首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 722 毫秒
1.
The effects of neuraminidase treatment on the membrane surface charge density and/or membrane potential of the porcine intestinal brush-border membrane vesicles were studied by using three fluorescent dyes, 1,6-diphenyl-1,3,5-hexatriene (DPH), 1-anilino-8-naphthalene sulfonate (ANS), and 3,3'-dipropyl-2,2'-thiadicarbocyanine iodide (DiS-C3(5]. The results of quenching studies of DPH-labeled membranes using cationic (T1+) and anionic (I-) quenchers suggested an increase of negative charge on the membrane surface by desialylation upon neuraminidase treatment. This interpretation was further supported by a decrease of ANS-binding affinity of the membranes after treatment with the enzyme. In addition, the degree of valinomycin-induced fluorescence change of DiS-C3(5)-probed membranes in the presence of various concentrations of KCl was reduced by treatment of the membranes with neuraminidase. This suggests that penetration of the dye molecules into the vesicle interior is facilitated by the treatment. The membrane potentials estimated from the null point of valinomycin-induced changes in the DiS-C3(5) fluorescence of the control and neuraminidase-treated membranes were -25 to -29.7 and -40 to -48.8 mV, respectively. From these results, it is suggested that the membrane surface charge density and/or membrane potential of the intestinal brush-border membranes are susceptible to modification of carbohydrate moieties on the membrane surface by neuraminidase treatment.  相似文献   

2.
The fluorescence anisotropy in the mitochondria from vitamin D-treated chicks is significantly lower than that from the vitamin D-deficient animals with the inner core probe DPH. Surface membrane fluidity, measured with the probe TMA-DPH, shows no differences between the organelles of both groups. The fluorescence studies performed in mitochondrial subfractions revealed that cholecalciferol treatment induces a decrease of lipid order parameter S (DPH) in the mitochondrial inner membrane. These results pose the question of whether vitamin D3 participates in the regulation of physiological function of the intestinal mitochondria through changes in the physical properties of the membranes.  相似文献   

3.
The effect of neuraminidase treatment on the lipid fluidity of the porcine intestinal brush-border membranes was studied using two fluorescence dyes, pyrene and 1,6-diphenyl-1,3,5-hexatriene. By treatment of the membranes with neuraminidase, the fluorescence parameters of pyrene-labeled membranes changed; i.e., a shift of thermal transition temperature, an increase in the fluorescence quenching rate for Tl+ and a decrease in the fluorescence lifetime. These results suggest that the environmental properties around the dye molecules in the membranes change sensitively upon neuraminidase treatment. Perturbation of the lipid domain in the membranes associated with neuraminidase treatment is also demonstrated by a stimulated solubilization of diphenylhexatriene molecules in the membrane lipids, an increased quenching efficiency with Tl+ and a decreased rotational correlation time of diphenylhexatriene-labeled membranes. Based on these results, we conclude that the lipid organization of the membranes is susceptible to neuraminidase treatment and that the membrane lipid fluidity increases by desialylation by the enzyme treatment.  相似文献   

4.
The Ca2+-induced aggregation of porcine intestinal brush border membranes could be inhibited by addition of monovalent cations to the medium or by increasing the ionic strength of the medium, as measured by the change in optical density of the membrane suspension. The relative effectiveness of monovalent cations at 100 mM in the inhibition was in the order, (Na+ approximately equal to NH4+) greater than (K+ approximately equal to Rb+ approximately equal to Li+) greater than choline+. The Ca2+ concentration dependence profile of the membrane aggregation showed that the Ca2+ threshold at which the aggregation began was distinctly shifted to a higher concentration by the addition of KCl. In addition, the results of fluorometric studies with 1-anilino-8-naphthalene sulfonate suggested that the inhibition of the membrane aggregation by extravesicular KCl is due to a decrease of the binding affinity of Ca2+ for the membranes as a result of neutralization of the surface charges. On the other hand, measurements of the incorporation of 1,6-diphenyl-1, 3,5-hexatriene (DPH) into the membrane vesicles and of the anisotropy of DPH-labeled membranes suggested that the imposition of a salt gradient across the membrane vesicles (out greater than in) causes an increase of lipid fluidity of the membranes. Based on these results, a possible contribution of membrane surface charges and/or membrane fluidity to the Ca2+-induced aggregation of the membranes is discussed.  相似文献   

5.
Membrane fluidity of erythrocytes obtained from 15 children with trisomy 21 and 20 healthy controls were studied by measuring steady-state fluorescence anisotropy and fluorescence lifetime of 1,6-diphenyl-1,3,5-hexatriene (DPH) and 1-(4-trimethylammoniumphenyl)-6-phenyl-1,3,5-hexatriene (TMA-DPH) incorporated in hemoglobin-free erythrocyte membranes. Our results demonstrate a significant decrease in DPH fluorescence anisotropy and a significant increase in TMA-DPH fluorescence anistropy in erythrocytes from subjects with trisomy 21. No significant differences between the two groups were observed in the fluorescence lifetime of DPH and TMA-DPH. These data suggest an increase in membrane fluidity in the interior part of the membrane and a decrease in fluidity at the lipid-water interface region. This could be in part attributed to an increased oxidative damage in trisomy 21.  相似文献   

6.
Multilamellar liposomes, from mixtures of unoxidized (control) and singlet oxygen oxidized phosphatidylcholine, were studied by steady-state fluorescence anisotropy and multifrequency phase fluorometry using 1,6-diphenyl-1,3,5-hexatriene (DPH) as fluorescent probe. Lifetime fluorescence decay of the DPH-labeled liposomes was analyzed either by a model of discrete exponential components and a model that assumes a continuous distribution of lifetime values. Increasing the oxidized phosphatidylcholine content in the liposomes, an increase of the membrane interior polarity and a decrease of membrane fluidity occurs which can be related to the hydroperoxide-lipids and double bonds conjugation, respectively.  相似文献   

7.
Prior studies by our laboratory have suggested that a relationship may exist between rat colonic brush-border membrane vesicular fluidity and Na+-H+ exchange. To further explore this possible relationship, in the present studies the effects of ethinyl estradiol (17 alpha-ethinyl-1,3,5-estratriene-3,17-beta-diol) administration subcutaneously (5 mg/kg body wt. per day) for 5 days, on rat colonic brush-border membrane fluidity and Na+-H+ exchange were examined. This treatment regimen has previously been shown to decrease the lipid fluidity of rat hepatic and rabbit small intestinal plasma membranes. In agreement with these prior studies, the present results demonstrate that this agent decreases the lipid fluidity of treated-rat colonic brush-border membranes compared to control membranes, as assessed by steady-state fluorescence polarization techniques using three different fluorophores. An increase in the cholesterol content and cholesterol/phospholipid molar ratio of treated-membranes appear to, at least partially, be responsible for the fluidity differences. Furthermore, examination of the kinetic parameters for amiloride-sensitive sodium-stimulated proton efflux in treated and control membrane vesicles, utilizing the pH-sensitive fluorescent dye, Acridine orange, revealed that ethinyl estradiol administration decreased the Vmax for this exchange mechanism, expressed in arbitrary fluorescence units, by approx. 25% but did not influence its Km for sodium. These data, therefore, lend further support to the contention that alterations in fluidity may modulate Na+-H+ exchange in rat colonic brush-border membrane vesicles.  相似文献   

8.
巴氏碳球C60光激发对红细胞膜流动性的影响   总被引:1,自引:0,他引:1  
巴氏碳球C_(60)光激发对红细胞膜流动性的影响黄文栋,钱凯先,唐海琼(浙江大学生物科学与技术系,杭州310027)李文铸(渐江大学物理系,杭州310027)关键词C_(60);光激发;红细胞膜;荧光偏振;膜流动性C60是Kroto等人[1]于1985...  相似文献   

9.
There is accumulating evidence that peptide-induced perturbations in the order and dynamics of cellular membranes may play a role in the neurotoxicity of amyloid β-peptide (Aβ). Several studies have reported that Aβ decreases fluidity of membranes based on an Aβ-induced increase in the fluorescence anisotropy of diphenylhexatriene (DPH). However, the effect of Aβ on the membrane fluidity is still a subject of controversy, because other studies that employed pyrene as a fluorescent probe have shown that Aβ has the opposite effect. To reveal the reason for this discrepancy, we have examined the effect of Aβ on the fluidity of phosphatidylcholine membranes using spectroscopic methods. The fluorescence anisotropy of DPH is dramatically increased on addition of Aβ to DPH-containing phosphatidylcholine membranes. However, Aβ does not affect the Raman spectrum of the membrane, which is sensitive to the packing order of the hydrocarbon chains of lipids. We have also found that circular dichroism (CD) bands of DPH appear during incubation of DPH-containing membranes with Aβ, whereas DPH is an achiral molecule. The observed CD bands of DPH are induced by a chiral environment of Aβ but not by that of the lipids, because positive CD bands appear regardless of the d/l-chirality of phosphatidylcholine. The findings obtained from CD measurements provide evidence that DPH molecules translocate from the membrane to Aβ. The peptide-mediated extraction of DPH from the membrane may cause changes in the fluorescence anisotropy of DPH, even though Aβ does not affect the fluidity of membranes.  相似文献   

10.
The effects of three short-chain alkyl alcohols and benzyl alcohol on the membrane fluidity of bovine blood platelets were investigated by studies on the fluorescence anisotropies of diphenylhexatriene (DPH), its cationic trimethylammonium derivative (TMA-DPH) and its anionic propionic acid derivative (DPH-PA). These alcohols decreased the fluorescence anisotropy of DPH, which is thought to be located within the hydrophobic core of the membrane, in concentration ranges that inhibited platelet aggregation. On the other hand, they had little or no effects on the fluorescence anisotropy of DPH-PA which is thought to be located in the interfacial region of the lipid bilayer. Likewise, they had little or no effects on the fluorescence anisotropy of TMA-DPH, which is also thought to be located in the interfacial region of the lipid bilayer, either when the probe was located in the outer layer of the plasma membrane or when the probe was located in the inner membrane compartment. These results suggest that alcohols mainly increase the fluidity in the central region of the lipid bilayer. Consistent with their effects on the fluorescence anisotropy of DPH, these alcohols increased the intracellular cyclic AMP concentration. Thus alcohols may inhibit platelet function due to stimulation of adenylate cyclase, which is mediated by perturbation of the central region of the membrane lipid bilayer.  相似文献   

11.
The in vitro effects of plant sterols were investigated with regard to their uptake and membrane lipid fluidity in human keratinocytes. Among the different media tested to transport sterols (liposomes, micelles and organic solvents), the best results in terms of incorporation and viability were obtained by the use of the organic solvents dimethylsulfoxide and ethanol. After 48 h incubation exogenous sterol can account for about 30% of the total cell sterol content. The total sterol amount in plasma membranes increased 2-fold after incubation with cholesterol, whereas it was not altered when phytosterols were incorporated. The incorporation of cholesterol, sitosterol and stigmasterol led to an increase in the percent of unsaturated fatty acid C18:1 in the plasma membrane. The effect of this uptake on membrane fluidity was studied by means of fluorescence polarisation using DPH and TMA-DPH as fluorescent probes. Whereas cholesterol and sitosterol had no significant effect on the DPH fluorescence anisotropy (rs), the presence of stigmasterol induced a 12% decrease of rs reflecting an increase in membrane fluidity. We can conclude from this study that in the presence of sitosterol, the mean fluidity of the membrane is regulated whereas stigmasterol triggers a looseness of molecular packing of phospholipids acyl chains, in accordance with previous results obtained on purely lipid model membranes.  相似文献   

12.
Platelet and erythrocyte membrane changes in Alzheimer's disease   总被引:2,自引:0,他引:2  
Previous reports have suggested that the physical properties of cell membranes and calcium homeostasis in both the central and peripheral nervous system are changed in Alzheimer's disease (AD). This study has examined the biophysical properties of erythrocyte and platelet membranes by measuring the fluorescence anisotropy of 1,6-diphenyl-1,3,5-hexatriene (DPH) and possible related changes in lipid peroxidation. In addition, we have studied calcium homeostasis by measuring thrombin-stimulated changes in intraplatelet free calcium and Ca2(+)-ATPase activity in AD and healthy age and sex-matched controls. Our results show that there was no significant difference in the fluorescence anisotropy of DPH in erythrocyte membranes isolated from the three groups. There was also no significant difference in lipid peroxidation levels in erythrocytes and plasma of AD patients compared to controls. However, there was a significant reduction in the fluorescence anisotropy of DPH in platelet membranes from AD patients, compared with healthy controls. Recent evident suggests that the increase in platelet membrane fluidity results from alterations in internal membranes. We measured the specific activities of enzyme markers associated with intracellular and plasma membranes in platelets from AD patients and healthy controls. There was a significant reduction in the specific activity of antimycin A-insensitive NADH-cytochrome-c reductase (a specific marker for smooth endoplasmic reticulum (SER)), in AD patients compared to controls, but no change in the specific activity of bis(p-nitrophenyl)phosphate phosphodiesterase (a specific marker for plasma membrane). We have also shown that SER mediated [Ca2+] homeostasis is possibly impaired in AD platelets, i.e., the percentage of thrombin-stimulated increase in intraplatelet [Ca2+] above basal levels was significantly higher in AD compared to matched controls and there were significant reductions in the specific activities of Ca2+/Mg2(+)-ATPase and Ca2(+)-ATPase (but not Mg2(+)-ATPase) in AD platelets. Finally electron microscopic analysis of platelets showed that there was a significant increase in the incidence of abnormal membranes in AD patients compared to controls. The ultrastructural abnormalities seem to consist of proliferation of a system of trabeculated cisternae bounded by SER. These results suggest that both SER structure and function might be defected in AD platelets, which could explain the fluidity changes observed here.  相似文献   

13.
Fluorescence steady-state anisotropy and phase-modulation lifetime techniques have been utilized to study the interactions of pyrethroid compounds with fluid-phase phosphatidylcholine membranes containing the polypeptide gramicidin. This polypeptide is considered to be a model of hydrophobic regions of cellular integral membrane proteins. The pyrethroids disorder lipid packing in cellular membranes and gel-phase liposomes but do not disorder lipid packing in fluid-phase lipid (Stelzer, K.J. and Gordon, M.A. (1984) J. Immunopharmacol. 6, 381-410; (1985) Biochim. Biophys. Acta 812, 361-368) Irrespective of liposomal size, gramicidin incorporation resulted in a substantial increase in anisotropy of the fluorescent probe, 1,6-diphenyl-1,3,5-hexatriene (DPH), in fluid phase lipid. In the absence of gramicidin, permethrin and three other pyrethroids, allethrin, cypermethrin and fenpropathrin, increased DPH anisotropy. In these fluid phase systems, as the protein:lipid ratio was increased, the extent of the pyrethroid-mediated increase in fluorescence anisotropy diminished. Also, the pyrethroids shortened DPH fluorescence lifetimes. At high gramicidin:lipid ratios, permethrin substantially lowered anisotropy in the fluid phase lipid, relative to controls. The data suggest that pyrethroids disturb fluid-phase lipids which have been promoted to a relative state of order by proximity to an integral membrane protein. This type of order is one which is represented by DPH fluorescence anisotropy. A model based on these results is proposed to explain the effects of pyrethroids on lipid packing order in cellular membranes, as determined by DPH fluorescence anisotropy.  相似文献   

14.
Treatment of the porcine intestinal brush-border membranes with 100 microM ascorbic acid and 10 microM Fe2+ in the presence of various concentrations of tert-butyl hydroperoxide (t-BuOOH) resulted in a marked fluorescence development at 430 nm, depending on the hydroperoxide concentration. This fluorescence formation was closely related to lipid peroxidation of the membranes as assessed by formation of conjugated diene. However there is no linear relation between thiobarbituric acid-reactive substances (TBARS) and fluorescence formation. On the other hand, fluorescence formation in the membranes by treatment with ascorbic acid/Fe2+ or t-BuOOH alone was negligible. The results with antioxidants and radical scavengers suggest that ascorbic acid/Fe2+/t-BuOOH-induced lipid peroxidation of the membranes is mainly due to t-butoxyl and/or t-butyl peroxy radicals. Most TBARS produced during the peroxidation reaction were released from the membranes, but fluorescent products remained in the membrane components. The fluorescence properties of products formed by lipid peroxidation of the membranes were compared with those of products derived from the interaction of malondialdehyde (MDA) or acetaldehyde with the membranes. The fluorescence products in the acetaldehyde-modified membranes also exhibited the emission maximum at 430 nm, while the emission maximum of MDA-modified membranes was 470 nm. The fluorescence intensity of MDA-modified membranes was markedly decreased by treatment with 10 mM NaBH4 but that of the peroxidized or acetaldehyde-modified membranes was enhanced by about two-fold with the treatment. In addition, a pH dependence profile revealed that the fluorescence intensity of the peroxidized or acetaldehyde-modified membranes decreases with increasing pH of the medium, whereas that of MDA-modified ones did not change over the pH range from 5.4 to 8.0. On the basis of these results, the fluorescence properties of products formed in the intestinal brush-border membranes by lipid peroxidation are discussed.  相似文献   

15.
In the present study, the in vitro effect of polyphenol rich plant extract, flavonoid--Pycnogenol (Pyc), on erythrocyte membrane fluidity was studied. Membrane fluidity was determined using 1-[4-trimethyl-aminophenyl]-6-phenyl-1,3,5-hexatriene (TMA-DPH), 1,6-diphenyl-1,3,5-hexatriene (DPH) and 12-(9-anthroyloxy) stearic acid (12-AS) fluorescence anisotropy. After Pyc action (50 microg/ml to 300 microg/ml), we observed decreases in the anisotropy values of TMA-DPH and DPH in a dose-dependent manner compared with the untreated erythrocyte membranes. Pyc significantly increased the membrane fluidity predominantly at the membrane surface. Further, we observed the protective effect of Pyc against lipid peroxidation, TBARP generation and oxidative hemolysis induced by H2O2. Pyc can reduce the lipid peroxidation and oxidative hemolysis either by quenching free radicals or by chelating metal ions, or by both. The exact mechanism(s) of the positive effect of Pyc is not known. We assume that Pyc efficacy to modify effectively some membrane dependent processes is related not only to the chemical action of Pyc but also to its ability to interact directly with cell membranes and/or penetrate the membrane thus inducing modification of the lipid bilayer and lipid-protein interactions.  相似文献   

16.
Using a fluorogenic thiol reagent, N-(1-pyrene)maleimide (NPM), we have examined of lipid peroxidation on the microenvironment around SH groups of the membrane proteins in porcine intestinal brush-border membrane vesicles. The lipid peroxidation of the membranes was performed with various concentrations of t-butylhydroperoxide (t-BuOOH) in the presence of 100 microM ascorbic acid and 10 microM Fe2+. Treatment of NPM-labeled membranes with these oxidizing agents resulted in a decrease of the fluorescence lifetime, suggesting modification of the environmental properties around the bound dye. Measurement of the steady-state fluorescence anisotropy of the labeled membranes indicated restriction of the motion of the bound dye by the lipid peroxidation membranes. This interpretation was further supported by an elevation of the transition temperature of the anisotropy, a decrease in the quenching rate constant of the fluorescence with acrylamide and a decrease in the SH reactivity of the membrane proteins for NPM by lipid peroxidation. Based on these results, the possibility of conformation changes in the vicinity of SH groups in the membrane proteins associated with lipid peroxidation has been discussed.  相似文献   

17.
The fluorescence probe, 1,6-diphenyl-1,3,5-hexatriene, has been used to investigate the effects of controlled and uncontrolled growth on the dynamic properties of the lipid regions of hepatocyte plasma membranes. DPH was incubated with plasma membranes derived from quiescent and regenerating liver and Morris hepatoma 7777, and the resulting systems were studied by fluorescence polarization spectroscopy. Membranes from the rapidly growing hepatoma exhibited a significantly lower fluorescence polarization than observed in quiescent liver, suggesting the presence of a more fluid membrane lipid domain. Membranes from regenerating liver exhibited a time-dependent increase in membrane fluidity, reaching a maximum 12 h after growth stimulation. A close correspondence between membrane fluidity and the cholesterol-phospholipid ratio was also observed where a decrease in this ratio resulted in a more fluid lipid matrix. These results suggest that cell cycling, as observed in regenerating liver and Morris hepatoma 7777, results in significant increases in membrane fluidity, a property which may play an important regulatory role in various cell functions.  相似文献   

18.
Charged anesthetics selectively alter plasma membrane order   总被引:5,自引:0,他引:5  
W D Sweet  W G Wood  F Schroeder 《Biochemistry》1987,26(10):2828-2835
Although indirect evidence supporting differential lipid fluidity in the two monolayers of plasma membranes has accumulated, unambiguous demonstration of this difference has been difficult to obtain. In the present study, the fluorescent probe 1,6-diphenyl-1,3,5-hexatriene (DPH), selective quenching of fluorescence by trinitrophenyl groups, and differential polarized phase fluorescence techniques were used to directly examine the static (order) and dynamic (rotational rate) components of lipid motion in the exofacial and cytofacial leaflets of LM fibroblast plasma membranes. The limiting anisotropy (0.137), the order parameter (0.590), and the rotational relaxation time (1.20 ns) of DPH in the plasma membranes (inner plus outer leaflet) indicated rapid but restricted probe motion in the lipid environment. However, the statics and dynamics of DPH motion in the individual monolayers were significantly (p less than 0.025) different. The limiting anisotropy, order parameter, and rotational relaxation time of DPH in the cytofacial monolayer were 0.036, 0.08, and 0.16 ns, respectively, greater than calculated for the exofacial monolayer of the LM plasma membrane. At appropriate concentrations, phenobarbital and, to a lesser degree, pentobarbital preferentially reduced the limiting anisotropy of DPH calculated for the exofacial leaflet while prilocaine reduced the limiting anisotropy of DPH in the cytofacial leaflet of LM fibroblast plasma membranes. In contrast, the putative cytofacial anesthetic procaine failed to show any preference for either leaflet. Arrhenius plots of DPH fluorescence in LM plasma membranes showed a prominent characteristic break point near 30-32 degrees C. Phenobarbital, pentobarbital, and procaine did not affect this break point while prilocaine selectively abolished it. The break point was therefore assigned to the inner monolayer of the LM plasma membrane.  相似文献   

19.
M Donner  J F Stoltz 《Biorheology》1985,22(5):385-397
Important cellular functions, such as rheological properties of cells are presumably related to the membrane lipid fluidity which may be approached by the use of fluorescence polarization method. However, biological membranes represent very heterogeneous media and the knowledge of the fluidity of membrane compartments requires the use of different probes. Two fluorescent probes, DPH and its cationic derivative, TMA-DPH, have been employed to probe the lipid fluidity of human platelets and red cell membranes. The results show that the informations given by DPH and TMA-DPH can present important differences, suggesting that DPH and TMA-DPH are localized in different regions of cell membranes. In an attempt to investigate relations between lipid fluidity and rheological properties of red cells, the behavior of probes was studied in a "Couette" viscometer with a device for studying the emissive properties of probes when red cell membranes are under shear conditions.  相似文献   

20.
The lipid-phase structures of brush border membrane vesicles (BBMV) and basolateral membrane vesicles (BLMV) isolated from rabbit renal cortex were compared by steady-state and phase-modulation measurements of diphenylhexatriene (DPH) and trans- and cis-parinaric acid (tPnA and cPnA) fluorescence. A temperature-scanning system was used which gave reproducible temperature profiles of steady-state and dynamic fluorescence parameters with a resolution of 0.1 degrees C. Steady-state anisotropy of DPH showed a triphasic dependence on temperature with slope discontinuities at 22 +/- 4 and 47 +/- 3 degrees C (BBMV) and at 23 +/- 2 and 48 +/- 1 degrees C (BLMV). At all temperatures, DPH anisotropy in BBMV was greater than that in BLMV. Ground-state heterogeneity analysis of tPnA and cPnA fluorescence lifetime data demonstrated the presence of long (greater than 12 ns) and short (less than 5 ns) lifetime components, interpreted in terms of solid-phase and fluid-phase lipid domains. The fraction of solid-phase phospholipid decreased from 0.9 to 0.1 for BBMV and from 0.7 to 0.3 in BLMV with increasing temperature (10-50 degrees C). In both membranes, tryptophan-PnA fluorescence energy-transfer measurements showed that membrane proteins were surrounded by a fluidlike phospholipid phase. These results demonstrate the inadequacy of steady-state DPH anisotropy data in defining the structural characteristics of complex biological membranes. Results obtained with the phase-sensitive parinaric acid probes demonstrate major differences in the phase structure of the two opposing cell membranes in both the bulk lipid and the lipid microenvironment around membrane proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号