in periplasmic extracts from cells grown in the presence of uranium. The expression of this predominant tetraheme cytochrome was not detectably altered by uranium during growth of the cells as monitored through a translational fusion of the gene encoding cytochrome c3 (cycA) to lacZ. Instead, cytochrome c3 protein was found tightly associated with insoluble U(IV), uraninite, after the periplasmic contents of cells were harvested by a pH shift. The association of cytochrome c3 with U(IV) was interpreted to be non-specific, since pure cytochrome c3 adsorbed to other insoluble metal oxides, including cupric oxide (CuO), ferric oxide (Fe2O3), and commercially available U(IV) oxide.An erratum to this article can be found at  相似文献   

4.
The localization of the dissimilatory sulfite reductase in Desulfovibrio desulfuricans strain Essex 6 was investigated. After treatment of the cells with lysozyme, 90% of the sulfite reductase activity was found in the membrane fraction, compared to 30% after cell rupture with the French press. Sulfite reductase was purified from the membrane (mSiR) and the soluble (sSiR) fractiion. On SDS-PAGE, both mSiR and sSiR exhibited three bands at 50, 45 and 11 kDa, respectively. From their UV/VIS properties (distinct absorption maxima at 391, 410, 583, 630 nm, enzymes as isolated) and the characteristic red fluorescence in alkaline solution, mSiR and sSiR were identified as desulfoviridin. Sulfite reductase (HSO3 -H2S) activity was reconstituted by coupling of mSiR to hydrogenase and cytochrome c 3 from D. desulfuricans. The specific activity of mSiR was 103 nmol H2 min-1 mg-1, and sulfide was the major product (72% of theoretical yield). No coupling was found with sSiR under these conditions. Furthermore, carbon monoxide was used to diferentiate between the membrane-bound and the soluble sulfite reductase. In a colorimetric assay, with photochemically reduced methyl viologen as redox mediator, CO stimulated the activity of sSiR significantly. CO had no effect in the case of mSiR. These studies documented that, as isolated, both forms of sulfite reductase behaved differently in vitro. Clearly, in D. desulfuricans, the six electron conversion HSO3 -H2S was achieved by a membranebound desulfoviridin without the assistance of artificial redox mediators, such as methyl viologen.Abbreviations SiR sulfite reductase - mSiR sulfite reductase purified from membranes - sSiR sulfite reductase purified from the soluble fraction Enzymes Sulfite reductase, EC 1.8.99.1 Cytochrome c 3 hydrogenase, EC 1.12.2.1  相似文献   

5.
In addition to three new isolates, six strains of representative species of sulfate-reducing bacteria were tested for their capacity to use elemental sulfur as an electron acceptor for growth. There was good growth and sulfide production by strain Norway 4 and the three isolates, two of which had been enriched with sulfur flower and one isolated from a culture with green sulfur bacteria. Slow but definite growth was observed with Desuflovibrio gigas. The type strains of Desulfovibrio desulfuricans, D. vulgaris, and Desulfotomaculum nigrificans as well as Desulfomonas pigra did not grow with sulfur. The four strains that grew well with sulfur flower were straight, nonsporulating rods and did not contain desulfoviridin.  相似文献   

6.
Periplasmic extract from Desulfovibrio desulfuricans (NCIMB 8372) was found to contain two different c-type cytochromes. One is tetraheme cytochrome c3 and the other is monoheme cytochrome c553. Cytochrome c3 could be purified by a procedure involving only one chromatographic step, whereas cytochrome c553 required several such steps. Cytochrome c3 was found to have a relative molecular mass of 14300 and an isoionic point higher than 9. Analysis of the redox potentials indicated one heme at -260 mV and three hemes around -330 mV. Cytochrome c553 had a relative molecular mass of 7200, an isoionic point higher than 9 and a redox potential of 0 mV.  相似文献   

7.
Disproportionation of thiosulfate or sulfite to sulfate plus sulfide was found in several sulfate-reducing bacteria. Out of nineteen strains tested, eight disproportionated thiosulfate, and four sulfite. Growth with thiosulfate or sulfite as the sole energy source was obtained with three strains (Desulfovibrio sulfodismutans and the strains Bra02 and NTA3); additionally, D. desulfuricans strain CSN grew with sulfite but not with thiosulfate, although thiosulfate was disproportionated. Two sulfur-reducing bacteria, four phototrophic sulfur-oxidizing bacteria (incubated in the dark), and Thiobacillus denitrificans did not disproportionate thiosulfate or sulfite. Desulfovibrio sulfodismutans and D. desulfuricans CSN formed sulfate from thiosulfate or sulfite even when simultaneously oxidizing hydrogen or ethanol, or in the presence of 50 mM sulfate. The capacities of sulfate reduction and of thiosulfate and sulfite disproportionation were constitutively present. Enzyme activities required for sulfate reduction (ATP sulfurylase, pyrophosphatase, APS reductase, sulfite reductase, thiosulfate reductase, as well as adenylate kinase and hydrogenase) were detected in sufficient activities to account for the growth rates observed. ADP sulfurylase and sulfite oxidoreductase activities were not detected. Disproportionation was sensitive to the uncoupler carbonylcyanide m-chlorophenylhydrazone (CCCP) but not to the ATPase inhibitor dicyclohexylcarbodiimide (DCCD). It is proposed that during thiosulfate and sulfite disproportionation sulfate is formed via APS reductase and ATP sulfurylase, but not by sulfite oxidoreductase. Reversed electron transport must be assumed to explain the reduction of thiosulfate and sulfite by the electrons derived from APS reductase.Abbreviations CCCP Carbonylcyanide m-chlorophenylhydrazone - DCCD N,N-dicyclohexylcarbodiimide - APS adenosine 5-phosphosulfate (adenylylsulfate)  相似文献   

8.
Two of nine sulfate reducing bacteria tested,Desulfobulbus propionicus andDesulfovibrio desulfuricans (strain Essex 6), were able to grow with nitrate as terminal electron acceptor, which was reduced to ammonia. Desulfovibrio desulfuricans was grown in chemostat culture with hydrogen plus limiting concentrations of nitrate, nitrite or sulfate as sole energy source. Growth yields up to 13.1, 8.8 or 9.7 g cell dry mass were obtained per mol nitrate, nitrite or sulfate reduced, respectively. The apparent half saturation constants (K s) were below the detection limits of 200, 3 or 100 mol/l for nitrate, nitrite of sulfate, respectively. The maximum growth rates {ie63-1} raised from 0.124 h-1 with sulfate and 0.150 h-1 with nitrate to 0.193 h-1 with nitrite as electron acceptor. Regardless of the electron acceptor in the culture medium, cell extracts exhibited absorption maxima corresponding to cytochromec and desulfoviridin. Nitrate reductase was found to be inducible by nitrate or nitrite, whereas nitrite reductase was synthesized constitutively. The activities of nitrate and nitrite reductases with hydrogen as electron donor were 0.2 and 0.3 mol/min·mg protein, respectively. If limiting amounts of hydrogen were added to culture bottles with nitrate as electron acceptor, part of the nitrate was only reduced to the level of nitrite. In media containing nitrate plus sulfate or nitrite plus sulfate, sulfate reduction was suppressed.The results demonstrate that the ammonification of nitrate or nitrite can function as sole energy conserving process in some sulfate-reducing bacteria.  相似文献   

9.
A new c-type cytochrome containing a single heme group, cytochrome c553(550) has been purified from Desulfovibrio desulfuricans (Norway strain) and some of its properties have been investigated. It has an isoelectric point of 6.6 and a higher redox potential than cytochrome c3 isolated from the same bacteria. Its molecular weight was estimated to be 9,200 by gel filtration. The main absorption peaks are at 553, 522.5 and 417 nm in the reduced form and at 690, 529, 411, 357 and 280 nm in the oxidized form. The asymmetric α band of the reduced state is similar to the one reported for socalled “split α” cytochromes c. The cytochrome contains 86 amino acid residues with 5 methionine, two cysteine and two histidine residues. The N terminal sequence of D. desulfuricans Norway cytochrome c553(550) presents no evident homology with that of Desulfovibrio vulgaris Hildenborough cytochrome c553.  相似文献   

10.
Desulfovibrio vulgaris (Marburg) was grown on hydrogen plus sulfate as sole energy source in a medium containing excess iron. The topography of electron transport components was investigated. The bacterium contained per mg cells (dry weight) 30U hydrogenase (1U=1 mol/min), 35 g desulfoviridin (= bisulfite reductase), 0.6 U adenosine phosphosulfate reductase, 30 mU thiosulfate reductase, 0.3 nmol cytochrome c 3 (M r=13,000), 0.04 nmol cytochrome b, 0.85 nmol menaquinone, and 0.4 nmol ferredoxin. Hydrogenase (>95%) and cytochrome c 3 (82%) were localized on the periplasmic side and desulfoviridin (95%), adenosine phosphosulfate reductase (87%), thiosulfate reductase (74%), and ferredoxin (71%) on the cytoplasmic side of the cytoplasmic membrane; menaquinone and cytochrome b were exlusively found in the membrane fraction. The location of the oxidoreductases indicate that in D. vulgaris (Marburg) H2 oxidation and sulfate reduction take place on opposite sides of the cytoplasmic membrane rather than on the same side, as has recently been proposed.  相似文献   

11.
A sulfate-reducing bacterium, designated strain ESC1, was isolated and found to be a new species. Strain ESC1 is a strictly anaerobic, gram-negative, non-sporeforming, motile, short, round-ended rod often occurring in pairs. Of 31 fermentative substrates tested, only pyruvate was utilized. Sulfate enhanced growth with pyruvate and allowed growth with ethanol, lactate, formate and hydrogen. Both sulfate and thiosulfate were reduced. Lactate was incompletely oxidized to acetate and CO2. The strain was desulfoviridin negative. The G+C content is 59.9%. These data suggested placement of strain ESC1 in the genus Desulfomicrobium. Comparative 16S rRNA analysis showed that strain ESC1 shares 98% rRNA sequence similarity with Desulfomicrobium baculatum and Desulfovibrio desulfuricans strain Norway 4. The latter two strains shared greater than 99% 16S rRNA sequence similarity. Strain ESC1 has been designated as the new species Desulfomicrobium escambium. We also recommend that D. desulfuricans strain Norway 4 be considered for reclassification as a Desulfomicrobium species.  相似文献   

12.
Colony counts of acetate-, propionate- and l-lactate-oxidizing sulfate-reducing bacteria in marine sediments were made. The vertical distribution of these organisms were equal for the three types considered. The highest numbers were found just beneath the border of aerobic and anaerobic layers.Anaerobic mineralization of acetate, propionate and l-lactate was studied in the presence and in the absence of sulfate. In freshwater and in marine sediments, acetate and propionate were oxidized completely with concomitant reduction of sulfate. l-Lactate was always fermented. Lactate-oxidizing, sulfate-reducing bacteria, belonging to the species Desulfovibrio desulfuricans, and lactate-fermenting bacteria were found in approximately equal amounts in the sediments. Acetate-oxidizing, sulfate-reducing bacteria could only be isolated from marine sediments, they belonged to the genus Desulfobacter and oxidized only acetate and ethanol by sulfate reduction. Propionate-oxidizing, sulfate-reducing bacteria belonged to the genus Desulfobulbus. They were isolated from freshwater as well as from marine sediments and showed a relatively large range of usable substrates: hydrogen, formate, propionate, l-lactate and ethanol were oxidized with concomitant sulfate reduction. l-Lactate and pyruvate could be fermented by most of the isolated strains.  相似文献   

13.
In bacteria, the intracellular metal content or metallome reflects the metabolic requirements of the cell. When comparing the composition of metals in phytoplankton and bacteria that make up the macronutrients and the trace elements, we have determined that the content of trace elements in both of these microorganisms is markedly similar. The trace metals consisting of transition metals plus zinc are present in a stoichometric molar formula that we have calculated to be as follows: Fe1Mn0.3Zn0.26Cu0.03Co0.03Mo0.03. Under conditions of routine cultivation, trace metal homeostasis may be maintained by a series of transporter systems that are energized by the cell. In specific environments where heavy metals are present at toxic levels, some bacteria have developed a detoxification strategy where the metallic ion is reduced outside of the cell. The result of this extracellular metabolism is that the bacterial metallome specific for trace metals is not disrupted. One of the microorganisms that reduces toxic metals outside of the cell is the sulfate-reducing bacterium Desulfovibrio desulfuricans. While D. desulfuricans reduces metals by enzymatic processes involving polyhemic cytochromes c 3 and hydrogenases, which are all present inside the cell; we report the presence of chain B cytochrome c nitrite reductase, NrfA, in the outer membrane fraction of D. desulfuricans ATCC 27774 and discuss its activity as a metal reductase.  相似文献   

14.
Crude extracts from 14 species of sulfate-reducing bacteria comprising the genera Desulfovibrio, Desulfotomaculum, Desulfobulbus, and Desulfosarcina and from three species of sulfide-oxidizing bacteria were tested in an enzyme-linked immunosorbent assay with polyclonal antisera to adenosine 5′-phosphosulfate reductase from Desulfovibrio desulfuricans G100A. The results showed that extracts from Desulfovibrio species were all highly cross-reactive, whereas extracts from the other sulfate-reducing genera showed significantly less cross-reaction. An exception was Desulfotomaculum orientis, which responded more like Desulfovibrio species than the other Desulfotomaculum strains tested. Extracts from colorless or photosynthetic sulfur bacteria were either unreactive or exhibited very low levels of reactivity with the antibodies to the enzyme from sulfate reducers. These results were confirmed by using partially purified enzymes from sulfate reducers and the most cross-reactive sulfide oxidizer, Thiobacillus denitrificans. Two types of monoclonal antibodies to adenosine 5′-phosphosulfate reductase were also isolated. One type reacted more variably with the enzymes of the sulfate reducers and poorly with the Thiobacillus enzyme, whereas the second reacted strongly with Desulfovibrio, Desulfotomaculum orientis, and Thiobacillus enzymes.  相似文献   

15.
Résumé Dans les cultures mixtes, la fermentation du glucose par Escherichia coli fournit des sources de carbone et d'électrons au Desulfovibrio desulfuricans qui est à l'origine de la formation des substrats utilisables par la souche de Chlorobium.
Mixed cultures of heterotrophic, sulfate-reducing and sulfur phototrophic bacteria
In mixed cultures, carbon and electron sources for Desulfovibrio desulfuricans are excreted by Escherichia coli from glucose fermentation. Desulfovibrio produces substrates for Chlorobium strain.
  相似文献   

16.
Antisera have been developed against the wholecell antigens of Desulfovibrio africanus Benghazi and Walvis Bay, D. vulgaris Hildenborough, D. salexigens British Guiana, D. gigas, and D. desulfuricans Essex 6. An enzymelinked immunoadsorption assay (ELISA) was developed to measure the reaction of these antisera with the homologous and heterologous antigens. The ELISA method demonstrated a reaction between pre-immune sera and cells of D. africanus, D. gigas and D. desulfuricans, suggesting the presence of a lectin-like substance on these cell surfaces. Extensive cross-reactions were seen between the antisera and heterologous cells, suggesting the sharing of a number of surface antigens amongst the Desulfovibrio. However, the pattern of these cross-reactions was different from that observed for an ELISA reaction developed for the cytochrome c3 from various Desulfovibrio.Abbreviation ELISA enzyme-linked immunoadsorption assay  相似文献   

17.
The spent caustic wastewater from the oxidation of sulfide present in offshore natural gas production mainly comprises thiosulfate and sulfate. A biocatalytic process, employing phototrophic green sulfur bacteria in symbiosis with sulfate-reducing bacteria, is described in this paper for the production of sulfur from the spent caustic wastewater, with synthetic wastewater as the model system. The process entails the conversion of thiosulfate to sulfur and sulfate by photosynthetic green sulfur bacteria Chlorobium vibrioforme f. thiosulfatophilum. Sulfate formed in turn is removed by Desulfovibrio desulfuricans to sulfide, which is further converted to sulfur by Chlorobium limicola through photooxidation. Sulfide is also oxidized to sulfur and sulfate via thiosulfate as an intermediate by Chlorobium vibrioforme f. thiosulfatophilum.  相似文献   

18.
Rhenium is enriched in suboxic and anoxic sediments relative to oxic sediments, a characteristic that is being exploited in its use as a paleoredox indicator. Rhenium is fixed at sediment depths where iron reduction and sulfate reduction are the dominant microbial terminal electron-accepting processes. In order to explore mechanisms of its fixation, we investigated perrhenate behavior in pure, batch cultures of two dissimilatory sulfate-reducing strains (Desulfovibrio desulfuricans subsp. desulfuricans and Desulfovibrio desulfuricans ND132) and two iron-reducing strains (Geobacter metallireducens GS-15 and Shewanella oneidensis MR-1). Perrhenate concentrations tested ranged from 0.04 to 12 μM, roughly 4 to 7 orders of magnitude larger than seawater Re concentrations. Within this broad concentration range, none of the organisms tested actively removed Re from solution during one week's growth to stationary phase. Despite these results, the sulfate-reducing cultures appeared to have reached supersaturation relative to ReS2(s), and the iron-reducing cultures may have reached supersaturation relative to ReO2(s). We conclude that neither direct nor short-term indirect microbial processes involving these bacteria are likely to explain Re fixation in sediments. Our results cannot exclude the possibility that microbial metabolites, such as Fe(II) or sulfide, do drive abiotic Re fixation over longer periods of time. The lack of perrhenate reduction by dissimilatory sulfate-reducing bacteria and iron-reducing bacteria contrasts with published reports of pertechnetate behavior. Despite many qualitative similarities between Re and Tc, it is clear that these two elements are quantitatively dissimilar, with Re fixation requiring more intensely reducing conditions.  相似文献   

19.
The ambivalent relations of sulfate-reducing bacteria to molecular O2 have been studied with ten freshwater and marine strains. Generally, O2 was reduced prior to sulfur compounds and suppressed the reduction of sulfate, sulfite or thiosulfate to sulfide. Three strains slowly formed sulfide at O2 concentrations of below 15 M (6% air saturation). In homogeneously aerated cultures, two out of seven strains tested, Desulfovibrio desulfuricans and Desulfobacterium autotrophicum, revealed weak growth with O2 as electron acceptor (up to one doubling of protein). However, O2 was concomitantly toxic. Depending on its concentration cell viability and motility decreased with time. In artificial oxygen-sulfide gradients with sulfide-containing agar medium and also in sulfide-free agar medium under an oxygen-containing gas phase, sulfate reducers grew in bands close to the oxic/anoxic interface. The specific O2 tolerance and respiration capacity of different strains led to characteristically stratified gradients. The maximum O2 concentration at the surface of a bacterial band (determined by means of microelectrodes) was 9 M. The specific rates of O2 uptake per cell were in the same order of magnitude as the sulfate reduction rates in pure cultures. The bacteria stabilized the gradients, which were rapidly oxidized in the absence of cells or after killing the cells by formaldehyde. The motile strain Desulfovibrio desulfuricans CSN slowly migrated in the gradients in response to changing O2 concentrations in the gas phase.  相似文献   

20.
Sulfite is produced as a toxic intermediate during Acidithiobacillus ferrooxidans sulfur oxidation. A. ferrooxidans D3-2, which posseses the highest copper bioleaching activity, is more resistant to sulfite than other A. ferrooxidans strains, including ATCC 23270. When sulfite oxidase was purified homogeneously from strain D3-2, the oxidized and reduced forms of the purified sulfite oxidase absorption spectra corresponded to those of A. ferrooxidans aa 3-type cytochrome c oxidase. The confirmed molecular weights of the α-subunit (52.5 kDa), the β-subunit (25 kDa), and the γ-subunit (20 kDa) of the purified sulfite oxidase and the N-terminal amino acid sequences of the γ-subunit of sulfite oxidase (AAKKG) corresponded to those of A. ferrooxidans ATCC 23270 cytochrome c oxidase. The sulfite oxidase activities of the iron- and sulfur-grown A. ferrooxidans D3-2 were much higher than those cytochrome c oxidases purified from A. ferrooxidans strains ATCC 23270, MON-1 and AP19-3. The activities of sulfite oxidase purified from iron- and sulfur-grown strain D3-2 were completely inhibited by an antibody raised against a purified A. ferrooxidans MON-1 aa 3-type cytochrome c oxidase. This is the first report to indicate that aa 3-type cytochrome c oxidase catalyzed sulfite oxidation in A. ferrooxidans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号