首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Time-resolved measurements of currents generated by Ca-ATPase from fragmented sarcoplasmic reticulum (SR) are described. SR vesicles spontaneously adsorb to a black lipid membrane acting as a capacitive electrode. Charge translocation by the enzyme is initiated by an ATP concentration jump performed by the light-induced conversion of an inactive precursor (caged ATP) to ATP with a time constant of 2.0 ms at pH 6.2 and 24 degrees C. The shape of the current signal is triphasic, an initial current flow into the vesicle lumen is followed by an outward current and a second slow inward current. The time course of the current signal can be described by five relaxation rate constants, lambda1 to lambda5 plus a fixed delay D approximately 1-3 ms. The electrical signal shows that 1) the reaction cycle of the Ca-ATPase contains two electrogenic steps; 2) positive charge is moved toward the luminal side in the first rapid step and toward the cytoplasmic side in the second slow step; 3) at least one electroneutral reaction precedes the electrogenic steps. Relaxation rate constant lambda3 reflects ATP binding, with lambda(3,max) approximately 100 s(-1). This step is electroneutral. Comparison with the kinetics of the reaction cycle shows that the first electrogenic step (inward current) occurs before the decay of E2P. Candidates are the formation of phosphoenzyme from E1ATP (lambda2 approximately 200 s[-1]) and the E1P --> E2P transition (D approximately 1 ms or lambda1 approximately 300 s[-1]). The second electrogenic transition (outward current) follows the formation of E2P (lambda4 approximately 3 s[-1]) and is tentatively assigned to H+ countertransport after the dissociation of Ca2+. Quenched flow experiments performed under the conditions of the electrical measurements 1) demonstrate competition by caged ATP for ATP-dependent phosphoenzyme formation and 2) yield a rate constant for phosphoenzyme formation of 200 s(-1). These results indicate that ATP and caged ATP compete for the substrate binding site, as suggested by the ATP dependence of lambda3 and favor correlation of lambda2 with phosphoenzyme formation.  相似文献   

2.
The kinetics of Na(+)-dependent partial reactions of the Na+,K(+)-ATPase from rabbit kidney were investigated via the stopped-flow technique, using the fluorescent labels N-(4-sulfobutyl)-4-(4-(p-(dipentylamino)phenyl)butadienyl)py ridinium inner salt (RH421) and 5-iodoacetamidofluorescein (5-IAF). When covalently labeled 5-IAF enzyme is mixed with ATP, the two labels give almost identical kinetic responses. Under the chosen experimental conditions two exponential time functions are necessary to fit the data. The dominant fast phase, 1/tau 1 approximately 155 s-1 for 5-IAF-labeled enzyme and 1/tau 1 approximately 200 s-1 for native enzyme (saturating [ATP] and [Na+], pH 7.4 and 24 degrees C), is attributed to phosphorylation of the enzyme and a subsequent conformational change (E1ATP(Na+)3-->E2P(Na+)3 + ADP). The smaller amplitude slow phase, 1/tau 2 = 30-45 s-1, is attributed to the relaxation of the dephosphorylation/rephosphorylation equilibrium in the absence of K+ ions (E2P<==>E2). The Na+ concentration dependence of 1/tau 1 showed half-saturation at a Na+ concentration of 6-8 mM, with positive cooperatively involved in the occupation of the Na+ binding sites. The apparent dissociation constant of the high-affinity ATP-binding site determined from the ATP concentration dependence of 1/tau 1 was 8.0 (+/- 0.7) microM. It was found that P3-1-(2-nitrophenyl)ethyl ATP, tripropylammonium salt (NPE-caged ATP), at concentrations in the hundreds of micromolar range, significantly decreases the value of 1/tau 1, observed. This, as well as the biexponential nature of the kinetic traces, can account for previously reported discrepancies in the rates of the reactions investigated.  相似文献   

3.
J R Petithory  W P Jencks 《Biochemistry》1986,25(16):4493-4497
The calcium adenosinetriphosphatase of sarcoplasmic reticulum, preincubated with Ca2+ on the vesicle exterior (cE X Ca2), reacts with 0.3-0.5 mM Mg X ATP to form covalent phosphoenzyme (E approximately P X Ca2) with an observed rate constant of 220 s-1 (pH 7.0, 25 degrees C, 100 mM KCl, 5 mM MgSO4, 23 microM free external Ca2+, intact SR vesicles passively loaded with 20 mM Ca2+). If the phosphoryl-transfer step were rate-limiting, with kf = 220 s-1, the approach to equilibrium in the presence of ADP, to give 50% EP and kf = kr, would follow kobsd = kf + kr = 440 s-1. The reaction of cE X Ca2 with 0.8-1.2 mM ATP plus 0.25 mM ADP proceeds to 50% completion with kobsd = 270 s-1. This result shows that phosphoryl transfer from bound ATP to the enzyme is not the rate-limiting step for phosphoenzyme formation from cE X Ca2. The result is consistent with a rate-limiting conformational change of the cE X Ca2 X ATP intermediate followed by rapid (greater than or equal to 1000 s-1) phosphoryl transfer. Calcium dissociates from cE X Ca2 X ATP with kobsd = 80 s-1 and ATP dissociates with kobsd = 120 s-1 when cE X Ca2 X ATP is formed by the addition of ATP to cE X Ca2. However, when E X Ca2 X ATP is formed in the reverse direction, from the reaction of E approximately P X Ca2 and ADP, Ca2+ dissociates with kobsd = 45 s-1 and ATP dissociates with kobsd = 35 s-1. This shows that different E X Ca2 X ATP intermediates are generated in the forward and reverse directions, which are interconverted by a conformational change.  相似文献   

4.
P(3)-[2-(4-hydroxyphenyl)-2-oxo]ethyl ATP (pHP-caged ATP) has been investigated for its application as a phototrigger for the rapid activation of electrogenic ion pumps. The yield of ATP after irradiation with a XeCl excimer laser (lambda = 308 nm) was determined at pH 6.0-7.5. For comparison, the photolytic yields of P(3)-[1-(2-nitrophenyl)]ethyl ATP (NPE-caged ATP) and P(3)-[1, 2-diphenyl-2-oxo]ethyl ATP (desyl-caged ATP) were also measured. It was shown that at lambda = 308 nm pHP-caged ATP is superior to the other caged ATP derivatives investigated in terms of yield of ATP after irradiation. Using time-resolved single-wavelength IR spectroscopy, we determined a lower limit of 10(6) s(-1) for the rate constant of release of ATP from pHP-caged ATP at pH 7.0. Like NPE-caged ATP, pHP-caged ATP and desyl-caged ATP bind to the Na(+), K(+)-ATPase and act as competitive inhibitors of ATPase function. Using pHP-caged ATP, we investigated the charge translocation kinetics of the Na(+),K(+)-ATPase at pH 6.2-7.4. The kinetic parameters obtained from the electrical measurements are compared to those obtained with a technique that does not require caged ATP, namely parallel stopped-flow experiments using the voltage-sensitive dye RH421. It is shown that the two techniques yield identical results, provided the inhibitory properties of the caged compound are taken into account. Our results demonstrate that under physiological (pH 7.0) and slightly basic (pH 7.5) or acidic (pH 6. 0) conditions, pHP-caged ATP is a rapid, effective, and biocompatible phototrigger for ATP-driven biological systems.  相似文献   

5.
A M Hanel  W P Jencks 《Biochemistry》1991,30(47):11320-11330
The internalization of 45Ca by the calcium-transporting ATPase into sarcoplasmic reticulum vesicles from rabbit muscle was measured during a single turnover of the enzyme by using a quench of 7 mM ADP and EGTA (25 degrees C, 5 mM MgCl2, 100 mM KCl, 40 mM MOPS.Tris, pH 7.0). Intact vesicles containing either 10-20 microM or 20 mM Ca2+ were preincubated with 45Ca for approximately 20 s and then mixed with 0.20-0.25 mM ATP and excess EGTA to give 70% phosphorylation of Etot with the rate constant k = 300 s-1. The two 45Ca ions bound to the phosphoenzyme (EP) become insensitive to the quench with ADP as they are internalized in a first-order reaction with a rate constant of k = approximately 30 s-1. The first and second Ca2+ ions that bind to the free enzyme were selectively labeled by mixing the enzyme and 45Ca with excess 40Ca, or by mixing the enzyme and 40Ca with 45Ca, for 50 ms prior to the addition of ATP and EGTA. The internalization of each ion into loaded or empty vesicles follows first-order kinetics with k = approximately 30 s-1; there is no indication of biphasic kinetics or an induction period for the internalization of either Ca2+ ion. The presence of 20 mM Ca2+ inside the vesicles has no effect on the kinetics or the extent of internalization of either or both of the individual ions. The Ca2+ ions bound to the phosphoenzyme are kinetically equivalent. A first-order reaction for the internalization of the individual Ca2+ ions is consistent with a rate-limiting conformational change of the phosphoenzyme with kc = 30 s-1, followed by rapid dissociation of the Ca2+ ions from separate independent binding sites on E approximately P.Ca2; lumenal calcium does not inhibit the dissociation of calcium from these sites. Alternatively, the Ca2+ ions may dissociate sequentially from E approximately P.Ca2 following a rate-limiting conformational change. However, the order of dissociation of the individual ions can not be distinguished. An ordered-sequential mechanism for dissociation requires that the ions dissociate much faster (k greater than or equal to 10(5) s-1) than the forward and reverse reactions for the conformational change (k-c = approximately 3000 s-1). Finally, the Ca2+ ions may exchange their positions rapidly on the phosphoenzyme (kmix greater than or equal to 10(5) s-1) before dissociating. A Hill slope of nH = 1.0-1.2, with K0.5 = 0.8-0.9 mM, for the inhibition of turnover by binding of Ca2+ to the low-affinity transport sites of the phosphoenzyme was obtained from rate measurements at six different concentrations of Mg2+.  相似文献   

6.
A charge-pulse technique was designed to measure charge movements in the Na-transport mode of the Na,K-ATPase in membrane fragments adsorbed to a planar lipid bilayer with high time resolution. 1) Na+ transport was measured as a function of membrane potential, and 2) voltage-dependent extracellular ion binding and release were analyzed as a function of Na+ concentration and membrane potential. The results could be fitted and explained on the basis of a Post-Albers cycle by simulations with a mathematical model. The minimal reaction sequence explaining the electrogenicity of the pump consists of the following steps: (Na3)E1-P <--> P-E2(Na3) <--> P-E2(Na2) <--> P-E2(Na) <--> P-E2. The conformational change, E1 to E2, is electrogenic (beta 0 < or = 0.1) and the rate-limiting step of forward Na+ transport with a rate constant of 25 s-1 (T = 20 degrees C). The first ion release step, P-E2(Na3) <--> P-E2(Na2), is the major charge translocating process (delta 0 = 0.65). It is probably accompanied by a protein relaxation in which the access structure between aqueous phase and binding site reduces the dielectric distance. The release of the subsequent Na+ ions has a significantly lower dielectric coefficient (delta1 = delta 2 = 0.2). Compared with other partial reactions, the ion release rates are fast (1400 s-1, 700 s-1, and 4000 s-1). On the basis of these findings, a refined electrostatic model of the transport cycle is proposed.  相似文献   

7.
K Horiuti  K Kagawa    K Yamada 《Biophysical journal》1994,67(5):1925-1932
We isometrically activated skinned fibers in rigor by flash photolysis of caged ATP at various [Ca2+] at 8 degrees C. On release of ATP, tension initially decreased with the same time course at all [Ca2+]. At high [Ca2+] (pCa < or = 5.8), tension rose to the steady-state plateau after the brief relaxation. When the [Ca2+] was intermediate (7.0 < or = pCa < or = 6.0), tension temporarily overshot the final steady-state level. The half-time during this tension transient was longer at higher [Ca2+]. The transient contractions could be simulated by a simple kinetic model: R + ATP-->Q, and X<-->Q<-->A, where R, X, and A are the rigor, relaxed, and active-tension states, respectively; Q is a "pre-active" state where tension is very low; and Ca2+ affects only the X-Q transition. This scheme was also useful for predicting the tension transients in Ca(2+)- and P(i)-jump experiments at various [Ca2+]. ADP enhanced the Ca2+ sensitivity of the ATP-induced transient contraction, which was not in the scope of the model.  相似文献   

8.
The electrogenic transport of ATP and ADP by the mitochondrial ADP/ATP carrier (AAC) was investigated by recording transient currents with two different techniques for performing concentration jump experiments: 1) the fast fluid injection method: AAC-containing proteoliposomes were adsorbed to a solid supported membrane (SSM), and the carrier was activated via ATP or ADP concentration jumps. 2) BLM (black lipid membrane) technique: proteoliposomes were adsorbed to a planar lipid bilayer, while the carrier was activated via the photolysis of caged ATP or caged ADP with a UV laser pulse. Two transport modes of the AAC were investigated, ATP(ex)-0(in) and ADP(ex)-0(in). Liposomes not loaded with nucleotides allowed half-cycles of the ADP/ATP exchange to be studied. Under these conditions the AAC transports ADP and ATP electrogenically. Mg(2+) inhibits the nucleotide transport, and the specific inhibitors carboxyatractylate (CAT) and bongkrekate (BKA) prevent the binding of the substrate. The evaluation of the transient currents yielded rate constants of 160 s(-1) for ATP and >/=400 s(-1) for ADP translocation. The function of the carrier is approximately symmetrical, i.e., the kinetic properties are similar in the inside-out and right-side-out orientations. The assumption from previous investigations, that the deprotonated nucleotides are exclusively transported by the AAC, is supported by further experimental evidence. In addition, caged ATP and caged ADP bind to the carrier with similar affinities as the free nucleotides. An inhibitory effect of anions (200-300 mM) was observed, which can be explained as a competitive effect at the binding site. The results are summarized in a transport model.  相似文献   

9.
T Wang 《Biochemistry》1987,26(25):8360-8365
A five-syringe quench-flow apparatus was used in the transient-state kinetic study of intermediary phosphoenzyme (EP) decomposition in a Triton X-100 purified dog cardiac sarcoplasmic reticulum (SR) Ca2+-ATPase at 20 degrees C. Phosphorylation of the enzyme by ATP in the presence of 100 mM K+ for 116 ms gave 32% ADP-sensitive E1P, 52% ADP- and K+-reactive E2P, and 16% unreactive residual EPr. The EP underwent a monomeric, sequential E1P 17 s-1----E2P 10.5 s-1----E2 + Pi transformation and decomposition in the ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid quenched Ca2+-devoid medium. The calculated rate constant for the total EP (i.e., E1P + E2P) dephosphorylation was 7.8 s-1. The E1P had an affinity for ADP with an apparent Kd congruent to 100 microM. When the EP was formed in the absence of K+ for 116 ms, no appreciable amount of the ADP-sensitive E1P was detected. The EP comprised about 80% ADP- and K+-reactive E2P and 20% residual EPr, suggesting a rapid E1P----E2P transformation. Both the E2P's formed in the presence and absence of K+ decomposed with a rate constant of about 19.5 s-1 in the presence of 80 mM K+ and 2 mM ADP, showing an ADP enhancement of the E2P decomposition. The results demonstrate mechanistic differences in monomeric EP transformation and decomposition between the Triton X-100 purified cardiac SR Ca2+-ATPase and deoxycholate-purified skeletal enzyme [Wang, T. (1986) J. Biol. Chem. 261, 6307-6319].  相似文献   

10.
A M Hanel  W P Jencks 《Biochemistry》1990,29(21):5210-5220
The calcium-transport ATPase (CaATPase) of rabbit sarcoplasmic reticulum preincubated with 0.02 mM Ca2+ (cE.Ca2) is phosphorylated upon the addition of 0.25 mM LaCl3 and 0.3 mM [gamma-32P]ATP with an observed rate constant of 6.5 s-1 (40 mM MOPS, pH 7.0, 100 mM KCl, 25 degrees C). La.ATP binds to cE.Ca2 with a rate constant of 5 X 10(6) M-1 s-1, while ATP, Ca2+, and La3+ dissociate from cE.Ca2.La.ATP at less than or equal to 1 s-1. The reaction of ADP with phosphoenzyme (EP) formed from La.ATP is biphasic. An initial rapid loss of EP is followed by a slower first-order disappearance, which proceeds to an equilibrium mixture of EP.ADP and nonphosphorylated enzyme with bound ATP. The fraction of EP that reacts in the burst (alpha) and the first-order rate constant for the slow phase (kb) increase proportionally with increasing concentrations of ADP to give maximum values of 0.34 and 65 s-1, respectively, at saturating ADP (KADPS = 0.22 mM). The burst represents rapid phosphoryl transfer and demonstrates that ATP synthesis and hydrolysis on the enzyme are fast. The phosphorylation of cE.Ca2 by La.ATP at 6.5 s-1 and the kinetics for the reaction of EP with ADP are consistent with a rate-limiting conformational change in both directions. The conformational change converts cE.Ca2.La.ATP to the form of the enzyme that is activated for phosphoryl transfer, aE.Ca2.La.ATP, at 6.5 s-1; this is much slower than the analogous conformational change at 220 s-1 with Mg2+ as the catalytic ion [Petithory & Jencks (1986) Biochemistry 25, 4493]. The rate constant for the conversion of aE.Ca2.La.ATP to cE.Ca2.La.ATP is 170 s-1. ATP does not dissociate measurably from aE.Ca2.La.ATP. Labeled EP formed from cE.Ca2 and La.ATP with leaky vesicles undergoes hydrolysis at 0.06 s-1. It is concluded that the reaction mechanism of the CaATPase is remarkably similar with Mg.ATP and La.ATP; however, the strong binding of La.ATP slows both the conformational change that is rate limiting for EP formation and the dissociation of La.ATP. An interaction between La3+ at the catalytic site and the calcium transport sites decreases the rate of calcium dissociation by greater than 60-fold. When cE-Ca2 is mixed with 0.3 mM ATP and 1.0 mM Cacl2, the phosphoenzyme is formed with an observed rate constant of 3 s-1. The phosphoenzyme formed from Ca.ATP reacts with 2.0 mM ADP and labeled ATP with a rate constant of 30 s-1; there may be a small burst (alpha less than or equal to 0.05).  相似文献   

11.
Electrogenic ion transport by Na,K-ATPase was investigated by analysis of transient currents in a model system of protein-containing membrane fragments adsorbed to planar lipid bilayers. Sodium transport was triggered by ATP concentration jumps in which ATP was released from an inactive precursor by an intense near-UV light flash. The method has been used previously with the P3-1-(2-nitrophenyl)ethyl ester of ATP (NPE-caged ATP), from which the relatively slow rate of ATP release limits analysis of processes in the pump mechanism controlled by rate constants greater than 100 s(-1) at physiological pH. Here Na,K-ATPase was reinvestigated using the P3-[1-(3,5-dimethoxyphenyl)-2-phenyl-2-oxo]ethyl ester of ATP (DMB-caged ATP), which has an ATP release rate of >10(5) s(-1). Under otherwise identical conditions, photorelease of ATP from DMB-caged ATP showed faster kinetics of the transient current compared to that from NPE-caged ATP. With DMB-caged ATP, transient currents had rate profiles that were relatively insensitive to pH and the concentration of caged compound. Rate constants of ATP binding and of the E1 to E2 conformational change were compatible with earlier studies. Rate constants of enzyme phosphorylation and ADP-dependent dephosphorylation were 600 s(-1) and 1.5 x 10(6) M(-1) s(-1), respectively, at pH 7.2 and 22 degrees C.  相似文献   

12.
Sarcoplasmic reticulum vesicles adsorbed on a black lipid membrane generate an electrical current after a fast increment of the concentration of ATP. This demonstrates directly that the sarcoplasmic Ca2+-ATPase from skeletal muscle acts as an electrogenic ion pump. The increment of the concentration of ATP is achieved by the photolysis of caged ATP (P3-1-(2-nitro)phenylethyl adenosine 5′-triphosphate) a protected analogue of ATP (Kaplan, J.H. et al. (1978) Biochemistry 17, 1929–1935), which is split into ATP and 2-nitroso acetophenone. The release of ATP leads to a transient current flow across the lipid membrane indicating that the vesicles are capacitatively coupled to the underlying lipid membrane. In addition to this transient signal, a stationary current flow is obtained in the presence of ionophores which increase the conductance of the bilayer system and prevent the accumulation of Ca2+ in the lumen of the vesicles. The direction of the transient and the stationary current is in accordance with the concept that Ca2+ is pumped into the lumen of the vesicles. The transient current depends on the concentration of ATP, Ca2+ and Mg2+ as would be the case for a current generated by the sarcoplasmic Ca2+-ATPase. Its amplitude is half-maximal at 10 μM ATP and 1 μM Ca2+. At Ca2+ concentrations above 0.1 mM the amplitude of the current signal declines again. The Mg2+ concentration dependence of the current amplitude at a constant ATP concentration indicates that the MgATP complex is the substrate for the activation of the current. The pump current is inhibited by vanadate and ADP. No current signal is observed if caged ATP is replaced by caged ADP. However, the release of ADP from caged ADP generates a pump current in the presence of an ATP generating system such as creatine phosphate and creatine kinase.  相似文献   

13.
Using inside-out vesicles of human red cell membranes, the side-specific effects of Na+ on phosphorylation of (Na,K)-ATPase have been studied using low concentrations of [gamma-32P]ATP (less than or equal to 0.1 microM). Phosphorylation is stimulated by Na+ at the cytoplasmic membrane surface (extravesicular Na+) alone and not by Na+ at the external surface (intravesicular Na+). At 37 degrees C, external Na+ (less than or equal to 10 mM) does, however, increase the steady state level (approximately 2 1/2-fold) of phosphoenzyme above that observed with cytoplasmic Na+ alone; hydrolysis is increased to only a small extent. Little stimulation by external Na+ is observed at 0 degrees C. As Na+ at the cytoplasmic side is decreased to very low levels (less than or equal to 0.2 mM) several kinetic changes are observed: (i) the apparent turnover of phosphoenzyme (ratio Na+-ATP-ase/phosphoenzyme level) is markedly increased (approximately 3-fold, (ii) Rbext sensitivity (inhibition of (Na)-ATPase at low ATP levels) is reduced, and (iii) the ratio of Na+ ions transported per molecule of ATP hydrolyzed is decreased. These results are compatible with a reaction pathway involving a transition from one form of phosphoenzyme, E1-P, to another, E2-P of which the hydrolysis is decreased by moderate levels of external Na+. It is suggested also that an alternate reaction pathway for Na+-ATPase occurs at very low cytoplasmic Na+, one via hydrolysis of E1-P and not associated with Na+ translocation.  相似文献   

14.
The human nucleotide pool sanitization enzyme, MTH1, hydrolyzes 2-hydroxy-dATP and 8-hydroxy-dATP in addition to 8-hydroxy-dGTP. We report here that human MTH1 is highly specific for 2-hydroxy-ATP, among the cognate ribonucleoside triphosphates. The pyrophosphatase activities for 8-hydroxy-GTP, 2-hydroxy-ATP and 8-hydroxy-ATP were measured by high-performance liquid chromatography. The kinetic parameters thus obtained indicate that the catalytic efficiencies of MTH1 are in the order of 2-hydroxy-dATP > 2-hydroxy-ATP > 8-hydroxy-dGTP > 8-hydroxy-dATP >> dGTP > 8-hydroxy-GTP > 8-hydroxy-ATP. Notably, MTH1 had the highest affinity for 2-hydroxy-ATP among the known substrates. ATP is involved in energy metabolism and signal transduction, and is a precursor in RNA synthesis. We suggest that the 2-hydroxy-ATP hydrolyzing activity of MTH1 might prevent the perturbation of these ATP-related pathways by the oxidized ATP.  相似文献   

15.
J R Petithory  W P Jencks 《Biochemistry》1988,27(23):8626-8635
The binding of Ca2+ and the resulting change in catalytic specificity that allows phosphorylation of the calcium ATPase of sarcoplasmic reticulum by ATP were examined by measuring the amount of phosphoenzyme formation from [32P]ATP, or 45Ca incorporation into vesicles, after the simultaneous addition of ATP and EGTA at different times after mixing enzyme and Ca2+ (25 degrees C, pH 7.0, 5 mM MgSO4, 0.1 M KCl). A "burst" of calcium binding in the presence of high [Ca2+] gives approximately 12% phosphorylation and internalization of two Ca2+ at very short times after the addition of Ca2+ with this assay. This shows that calcium binding sites are available on the cytoplasmic-facing side of the free enzyme. Calcium binding to these sites induces the formation of cE.Ca2, the stable high-affinity form of the enzyme, with k = 40 s-1 at saturating [Ca2+] and a half-maximal rate at approximately 20 microM Ca2+ (from Kdiss = 7.4 X 10(-7) M for Ca.EGTA). The formation of cE.Ca2 through a "high-affinity" pathway can be described by the scheme E 1 in equilibrium cE.Ca1 2 in equilibrium cE.Ca2, with k1 = 3 X 10(6) M-1 s-1, k2 = 4.3 X 10(7) M-1 s-1, k-1 = 30 s-1, k-2 = 60 s-1, K1 = 9 X 10(-6) M, and K2 = 1.4 X 10(-6) M. The approach to equilibrium from E and 3.2 microM Ca2+ follows kobsd = kf + kr = 18 s-1 and gives kf = kr = 9 s-1. The rate of exchange of 45Ca into the inner position of cE.Ca2 shows an induction period and is not faster than the approach to equilibrium starting with E and 45Ca. The dissociation of 45Ca from the inner position of cE.45Ca.Ca in the presence of 3.2 microM Ca2+ occurs with a rate constant of 7 s-1. These results are inconsistent with a slow conformational change of free E to give cE, followed by rapid binding-dissociation of Ca2+.  相似文献   

16.
Acetyl phosphate is hydrolyzed by the calcium ATPase of leaky sarcoplasmic reticulum vesicles from rabbit skeletal muscle with Km = 6.5 mM and kcat = 7.9 s-1 in the presence of 100 microM calcium (180 mM K+, 5 mM MgSO4, pH 7.0, 25 degrees C). In the absence of calcium, hydrolysis is 6% of the calcium-dependent rate at low and 24% at saturating concentrations of acetyl phosphate. Values of K0.5 for calcium are 3.5 and 2.2 microM (n = 1.6) in the presence of 1 and 50 mM acetyl phosphate, respectively; inhibition by calcium follows K0.5 = 1.6 mM (n approximately 1.1) with 50 mM acetyl phosphate and K0.5 = 0.5 mM (n approximately 1.3) with 1.5 mM ATP. The calcium-dependent rate of phosphoenzyme formation from acetyl phosphate is consistent with Km = 43 mM and kf = 32 s-1 at saturation; decomposition of the phosphoenzyme occurs with kt = 16 s-1. The maximum fraction of phosphoenzyme formed in the steady state at saturating acetyl phosphate concentrations is 43-46%. These results are consistent with kc congruent to 30 s-1 for binding of Ca2+ to E at saturating [Ca2+], to give cE.Ca2, in the absence of activation by ATP. Phosphoenzyme formed from ATP and from acetyl phosphate shows the same biphasic reaction with ADP, rate constants for decomposition that are the same within experimental error, and similar or identical activation of decomposition by ATP. It is concluded that the reaction pathways for acetyl phosphate and ATP in the presence of Ca2+ are the same, with the exception of calcium binding and phosphorylation; an alternative, faster route that avoids the kc step is available in the presence of ATP. The existence of three different regions of dependence on ATP concentration for steady state turnover is confirmed; activation of hydrolysis at high ATP concentrations involves an ATP-induced increase in kt.  相似文献   

17.
LaConte LE  Baker JE  Thomas DD 《Biochemistry》2003,42(32):9797-9803
We have used electron paramagnetic resonance (EPR) of spin-labeled scallop muscle, in conjunction with laser flash photolysis of caged ATP, to resolve millisecond rotational transitions of the myosin light-chain domain (LCD) during transient force generation. We previously used EPR to resolve two distinct orientations of the LCD [Baker, J. E., Brust-Mascher, I., Ramachandran, S., LaConte, L. E., and Thomas, D. D. (1998) Proc. Natl. Acad. Sci. U.S.A. 95, 2944-2949], correlated these structural states with biochemical states in the actin-myosin ATPase reaction, and showed that a small shift in the steady-state distribution between these two LCD orientations (i.e., a net lever arm rotation) is associated with force generation in muscle. In the study presented here, we measured millisecond changes in this orientational distribution (i.e., the rates of transition between the two LCD orientations) in muscle following flash photolysis of caged ATP, in both the presence and absence of Ca. The transient acquired in the absence of Ca is dominated by a rapid (1/tau(1) = 37 s(-1)) disordering transition from the single orientation in rigor to the bimodal orientation distribution observed for detached cross-bridges in relaxation (i.e., the reversal of the lever arm rotation), followed by a recovery phase (1/tau(2) = 2.4 s(-1)) of very small amplitude (small fraction of heads participating). In the presence of Ca, the transient exhibited a similar initial disordering phase (1/tau(1) = 38.5 s(-1)), followed by a recovery phase (1/tau(2) = 8.33 s(-1)) of substantial amplitude, corresponding to the forward rotation and ordering of the lever arm. A standard kinetic model was used to fit these data, revealing rate constants consistent with those previously determined by other methods. Surprisingly, a comparison of the EPR transients with force transients reveals that the rate of force development (91 s(-1)) is faster than the rate of the forward lever arm rotation (8 s(-1)). This observed relationship between the kinetics of the lever arm rotation and transient force development in muscle provides new insight into how myosin both generates and responds to muscle force.  相似文献   

18.
Slow dissociation of ATP from the calcium ATPase   总被引:1,自引:0,他引:1  
The acyl-phosphate intermediate of the sarcoplasmic reticulum calcium ATPase reaction, formed in a brief incubation of vesicular enzyme with 5 microM [gamma-32P]ATP and calcium, reacts biphasically with added ADP (pH 7.0, 25 degrees C, 100 mM KCl, 5 mM MgSO4). Both the burst size and the rate constant for the slow phase increase with increasing ADP concentration in the way that is expected if the burst represents very rapid formation of an equilibrium amount of enzyme-bound ATP and the slow phase represents rate-limiting dissociation of ATP. Also consistent with this interpretation are the slow labeling of phosphoenzyme under conditions in which unlabeled ATP must dissociate first and the observation of a burst of ATP formation on ADP addition to phosphoenzyme. Values of the equilibrium constants for ADP dissociation from phosphoenzyme (0.75 mM), for ATP formation on the enzyme (2.3), and for the ATP dissociation rate constant (37 s-1) were obtained from a quantitative analysis of the data.  相似文献   

19.
A reaction cycle for the gastric H+/K+-ATPase is proposed. This has been used to simulate the results from four types of pre-steady-state and steady-state kinetic experiments: (1) the K+ dependence of the dephosphorylation of the phosphoenzyme; (2) the rate of phosphorylation of the enzyme by ATP at different concentrations; (3) the effect of ATP concentration on the steady-state rate of ATP hydrolysis; (4) the phosphoenzyme levels in the steady state at various ATP concentrations. A single set of equilibrium and rate constants can be used to reproduce the results from all four sets of experiments quite well. It is suggested that the steady-state rate equation is nonhyperbolic because ATP can react with the enzyme in both the E1 and the E2 state, but with a lower affinity in E2. No single step is by itself limiting the maximum turnover rate.  相似文献   

20.
S P Eng  D L Clough  C S Lo 《Life sciences》1990,47(26):2451-2458
Rat renal NaK-ATPase was inhibited by mastoparan in a dose dependent fashion. This inhibition reached completion within 30 seconds. Due to mastoparan's rapid effects on NaK-ATPase activity, this inhibition does not appear to involve either a decrease in the rate of synthesis or an increase in their degradation of NaK-ATPase since these processes require a latency period of at least several minutes. In addition, the phosphoenzyme intermediate formed in the presence of mastoparan was greater than that formed in its absence further indicating that inhibition of NaK-ATPase by mastoparan is not due to a decrease in the number of NaK-ATPase. A possible mechanism for the inhibition is that mastoparan stabilizes the phosphoenzyme intermediate and reduces the Vmax of the enzyme by decreasing the rate of turnover of existing enzyme sites. Neomycin, an inhibitor of inositol phospholipid metabolism, was also found to attenuate the inhibition of Na,K-ATPase by mastoparan, suggesting that the mechanism of this inhibition may involve degradation of the phosphatidylinositol "pool".  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号