首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
2.
Phenotypic variation can arise from differences in the protein coding sequence and in the regulatory elements. However, little is known about the contribution of regulatory difference to the expression divergence, especially the cis and trans regulatory variation to the expression divergence in intraspecific populations. In this study, we used two different yeast strains, BY4743 and RM11‐1a/α, to study the regulatory variation to the expression divergence between BY and RM under oxidative stress condition. Our results indicated that the expression divergence of BY and RM is mainly due to trans regulatory variations under both normal and oxidative stress conditions. However, cis regulatory variation seems to play a very important role in oxidative stress response in yeast because 36% of genes showed an increase in cis regulatory variation effect compared with 13% of genes that showed an increase in trans regulatory variation effect after oxidative stress. Our data also indicated that genes located on the longer arm of the chromosomes are more susceptible to cis variation effect under oxidative stress than genes on the shorter arm of the chromosomes.  相似文献   

3.
4.
5.
Gene expression differences between divergent lineages caused by modification of cis regulatory elements are thought to be important in evolution. We assayed genome-wide cis and trans regulatory differences between maize and its wild progenitor, teosinte, using deep RNA sequencing in F1 hybrid and parent inbred lines for three tissue types (ear, leaf and stem). Pervasive regulatory variation was observed with approximately 70% of ∼17,000 genes showing evidence of regulatory divergence between maize and teosinte. However, many fewer genes (1,079 genes) show consistent cis differences with all sampled maize and teosinte lines. For ∼70% of these 1,079 genes, the cis differences are specific to a single tissue. The number of genes with cis regulatory differences is greatest for ear tissue, which underwent a drastic transformation in form during domestication. As expected from the domestication bottleneck, maize possesses less cis regulatory variation than teosinte with this deficit greatest for genes showing maize-teosinte cis regulatory divergence, suggesting selection on cis regulatory differences during domestication. Consistent with selection on cis regulatory elements, genes with cis effects correlated strongly with genes under positive selection during maize domestication and improvement, while genes with trans regulatory effects did not. We observed a directional bias such that genes with cis differences showed higher expression of the maize allele more often than the teosinte allele, suggesting domestication favored up-regulation of gene expression. Finally, this work documents the cis and trans regulatory changes between maize and teosinte in over 17,000 genes for three tissues.  相似文献   

6.
Phenotypic variation among individuals in a population can be due to DNA sequence variation in protein coding regions or in regulatory elements. Recently, many studies have indicated that mutations in regulatory elements may be the major cause of phenotypic evolution. However, the mechanisms for evolutionary changes in gene expression are still not well understood. Here, we studied the relative roles of cis and trans regulatory changes in Saccharomyces cerevisiae cells to cope with heat stress. It has been found that the expression level of ~ 300 genes was induced at least two fold and that of ~ 500 genes was repressed at least two fold in response to heat shock. From the former set of genes, we randomly selected 65 genes that showed polymorphism(s) between the BY and RM strains for pyrosequencing analysis to explore the relative contributions of cis and trans regulatory variations to the expression divergence between BY and RM. Our data indicated that the expression divergence between BY and RM was mainly due to trans regulatory variations under either the normal condition or the heat stress condition. However, the relative contribution of trans regulatory variation was decreased from 76.9% to 61.5% after the heat shock stress. These results indicated that the cis regulatory variation may play an important role in the adaption to heat stress. In our data, 43.1% (28 genes) of the 65 genes showed the same trend of cis or trans variation effect after the heat shock stress, 35.4% (23 genes) showed an increased cis variation effect and 21.5% (14 genes) showed an increased trans variation effect after the heat shock stress. Thus, our data give insights into the relative roles of cis and trans variations in response to heat shock in yeast.  相似文献   

7.
8.
The FK506 binding protein 51 (FKBP5), an intrinsic regulator of the glucocorticoid receptor, has been associated with pathological behaviors particularly in the context of childhood trauma (CT), via a putatively regulatory polymorphism, rs1360780. However, trans‐ and cis‐acting effects of this locus and its interaction with CT are incompletely understood. To study its effects on the expression of glucocorticoid‐regulated genes including FKBP5, we used lymphoblastoid cell lines (LCLs) derived from 16 CT‐exposed patients with greater than two substance dependence/suicidal behavior diagnoses (casesCT+) and 13 non‐CT‐exposed controls (controlsCT?). This study in LCLs measures long‐term trait‐like differences attributable to genotype or lasting epigenetic modification. Through analysis of differential allelic expression (DAE) using an FKBP5 3′‐UTR reporter single nucleotide polymorphism (SNP), rs3800373, that is in strong linkage disequilibrium with rs1360780, we confirmed that the rs1360780 risk allele (A) (or conceivably that of a linked SNP) leads to higher FKBP5 expression in controlsCT?. Intriguingly, casesCT+ did not show DAE, perhaps because of a genotype‐predicted difference in FKBP5 DNA methylation restricted to casesCT+. Furthermore, through correlation analyses on FKBP5 expression at baseline and after induction by dexamethasone, we observed that casesCT+ had lower induction of FKBP5 expression, indicating that overall they may have strong ultra‐short negative‐feedback. Only casesCT+ showed an effect of rs1360780 genotype on expression of FKBP5 and other glucocorticoid‐regulated genes. Together, these results confirm that the rs1360780 locus alters FKBP5 expression and further that in trans‐fashion this locus affects the expression of other glucocorticoid‐regulated genes after a glucocorticoid challenge. The CT exposure appears to be essential for trans‐effects of rs1360780 on glucocorticoid‐regulated genes.  相似文献   

9.
Protein synthesis is often regulated at the level of initiation of translation, making it a critical step. This regulation occurs by both the cis‐regulatory elements, which are located in the 5′‐ and 3′‐UTRs (untranslated regions), and trans‐acting factors. A breakdown in this regulation machinery can perturb cellular metabolism, leading to various physiological abnormalities. The highly structured UTRs, along with features such as GC‐richness, upstream open reading frames and internal ribosome entry sites, significantly influence the rate of translation of mRNAs. In this review, we discuss how changes in the cis‐regulatory sequences of the UTRs, for example, point mutations and truncations, influence expression of specific genes at the level of translation. Such modifications may tilt the physiological balance from healthy to diseased states, resulting in conditions such as hereditary thrombocythaemia, breast cancer, fragile X syndrome, bipolar affective disorder and Alzheimer's disease. This information tends to establish the crucial role of UTRs, perhaps as much as that of coding sequences, in health and disease.  相似文献   

10.
It has been well documented that most nuclear protein‐coding genes in organisms can be classified into two categories: positively selected genes (PSGs) and negatively selected genes (NSGs). The characteristics and evolutionary fates of different types of genes, however, have been poorly understood. In this study, the rates of nonsynonymous substitution (Ka) and the rates of synonymous substitution (Ks) were investigated by comparing the orthologs between the two sequenced Brassica species, Brassica rapa and Brassica oleracea, and the evolutionary rates, gene structures, expression patterns, and codon bias were compared between PSGs and NSGs. The resulting data show that PSGs have higher protein evolutionary rates, lower synonymous substitution rates, shorter gene length, fewer exons, higher functional specificity, lower expression level, higher tissue‐specific expression and stronger codon bias than NSGs. Although the quantities and values are different, the relative features of PSGs and NSGs have been largely verified in the model species Arabidopsis. These data suggest that PSGs and NSGs differ not only under selective pressure (Ka/Ks), but also in their evolutionary, structural and functional properties, indicating that selective modes may serve as a determinant factor for measuring evolutionary rates, gene compactness and expression patterns in Brassica.  相似文献   

11.
Genomic imprinting is essential for development and growth and plays diverse roles in physiology and behaviour. Imprinted genes have traditionally been studied in isolation or in clusters with respect to cis-acting modes of gene regulation, both from a mechanistic and evolutionary point of view. Recent studies in mammals, however, reveal that imprinted genes are often co-regulated and are part of a gene network involved in the control of cellular proliferation and differentiation. Moreover, a subset of imprinted genes acts in trans on the expression of other imprinted genes. Numerous studies have modulated levels of imprinted gene expression to explore phenotypic and gene regulatory consequences. Increasingly, the applied genome-wide approaches highlight how perturbation of one imprinted gene may affect other maternally or paternally expressed genes. Here, we discuss these novel findings and consider evolutionary theories that offer a rationale for such intricate interactions among imprinted genes. An evolutionary view of these trans-regulatory effects provides a novel interpretation of the logic of gene networks within species and has implications for the origin of reproductive isolation between species.  相似文献   

12.
13.
14.
In Arabidopsis leaf primordia, the expression of HD‐Zip III, which promotes tissue differentiation on the adaxial side of the leaf primordia, is repressed by miRNA165/166 (miR165/166). Small RNAs, including miRNAs, can move from cell to cell. In this study, HD‐Zip III expression was strikingly repressed by miR165/166 in the epidermis and parenchyma cells on the abaxial side of the leaf primordia compared with those on the adaxial side. We also found that the MIR165A locus, which was expressed in the abaxial epidermis, was sufficient to establish the rigid repression pattern of HD‐Zip III expression in the leaf primordia. Ectopic expression analyses of MIR165A showed that the abaxial‐biased miR165 activity in the leaf primordia was formed neither by a polarized distribution of factors affecting miR165 activity nor by a physical boundary inhibiting the cell‐to‐cell movement of miRNA between the adaxial and abaxial sides. We revealed that cis‐acting factors, including the promoter, backbone, and mature miRNA sequence of MIR165A, are necessary for the abaxial‐biased activity of miR165 in the leaf primordia. We also found that the abaxial‐determining genes YABBYs are trans‐acting factors that are necessary for the miR165 activity pattern, resulting in the rigid determination of the adaxial–abaxial boundary in leaf primordia. Thus, we proposed a molecular mechanism in which the abaxial‐biased patterning of miR165 activity is confined.  相似文献   

15.
Expression divergence of duplicate genes is widely believedto be important for their retention and evolution of new function,although the mechanism that determines their expression divergenceremains unclear. We use a genetical genomics approach to exploredivergence in genetical control of yeast duplicate genes createdby a whole-genome duplication that occurred about 100 MYA andthose with a younger duplication age. The analysis reveals thatduplicate genes have a significantly higher probability of sharingcommon genetic control than pairs of singleton genes. The expressionquantitative trait loci (eQTLs) have diverged completely fora high proportion of duplicate pairs, whereas a substantiallylarger proportion of duplicates share common regulatory motifsafter 100 Myr of divergent evolution. The similarity in bothgenetical control and cis motif structure for a duplicate pairis a reflection of its evolutionary age. This study revealsthat up to 20% of variation in expression between ancient duplicategene pairs in the yeast genome can be explained by both cismotif divergence (8%) and by trans eQTL divergence (10%). Initially,divergence in all 3 aspects of cis motif structure, trans-geneticalcontrol, and expression evolves coordinately with the codingsequence divergence of both young and old duplicate pairs. Thesefindings highlight the importance of divergence in both cismotif structure and trans-genetical control in the diverse setof mechanisms underlying the expression divergence of yeastduplicate genes.  相似文献   

16.
17.
18.
Flowers can serve as infection courts for specialized and unspecialized plant pathogens, but little is known about the ability of floral tissues to undergo induced resistance (IR) responses against these pathogens. We studied the expression of IR marker genes in tomato and blueberry flowers treated with the inducers methyl jasmonate (MeJA), benzothiadiazole‐S‐methyl ester (BTH) and 2,6‐dichloroisonicotinic acid (INA). In tomato, spray application of MeJA and BTH (but not INA) to entire plants (leaves, stems and flowers) resulted in a significant (< 0.05) overexpression of Pin2 (5.2‐fold) and PR‐4 (5.6‐fold) in pistil tissues, respectively. A statistically similar expression was obtained in pistils when flowers were protected from direct spray, indicating a systemic response. In blueberry, where information about IR marker genes is limited, PR‐3 and PR‐4 orthologs were first identified and characterized using in silico and wet‐laboratory techniques. In subsequent induction experiments, INA and BTH induced overexpression of PR‐4 in blueberry pistils by 3.2‐ and 1.8‐fold, respectively, when entire plants were treated. In blueberry flowers protected from spray applications, all chemicals applied to vegetative tissues led to significant overexpression of PR‐4 (MeJA: 1.4‐fold, BTH: 2.9‐fold and INA: 1.6‐fold), with BTH also inducing PR‐3 (1.7‐fold). The effect of these responses in protecting flowers was studied by inoculating treated tomato flowers with the necrotroph Botrytis cinerea and blueberry flowers with the hemi‐biotroph Monilinia vaccinii‐corymbosi. In both pathosystems, no significant disease suppression associated with resistance inducer application was observed under the conditions studied. Thus, although IR marker genes were shown to be inducible in floral tissue, the magnitude of this response was insufficient to suppress pathogen ingress.  相似文献   

19.
Variation in patterns of gene expression contributes to phenotypic diversity and can ultimately predict adaptive responses. However, in many cases, the consequences of regulatory mutations on patterns of gene expression and ultimately phenotypic differences remain elusive. A standard way to study the genetic architecture of expression variation in model systems has been to map gene expression variation to genetic loci (Fig. 1a). At the same time, in many nonmodel species, especially for long‐lived organisms, controlled crosses are not feasible. If we are to expand our understanding of the role of regulatory mutations on phenotypes, we need to develop new methodologies to study species under ecologically relevant conditions. In this issue of Molecular Ecology, Verta et al. ( 2013 ) present a new approach to analyse gene expression variation and regulatory networks in gymnosperms (Fig. 1b). They capitalized on the fact that gymnosperm seeds contain an energy storage tissue (the megagametophyte) that is directly derived from a single haploid cell (the megaspore). The authors identified over 800 genes for which expression segregated in this maternally inherited haploid tissue. Based on the observed segregation patterns, these genes (Mendelian Expression Traits) are most probably controlled by biallelic variants at a single locus. Most of these genes also belonged to different regulatory networks, except for one large group of 180 genes under the control of a putative trans‐acting factor. In addition, the approach developed here may also help to uncover the effect of rare recessive mutations, which usually remain hidden in a heterozygous state in diploid individuals. The appeal of the work by Verta et al. ( 2013 ) to study gene expression variation is in its simplicity, which circumvents several of the hurdles behind traditional expression quantitative trait locus (eQTL) studies, and could potentially be applied to a large number of species.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号