首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Spatially controlled release of sister chromatid cohesion during progression through the meiotic divisions is of paramount importance for error-free chromosome segregation during meiosis. Cohesion is mediated by the cohesin protein complex and cleavage of one of its subunits by the endoprotease separase removes cohesin first from chromosome arms during exit from meiosis I and later from the pericentromeric region during exit from meiosis II. At the onset of the meiotic divisions, cohesin has also been proposed to be present within the centromeric region for the unification of sister centromeres into a single functional entity, allowing bipolar orientation of paired homologs within the meiosis I spindle. Separase-mediated removal of centromeric cohesin during exit from meiosis I might explain sister centromere individualization which is essential for subsequent biorientation of sister centromeres during meiosis II. To characterize a potential involvement of separase in sister centromere individualization before meiosis II, we have studied meiosis in Drosophila melanogaster males where homologs are not paired in the canonical manner. Meiosis does not include meiotic recombination and synaptonemal complex formation in these males. Instead, an alternative homolog conjunction system keeps homologous chromosomes in pairs. Using independent strategies for spermatocyte-specific depletion of separase complex subunits in combination with time-lapse imaging, we demonstrate that separase is required for the inactivation of this alternative conjunction at anaphase I onset. Mutations that abolish alternative homolog conjunction therefore result in random segregation of univalents during meiosis I also after separase depletion. Interestingly, these univalents become bioriented during meiosis II, suggesting that sister centromere individualization before meiosis II does not require separase.  相似文献   

2.
In many eukaryotes, condensins I and II associate with chromosomes in an ordered fashion during mitosis and play nonoverlapping functions in their assembly and segregation. Here we report for the first time the spatiotemporal dynamics and functions of the two condensin complexes during meiotic divisions in mouse oocytes. At the germinal vesicle stage (prophase I), condensin I is present in the cytoplasm, whereas condensin II is localized within the nucleus. After germinal vesicle breakdown, condensin II starts to associate with chromosomes and becomes concentrated onto chromatid axes of bivalent chromosomes by metaphase I. REC8 "glues" chromosome arms along their lengths. In striking contrast to condensin II, condensin I localizes primarily around centromeric regions at metaphase I and starts to associate stably with chromosome arms only after anaphase I. Antibody injection experiments show that condensin functions are required for many aspects of meiotic chromosome dynamics, including chromosome individualization, resolution, and segregation. We propose that the two condensin complexes play distinctive roles in constructing bivalent chromosomes: condensin II might play a primary role in resolving sister chromatid axes, whereas condensin I might contribute to monopolar attachment of sister kinetochores, possibly by assembling a unique centromeric structure underneath.  相似文献   

3.
Regular meiotic chromosome segregation requires sister centromeres to mono-orient (orient to the same pole) during the first meiotic division (meiosis I) when homologous chromosomes segregate, and to bi-orient (orient to opposite poles) during the second meiotic division (meiosis II) when sister chromatids segregate. Both orientation patterns require cohesion between sister centromeres, which is established during meiotic DNA replication and persists until anaphase of meiosis II. Meiotic cohesion is mediated by a conserved four-protein complex called cohesin that includes two structural maintenance of chromosomes (SMC) subunits (SMC1 and SMC3) and two non-SMC subunits. In Drosophila melanogaster, however, the meiotic cohesion apparatus has not been fully characterized and the non-SMC subunits have not been identified. We have identified a novel Drosophila gene called sisters unbound (sunn), which is required for stable sister chromatid cohesion throughout meiosis. sunn mutations disrupt centromere cohesion during prophase I and cause high frequencies of non-disjunction (NDJ) at both meiotic divisions in both sexes. SUNN co-localizes at centromeres with the cohesion proteins SMC1 and SOLO in both sexes and is necessary for the recruitment of both proteins to centromeres. Although SUNN lacks sequence homology to cohesins, bioinformatic analysis indicates that SUNN may be a structural homolog of the non-SMC cohesin subunit stromalin (SA), suggesting that SUNN may serve as a meiosis-specific cohesin subunit. In conclusion, our data show that SUNN is an essential meiosis-specific Drosophila cohesion protein.  相似文献   

4.
Meiosis, a specialized cell division with a single cycle of DNA replication round and two consecutive rounds of nuclear segregation, allows for the exchange of genetic material between parental chromosomes and the formation of haploid gametes. The structural maintenance of chromosome (SMC) proteins aid manipulation of chromosome structures inside cells. Eukaryotic SMC complexes include cohesin, condensin and the Smc5-Smc6 complex. Meiotic roles have been discovered for cohesin and condensin. However, although Smc5-Smc6 is known to be required for successful meiotic divisions, the meiotic functions of the complex are not well understood. Here we show that the Smc5-Smc6 complex localizes to specific chromosome regions during meiotic prophase I. We report that meiotic cells lacking Smc5-Smc6 undergo catastrophic meiotic divisions as a consequence of unresolved linkages between chromosomes. Surprisingly, meiotic segregation defects are not rescued by abrogation of Spo11-induced meiotic recombination, indicating that at least some chromosome linkages in smc5-smc6 mutants originate from other cellular processes. These results demonstrate that, as in mitosis, Smc5-Smc6 is required to ensure proper chromosome segregation during meiosis by preventing aberrant recombination intermediates between homologous chromosomes.  相似文献   

5.
Production of haploid gametes relies on the specially regulated meiotic cell cycle. Analyses of the role of essential mitotic regulators in meiosis have been hampered by a shortage of appropriate alleles in metazoans. We characterized female-sterile alleles of the condensin complex component dcap-g and used them to define roles for condensin in Drosophila female meiosis. In mitosis, the condensin complex is required for sister-chromatid resolution and contributes to chromosome condensation. In meiosis, we demonstrate a role for dcap-g in disassembly of the synaptonemal complex and for proper retention of the chromosomes in a metaphase I-arrested state. The chromosomal passenger complex also is known to have mitotic roles in chromosome condensation and is required in some systems for localization of the condensin complex. We used the QA26 allele of passenger component incenp to investigate the role of the passenger complex in oocyte meiosis. Strikingly, in incenpQA26 mutants maintenance of the synaptonemal complex is disrupted. In contrast to the dcap-g mutants, the incenp mutation leads to a failure of paired homologous chromosomes to biorient, such that bivalents frequently orient toward only one pole in prometaphase and metaphase I. We show that incenp interacts genetically with ord, suggesting an important functional relationship between them in meiotic chromosome dynamics. The dcap-g and incenp mutations cause maternal effect lethality, with embryos from mutant mothers arrested in the initial mitotic divisions.  相似文献   

6.
Several meiotic processes ensure faithful chromosome segregation to create haploid gametes. Errors to any one of these processes can lead to zygotic aneuploidy with the potential for developmental abnormalities. During prophase I of Drosophila male meiosis, each bivalent condenses and becomes sequestered into discrete chromosome territories. Here, we demonstrate that two predicted condensin II subunits, Cap-H2 and Cap-D3, are required to promote territory formation. In mutants of either subunit, territory formation fails and chromatin is dispersed throughout the nucleus. Anaphase I is also abnormal in Cap-H2 mutants as chromatin bridges are found between segregating heterologous and homologous chromosomes. Aneuploid sperm may be generated from these defects as they occur at an elevated frequency and are genotypically consistent with anaphase I segregation defects. We propose that condensin II–mediated prophase I territory formation prevents and/or resolves heterologous chromosomal associations to alleviate their potential interference in anaphase I segregation. Furthermore, condensin II–catalyzed prophase I chromosome condensation may be necessary to resolve associations between paired homologous chromosomes of each bivalent. These persistent chromosome associations likely consist of DNA entanglements, but may be more specific as anaphase I bridging was rescued by mutations in the homolog conjunction factor teflon. We propose that the consequence of condensin II mutations is a failure to resolve heterologous and homologous associations mediated by entangled DNA and/or homolog conjunction factors. Furthermore, persistence of homologous and heterologous interchromosomal associations lead to anaphase I chromatin bridging and the generation of aneuploid gametes.  相似文献   

7.
8.
Chromosome shaping and individualization are necessary requisites to warrant the correct segregation of genomes in either mitotic or meiotic cell divisions. These processes are mainly prompted in vertebrates by three multiprotein complexes termed cohesin and condensin I and II. In the present study we have analyzed by immunostaining the appearance and subcellular distribution of condensin I in mouse mitotic and meiotic chromosomes. Our results demonstrate that in either mitotically or meiotically dividing cells, condensin I is loaded onto chromosomes by prometaphase. Condensin I is detectable as a fuzzy axial structure running inside chromatids of condensed chromosomes. The distribution of condensin I along the chromosome length is not uniform, since it preferentially accumulates close to the chromosome ends. Interestingly, these round accumulations found at the condensin I axes termini colocalized with telomere complexes. Additionally, we present the relative distribution of the condensin I and cohesin complexes in metaphase I bivalents. All these new data have allowed us to propose a comprehensive model for meiotic chromosome structure.  相似文献   

9.
During meiosis, evolutionarily conserved mechanisms regulate chromosome remodeling, leading to the formation of a tight bivalent structure. This bivalent, a linked pair of homologous chromosomes, is essential for proper chromosome segregation in meiosis. The formation of a tight bivalent involves chromosome condensation and restructuring around the crossover. The synaptonemal complex (SC), which mediates homologous chromosome association before crossover formation, disassembles concurrently with increased condensation during bivalent remodeling. Both chromosome condensation and SC disassembly are likely critical steps in acquiring functional bivalent structure. The mechanisms controlling SC disassembly, however, remain unclear. Here we identify akir-1 as a gene involved in key events of meiotic prophase I in Caenorhabditis elegans. AKIR-1 is a protein conserved among metazoans that lacks any previously known function in meiosis. We show that akir-1 mutants exhibit severe meiotic defects in late prophase I, including improper disassembly of the SC and aberrant chromosome condensation, independently of the condensin complexes. These late-prophase defects then lead to aberrant reconfiguring of the bivalent. The meiotic divisions are delayed in akir-1 mutants and are accompanied by lagging chromosomes. Our analysis therefore provides evidence for an important role of proper SC disassembly in configuring a functional bivalent structure.  相似文献   

10.
Condensin complexes play vital roles in chromosome condensation during mitosis and meiosis. Condensin II uniquely localizes to chromatin throughout the cell cycle and, in addition to its mitotic duties, modulates chromosome organization and gene expression during interphase. Mitotic condensin activity is regulated by phosphorylation, but mechanisms that regulate condensin II during interphase are unclear. Here, we report that condensin II is inactivated when its subunit Cap-H2 is targeted for degradation by the SCFSlimb ubiquitin ligase complex and that disruption of this process dramatically changed interphase chromatin organization. Inhibition of SCFSlimb function reorganized interphase chromosomes into dense, compact domains and disrupted homologue pairing in both cultured Drosophila cells and in vivo, but these effects were rescued by condensin II inactivation. Furthermore, Cap-H2 stabilization distorted nuclear envelopes and dispersed Cid/CENP-A on interphase chromosomes. Therefore, SCFSlimb-mediated down-regulation of condensin II is required to maintain proper organization and morphology of the interphase nucleus.  相似文献   

11.
The heteropentameric condensin complexes have been shown to participate in mitotic chromosome condensation and to be required for unperturbed chromatid segregation in nuclear divisions. Vertebrates have two condensin complexes, condensin I and condensin II, which contain the same structural maintenance of chromosomes (SMC) subunits SMC2 and SMC4, but differ in their composition of non–SMC subunits. While a clear biochemical and functional distinction between condensin I and condensin II has been established in vertebrates, the situation in Drosophila melanogaster is less defined. Since Drosophila lacks a clear homolog for the condensin II–specific subunit Cap-G2, the condensin I subunit Cap-G has been hypothesized to be part of both complexes. In vivo microscopy revealed that a functional Cap-G-EGFP variant shows a distinct nuclear enrichment during interphase, which is reminiscent of condensin II localization in vertebrates and contrasts with the cytoplasmic enrichment observed for the other EGFP-fused condensin I subunits. However, we show that this nuclear localization is dispensable for Cap-G chromatin association, for its assembly into the condensin I complex and, importantly, for development into a viable and fertile adult animal. Immunoprecipitation analyses and complex formation studies provide evidence that Cap-G does not associate with condensin II–specific subunits, while it can be readily detected in complexes with condensin I–specific proteins in vitro and in vivo. Mass-spectrometric analyses of proteins associated with the condensin II–specific subunit Cap-H2 not only fail to identify Cap-G but also the other known condensin II–specific homolog Cap-D3. As condensin II–specific subunits are also not found associated with SMC2, our results question the existence of a soluble condensin II complex in Drosophila.  相似文献   

12.
During meiotic prophase I chromosomes undergo dramatic conformational changes that accompany chromosome condensation, pairing and recombination between homologs. These changes include the anchoring of telomeres to the nuclear envelope and their clustering to form a bouquet. In plants, these events have been studied and illustrated in intact meiocytes of species with large genomes. Arabidopsis thaliana is an excellent genetic model in which major molecular pathways that control synapsis and recombination between homologs have been uncovered. Yet the study of chromosome dynamics is hampered by current cytological methods that disrupt the three‐dimensional (3D) architecture of the nucleus. Here we set up a protocol to preserve the 3D configuration of A. thaliana meiocytes. We showed that this technique is compatible with the use of a variety of antibodies that label structural and recombination proteins and were able to highlight the presence of clustered synapsis initiation centers at the nuclear periphery. By using fluorescence in situ hybridization we also studied the behavior of chromosomes during pre‐meiotic G2 and prophase I, revealing the existence of a telomere bouquet during A. thaliana male meiosis. In addition we showed that the number of telomeres in a bouquet and its volume vary greatly, thus revealing the complexity of telomere behavior during meiotic prophase I. Finally, by using probes that label subtelomeric regions of individual chromosomes, we revealed differential localization behaviors of chromosome ends. Our protocol opens new areas of research for investigating chromosome dynamics in A. thaliana meiocytes.  相似文献   

13.
The cohesin complex plays a key role for the maintenance of sister chromatid cohesion and faithful chromosome segregation in both mitosis and meiosis. This complex is formed by two structural maintenance of chromosomes protein family (SMC) subunits and two non-SMC subunits: an α-kleisin subunit SCC1/RAD21/REC8 and an SCC3-like protein. Several studies carried out in different species have revealed that the distribution of the cohesin subunits along the chromosomes during meiotic prophase I is not regular and that some subunits are distinctly incorporated at different cell stages. However, the accurate distribution of the different cohesin subunits in condensed meiotic chromosomes is still controversial. Here, we describe the dynamics of the cohesin subunits SMC1α, SMC3, RAD21 and SA1 during both meiotic divisions in grasshoppers. Although these subunits show a similar patched labelling at the interchromatid domain of metaphase I bivalents, SMCs and non-SMCs subunits do not always colocalise. Indeed, SA1 is the only cohesin subunit accumulated at the centromeric region of all metaphase I chromosomes. Additionally, non-SMC subunits do not appear at the interchromatid domain in either single X or B chromosomes. These data suggest the existence of several cohesin complexes during metaphase I. The cohesin subunits analysed are released from chromosomes at the beginning of anaphase I, with the exception of SA1 which can be detected at the centromeres until telophase II. These observations indicate that the cohesin components may be differentially loaded and released from meiotic chromosomes during the first and second meiotic divisions. The roles of these cohesin complexes for the maintenance of chromosome structure and their involvement in homologous segregation at first meiotic division are proposed and discussed.  相似文献   

14.
Meiosis is the process which produces haploid gametes from diploid precursor cells. This reduction of chromosome number is achieved by two successive divisions. Whereas homologs segregate during meiosis I, sister chromatids segregate during meiosis II. To identify novel proteins required for proper segregation of chromosomes during meiosis, we applied a high-throughput knockout technique to delete 87 S. pombe genes whose expression is upregulated during meiosis and analyzed the mutant phenotypes. Using this approach, we identified a new protein, Dil1, which is required to prevent meiosis I homolog non-disjunction. We show that Dil1 acts in the dynein pathway to promote oscillatory nuclear movement during meiosis.  相似文献   

15.
The conserved protein ZW10 is found in various organisms. It is localized on the kinetochores or spindle microtubules during cell division. ZW10 regulates not only the segregation of homologous chromosomes, each consisting of attached sister chromatids (during the first meiotic division), but also the separation of individual chromatids (during mitosis and the second meiotic division). ZW10 is required for proper chromosome segregation during both mitosis and meiosis. The effects of zwl0 mutations are similar for both equational and reductional divisions, giving rise to anaphases with lagging chromosomes and/or unequal numbers of chromosomes at the two poles. The localization of ZW10 is similar during mitosis, meiosis I, and meiosis II. In interphase the distribution of ZW10 changes; it is localized in the endoplasmic reticulum, Golgi apparatus, and in the cytosol and is involved in membrane trafficking between the endoplasmic reticulum and Golgi apparatus. ZW10 forms a subcomplex with RINT-1 and p31 which are involved in a larger complex comprising syntaxin 18, an endoplasmic reticulum-localized t-SNARE that is implicated in membrane trafficking. The text was submitted by the authors in English.  相似文献   

16.
The condensed state of mitotic chromosomes is crucial for faithful genome segregation. Key factors implicated in the formation of mitotic chromosomes are the condensin I and II complexes. In Drosophila, condensin I appears to play a major role in mitotic chromosome organization. To analyze its dynamic behavior, we expressed Barren, a condensin I non-Structural Maintenance of Chromosomes subunit, as a fully functional enhanced green fluorescent protein (EGFP) fusion protein in the female and followed it during early embryonic divisions. We find that, in Drosophila, Barren-EGFP associates with chromatin early in prophase concomitantly with the initiation of chromosome condensation. Barren-EGFP loading starts at the centromeric region from where it spreads distally reaching maximum accumulation at metaphase/early anaphase. Fluorescence Recovery After Photobleaching analysis indicates that most of the bound protein exchanges rapidly with the cytoplasmic pool during prometaphase/metaphase. Taken together, our results suggest that in Drosophila, condensin I is involved in the initial stages of chromosome condensation. Furthermore, the rapid turnover of Barren-EGFP indicates that the mechanism by which condensin I promotes mitotic chromosome organization is inconsistent with a static scaffold model. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

17.
Meiotic recombination is essential for the repair of programmed double strand breaks (DSBs) to generate crossovers (COs) during meiosis. The efficient processing of meiotic recombination intermediates not only needs various resolvases but also requires proper meiotic chromosome structure. The Smc5/6 complex belongs to the structural maintenance of chromosome (SMC) family and is closely related to cohesin and condensin. Although the Smc5/6 complex has been implicated in the processing of recombination intermediates during meiosis, it is not known how Smc5/6 controls meiotic DSB repair. Here, using Caenorhabditis elegans we show that the SMC-5/6 complex acts synergistically with HIM-6, an ortholog of the human Bloom syndrome helicase (BLM) during meiotic recombination. The concerted action of the SMC-5/6 complex and HIM-6 is important for processing recombination intermediates, CO regulation and bivalent maturation. Careful examination of meiotic chromosomal morphology reveals an accumulation of inter-chromosomal bridges in smc-5; him-6 double mutants, leading to compromised chromosome segregation during meiotic cell divisions. Interestingly, we found that the lethality of smc-5; him-6 can be rescued by loss of the conserved BRCA1 ortholog BRC-1. Furthermore, the combined deletion of smc-5 and him-6 leads to an irregular distribution of condensin and to chromosome decondensation defects reminiscent of condensin depletion. Lethality conferred by condensin depletion can also be rescued by BRC-1 depletion. Our results suggest that SMC-5/6 and HIM-6 can synergistically regulate recombination intermediate metabolism and suppress ectopic recombination by controlling chromosome architecture during meiosis.  相似文献   

18.
The elevated incidence of aneuploidy in human oocytes warrants study of the molecular mechanisms regulating proper chromosome segregation. The Aurora kinases are a well‐conserved family of serine/threonine kinases that are involved in proper chromosome segregation during mitosis and meiosis. Here we report the expression and localization of all three Aurora kinase homologs, AURKA, AURKB, and AURKC, during meiotic maturation of mouse oocytes. AURKA, the most abundantly expressed homolog, localizes to the spindle poles during meiosis I (MI) and meiosis II (MII), whereas AURKB is concentrated at kinetochores, specifically at metaphase of MI (Met I). The germ cell‐specific homolog, AURKC, is found along the entire length of chromosomes during both meiotic divisions. Maturing oocytes in the presence of the small molecule pan‐Aurora kinase inhibitor, ZM447439 results in defects in meiotic progression and chromosome alignment at both Met I and Met II. Over‐expression of AURKB, but not AURKA or AURKC, rescues the chromosome alignment defect suggesting that AURKB is the primary Aurora kinase responsible for regulating chromosome dynamics during meiosis in mouse oocytes. Mol. Reprod. Dev. 76: 1094–1105, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

19.
20.
Meiosis is a crucial process of sexual reproduction by forming haploid gametes from diploid precursor cells. It involves 2 subsequent divisions (meiosis I and meiosis II) after one initial round of DNA replication. Homologous monocentric chromosomes are separated during the first and sister chromatids during the second meiotic division. The faithful segregation of monocentric chromosomes is realized by mono-orientation of fused sister kinetochores at metaphase I and by bi-orientation of sister kinetochores at metaphase II. Conventionally this depends on a 2-step loss of cohesion, along chromosome arms during meiosis I and at sister centromeres during meiosis II.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号